
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2016

Large scale online kernel learning Large scale online kernel learning

Jing LU
Singapore Management University, jing.lu.2014@phdis.smu.edu.sg

HOI, Steven C. H.
Singapore Management University, chhoi@smu.edu.sg

Jialei WANG
University of Chicago

Peilin ZHAO
Institute for Infocomm Research

Zhi-Yong LIU
Chinese Academy of Sciences

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons

Citation Citation
LU, Jing; HOI, Steven C. H.; WANG, Jialei; ZHAO, Peilin; and LIU, Zhi-Yong. Large scale online kernel
learning. (2016). Journal of Machine Learning Research. 17, (47), 1-43.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3410

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Journal of Machine Learning Research 17 (2016) 1-43 Submitted 4/14; Revised 4/15; Published 4/16

Large Scale Online Kernel Learning

Jing Lu jing.lu.2014@phdis.smu.edu.sg
Steven C.H. Hoi ∗ chhoi@smu.edu.sg
School of Information Systems, Singapore Management University
80 Stamford Road, Singapore, 178902

Jialei Wang jialei@uchicago.edu
Department of Computer Science, University of Chicago
5050 S Lake Shore Drive Apt S2009 Chicago IL, USA, 60637

Peilin Zhao zhaop@i2r.a-star.edu.sg
Institute for Infocomm Research, A*STAR
1 Fusionopolis Way, 21-01 Connexis, Singapore, 138632

Zhi-Yong Liu zhiyong.liu@ia.ac.cn

State Key Lab of Management and Control for Complex System, Chinese Academy of Sciences

No. 95 Zhongguancun East Road, Haidian District, Beijing, China, 100190

Editor: John Shawe-Taylor

Abstract

In this paper, we present a new framework for large scale online kernel learning, making
kernel methods efficient and scalable for large-scale online learning applications. Unlike the
regular budget online kernel learning scheme that usually uses some budget maintenance
strategies to bound the number of support vectors, our framework explores a completely
different approach of kernel functional approximation techniques to make the subsequent
online learning task efficient and scalable. Specifically, we present two different online
kernel machine learning algorithms: (i) Fourier Online Gradient Descent (FOGD) algo-
rithm that applies the random Fourier features for approximating kernel functions; and (ii)
Nyström Online Gradient Descent (NOGD) algorithm that applies the Nyström method
to approximate large kernel matrices. We explore these two approaches to tackle three
online learning tasks: binary classification, multi-class classification, and regression. The
encouraging results of our experiments on large-scale datasets validate the effectiveness
and efficiency of the proposed algorithms, making them potentially more practical than
the family of existing budget online kernel learning approaches.

Keywords: online learning, kernel approximation, large scale machine learning

1. Introduction

In machine learning, online learning represents a family of efficient and scalable learning
algorithms for building a predictive model incrementally from a sequence of data exam-
ples (Rosenblatt, 1958). Unlike regular batch machine learning methods (Shawe-Taylor and
Cristianini, 2004; Vapnik, 1995) which usually suffer from a high re-training cost when-
ever new training data arrive, online learning algorithms are often very efficient and highly

∗. Corresponding Author

c©2016 Jing Lu, Steven C.H. Hoi, Jialei Wang, Peilin Zhao, Zhiyong Liu.

Lu, Hoi, Wang, Zhao and Liu

scalable, making them more suitable for large-scale online applications where data usually
arrive sequentially and evolve dynamically and rapidly. Online learning techniques can be
applied to many real-world applications, such as online spam detection (Ma et al., 2009),
online advertising, multimedia retrieval (Xia et al., 2013), and computational finance (Li
et al., 2012). In this paper, we first present an online learning methodology to tackle on-
line binary classification tasks and then extend the technique to solve the tasks of online
multi-class classification and online regression in the following sections.

Recently, a wide variety of online learning algorithms have been proposed to tackle
online classification tasks. One popular family of online learning algorithms, which are
referred to as the “linear online learning” (Rosenblatt, 1958; Crammer et al., 2006; Dredze
et al., 2008), learn a linear predictive model on the input feature space. The key limitation
of these algorithms lies in that the linear model sometimes is restricted to make effective
classification if training data are linearly separable in the input feature space, which is not
a common scenario for many real-world classification tasks especially when dealing with
noisy training data in relatively low dimensional space. This has motivated the studies of
“kernel based online learning” or referred to as “online kernel learning” (Kivinen et al.,
2001; Freund and Schapire, 1999), which aims to learn kernel-based predictive models for
resolving the challenging tasks of classifying instances that are non-separable in the input
space.

One key challenge of conventional online kernel learning methods is that an online
learner usually has to maintain a set of support vectors (SV’s) in memory for representing
the kernel-based predictive model. During the online learning process, whenever a new
incoming training instance is misclassified, it typically will be added to the SV set, making
the size of support vector set unbounded and potentially causing memory overflow for a
large-scale online learning task. To address this challenge, a promising research direction is
to explore “budget online kernel learning” (Crammer et al., 2003), which attempts to bound
the number of SV’s with a fixed budget size using different budget maintenance strategies
whenever the budget overflows. Despite being studied actively, the existing budget online
kernel methods have some limitations. Some efficient algorithms are too simple to achieve
satisfactory approximation accuracy; some other algorithms are, despite more effective, too
computationally intensive to run for large datasets, making them harm the crucial merit of
high efficiency of online learning techniques for large-scale applications. In addition, when
dealing with extremely large-scale databases in distributed machine learning environments
(Low et al., 2012; Dean and Ghemawat, 2008), the growing large size of SV’s would be a
significant overhead for communication between different nodes. It is thus very important
to investigate effective budget online kernel learning techniques to reduce the size of SV’s
so as to minimize the overall communication cost.

Unlike the existing budget online kernel learning methods, in this paper, we present
a novel framework of large scale online kernel learning by exploring a completely different
strategy. In particular, the key idea of our framework is to explore functional approximation
techniques to approximate a kernel by transforming data from the input space to a new
feature space, and then apply existing linear online learning algorithms on the new feature
space. This allows to inherit the power of kernel learning while being able to take advan-
tages of existing efficient linear online learning algorithms for large-scale online learning
tasks. Specifically, we propose two different new algorithms: (i) Fourier Online Gradient

2

Large Scale Online Kernel Learning

Descent (FOGD) algorithm which adopts the random Fourier features for approximating
shift-invariant kernels and learns the subsequent model by online gradient descent; and (ii)
Nyström Online Gradient Descent (NOGD) algorithm which employs the Nyström method
for large kernel matrix approximation followed by online gradient descent learning. We
explore the applications of the proposed algorithms for three different online learning tasks:
binary classification, multi-class classification, and regression. We give theoretical analysis
of our proposed algorithms, and conduct an extensive set of empirical studies to examine
their efficacy.

The rest of the paper is organized as follows. Section 2 reviews the background and
related work. Section 3 proposes the FOGD and NOGD algorithms for binary classification
task and Section 4 analyze their theoretical properties. Section 5 and Section 6 further
extends the two techniques for tackling online multi-class classification and online regression
tasks, respectively. Section 7 presents our experimental results for three different tasks and
Section 8 concludes our work.

2. Related Work

Our work is related to two major categories of machine learning research work: online
learning and kernel methods. Below we briefly review some representative related work in
each category.

First of all, our work is closely related to online learning methods for classification (Rosen-
blatt, 1958; Freund and Schapire, 1999; Crammer et al., 2006; Zhao and Hoi, 2010; Zhao
et al., 2011; Wang et al., 2012a; Hoi et al., 2013), particularly for budget online kernel
learning where various algorithms have been proposed to address the critical drawback of
unbounded SV size and computational cost in online kernel learning. Most existing budget
online kernel learning algorithms attempt to achieve a bounded number of SV’s through
the following major ways:

• SV Removal. Some well-known examples include Randomized Budget Perceptron
(RBP) (Cavallanti et al., 2007) that randomly removes one existing SV when the
number of SV’s overflows the budget, Forgetron (Dekel et al., 2005) that simply dis-
cards the oldest SV, Budget Online Gradient Descent (BOGD) that basically also
discards some old SV, and Budget Perceptron (Crammer et al., 2003) and Budgeted
Passive Aggressive (BPA-S) algorithm (Wang and Vucetic, 2010) which attempt to
discard the most redundant SV.

• SV Projection. By projecting the discarded SV’s onto the remaining ones, these
algorithms attempt to bound the SV size while reducing the loss due to budget
maintenance. Examples include Projectron (Orabona et al., 2008), Budgeted Passive
Aggressive Projectron (BPA-P), and Budgeted Passive Aggressive Nearest Neighbor
(BPA-NN) (Wang and Vucetic, 2010). Despite achieving better accuracy, they often
suffer extremely high computational costs.

• SV Merging. These methods attempt to maintain the budget by merging two ex-
isting SV’s into a new one, such as the Twin Support Vector Machine (TVM) algo-
rithm (Wang and Vucetic, 2009). The similar idea of SV merging was also explored

3

Lu, Hoi, Wang, Zhao and Liu

to bound the number of SV’s in Budget Stochastic Gradient Descent (BSGD-M) al-
gorithm in (Wang et al., 2012b).

In contrast to the above approaches, our work explores a completely different approach,
i.e., kernel functional approximation techniques, for resolving budget online kernel learning
tasks. As a summary, Table 1 compares the properties of different budget online kernel
learning algorithms, including the proposed FOGD and NOGD algorithms, where B is the
budget on the desired SV size, D is the number of Fourier components, and k is the matrix
approximation rank of Nyström.

Algorithms Budget Strategy Update Time Space

Budget Perceptron Removal O(B2) O(B)
RBP Removal O(B) O(B)
Forgetron Removal O(B) O(B)
BOGD Removal O(B) O(B)
BPA-S Removal O(B) O(B)
Projectron Projection O(B2) O(B2)
BPA-P Projection O(B3) O(B2)
BPA-NN Projection O(B) O(B)
TVM Merging O(B2) O(B2)
FOGD Functional Approximation O(D) O(D)
NOGD Functional Approximation O(kB) O(kB)

Table 1: Comparison on different budget online kernel learning algorithms.

Moreover, our work is also related to kernel methods for classification tasks (Shawe-
Taylor and Cristianini, 2004; Hoi et al., 2006, 2007), especially for some studies on large-scale
kernel methods (Williams and Seeger, 2000; Rahimi and Recht, 2007). Our approach shares
the similar idea with the Low-rank Linearization SVM (LLSVM) (Zhang et al., 2012), where
the non-linear SVM is transformed into a linear problem via kernel approximation meth-
ods. Unlike their approach, we employ the technique of random Fourier features (Rahimi
and Recht, 2007), which have been successfully explored for speeding up batch kernelized
SVMs (Rahimi and Recht, 2007; Yang et al., 2012) and kernel-based clustering (Chitta et al.,
2011, 2012) tasks. Besides, another kernel approximation technique used in our approach
is the well-known Nyström method (Williams and Seeger, 2000), which has been widely ap-
plied in machine learning tasks, including Gaussian Processes (Williams and Seeger, 2000),
Kernelized SVMs (Zhang et al., 2012), Kernel PCA, Spectral Clustering (Zhang and Kwok,
2009), and manifold learning (Talwalkar et al., 2008). Although these techniques have been
applied for batch machine learning tasks, to the best of our knowledge, they have been sel-
dom explored for online kernel learning tasks as studied in this paper. Finally, we note that
the short version of this work had been published in the Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence (IJCAI2013) (Wang et al., 2013).
The journal manuscript has made significant extension by including substantial amount of
new contents and more extensive empirical studies.

4

Large Scale Online Kernel Learning

3. Large Scale Online Kernel Learning for Binary Classification

In this section, we introduce the problem formulation of online kernel binary classification
and the detailed steps of our proposed algorithms.

3.1 Problem Formulation

We consider the problem of online learning for binary classification by following online
convex optimization settings. Our goal is to learn a function f : Rd → R from a sequence of
training examples {(x1, y1), . . . , (xT , yT)}, where instance xt ∈ Rd and class label yt ∈ Y =
{+1,−1}. We refer to the output f of the learning algorithm as a hypothesis and denote
the set of all possible hypotheses by H = {f |f : Rd → R}. We will use `(f(x); y) : R2 → R
as the loss function that penalizes the deviation of estimating f(x) from observed labels
y. Further, we consider H a Reproducing Kernel Hilbert Space (RKHS) endowed with a
kernel function κ(·, ·) : Rd × Rd → R (Vapnik, 1998) implementing the inner product〈·, ·〉
such that: 1) κ has the reproducing property 〈f, κ(x, ·)〉 = f(x) for x ∈ Rd; 2) H is the
closure of the span of all κ(x, ·) with x ∈ Rd, that is, κ(x, ·) ∈ H ∀x ∈ X . The inner product

〈·, ·〉 induces a norm on f ∈ H in the usual way: ‖f‖H := 〈f, f〉
1
2 . To make it clear, we

denote by Hκ an RKHS with explicit dependence on kernel κ. Throughout the analysis, we
assume κ(xi,xj) ≤ 1, ∀xi,xj ∈ Rd.

Training an SVM classifier f(x) can be formulated as the following optimization problem

min
f∈Hκ

P (f) =
λ

2
‖f‖2H +

1

T

T∑
t=1

`(f(xt); yt),

where λ > 0 is a regularization parameter used to control model complexity. While in an
pure online setting, the regularized loss in the t-th iteration is

Lt(f) =
λ

2
‖f‖2H + `(f(xt); yt).

The goal of an online learning algorithm is to find a sequence of functions ft, t ∈ [T] that
achieve the minimum Regret along the whole learning process. The regret is defined as,

Regret =

T∑
t=1

Lt(ft)−
T∑
t=1

Lt(f∗),

where f∗ = arg minf
∑T

t=1 Lt(f) is the optimal classifier assuming that we had foresight
in all the training instances. In a typical online budgeted kernel learning algorithm, the
algorithm learns the kernel-based predictive model f(x) for classifying a new instance x ∈ Rd
as follows:

f(x) =

B∑
i=1

αiκ(xi,x),

where B is the number of Support Vectors (SV’s), αi denotes the coefficient of the i-th
SV, and κ(·, ·) denotes the kernel function. The existing budget online kernel classification

5

Lu, Hoi, Wang, Zhao and Liu

approach aims to bound the number of SV’s by a budget constant B using different budget
maintenance strategies. Unlike the existing budget online kernel learning methods using the
budget maintenance strategies, we propose to tackle the challenge by exploring a completely
different strategy, i.e., the kernel functional approximation approach that construct a kernel-
induced new representation z(x) ∈ RD such that the inner product of instances in the new
space is able to approximate the kernel function:

κ(xi,xj) ≈ z(xi)
>z(xj).

By the above approximation, the predictive model can be rewritten:

f(x) =
B∑
i=1

αiκ(xi,x) ≈
B∑
i=1

αiz(xi)
>z(x) = w>z(x),

where w =
∑B

i=1 αiz(xi) denotes the weight vector to be learned in the new feature space.
As a consequence, solving the regular online kernel classification task can be turned into
a problem of an linear online classification task on the new feature space derived from the
kernel approximation. In the following, we will present two online kernel learning algorithms
for classification by applying two different kernel approximation methods: (i) Fourier Online
Gradient Descent (FOGD) and (ii) Nyström Online Gradient Descent (NOGD) methods.

3.2 Fourier Online Gradient Descent

Random Fourier features can be used in shift-invariant kernels (Rahimi and Recht, 2007).
A shift-invariant kernel is the kernel that can be written as κ(x1,x2) = k(∆x), where k is
some function and ∆x = x1 − x2 is the shift between the two instances. Examples of shift-
invariant kernels include some widely used kernels, such as Gaussian and Laplace kernels.
By performing an inverse Fourier transform of the shift-invariant kernel function, one can
obtain:

κ(x1,x2) = k(x1 − x2) =

∫
p(u)eiu

>(x1−x2)du, (1)

where p(u) is a proper probability density function calculated from the Fourier transform
of function k(∆x),

p(u) = (
1

2π
)d
∫
e−iu

>(∆x)k(∆x)d(∆x). (2)

More specifically, for a Gaussian kernel κ(x1,x2) = exp(−‖x1−x2‖22
2σ2), we have the corre-

sponding random Fourier component u with the distribution p(u) = N (0, σ−2I). And for

a Laplacian kernel κ(x1,x2) = exp(− ||x1−x2||1
σ), we have p(u) = σΠd

1
π(1+σ2u2d)

. Given a

kernel function that is continuous and positive-definite, according to the Bochner’s theo-
rem (Rudin, 1990), the kernel function can be expressed as an expectation of function with
a random variable u:∫

p(u)eiu
>(x1−x2)du = Eu[eiu

>x1 · e−iu>x2] (3)

= Eu[cos(u>x1) cos(u>x2) + sin(u>x1) sin(u>x2)]

= Eu[[sin(u>x1), cos(u>x1)] · [sin(u>x2), cos(u>x2)]].

6

Large Scale Online Kernel Learning

The equality (1) can be obtained by only keeping the real part of the complex function.
From (3), we can see any shift-invariant kernel function can be expressed by the expectation
of the inner product of the new representation of original data, where the new data repre-
sentation is z(x) = [sin(u>x), cos(u>x)]>. As a consequence, we can sample D number of
random Fourier components u1, ...uD independently for constructing the new representation
as follows:

z(x) = (sin(u>1 x), cos(u>1 x), ..., sin(u>Dx), cos(u>Dx))>.

The online kernel learning task in the original input space can thus be approximated by
solving a linear online learning task in the new feature space. For data arriving sequentially,
we can construct the new representation of a data instance on-the-fly, and then perform on-
line learning in the new feature space using the online gradient descent algorithm. We refer
to the proposed algorithm as the Fourier Online Gradient Descent (FOGD), as summarized
in Algorithm 1.

3.3 Nyström Online Gradient Descent

The above random Fourier feature based approach attempts to approximate the kernel
function explicitly, which is in general data independent for the given dataset and thus may
not fully exploit the potential of data distribution for kernel approximation. To address this,
we propose to explore the Nyström method (Williams and Seeger, 2000) to approximate a
large kernel matrix by a data-dependent approach.

Before presenting the method, we first introduce some notations. We denote a kernel
matrix by K ∈ RT×T with rank r, the Singular Value Decomposition (SVD) of K as
K = VDV>, where the columns of V are orthogonal and D = diag(σ1, . . . , σr,) is diagonal.
For k < r, Kk =

∑k
i=1 σiViV

>
i = VkDkV

>
k is the best rank-k approximation of K, where

Vi is the i-th column of matrix V.

Given a large kernel matrix K ∈ RT×T , the Nyström method randomly samples B � T
columns to form a matrix C ∈ RT×B, and then derive a much smaller kernel matrix W ∈
RB×B based on the sampled B instances. We can in turn approximate the original large
kernel matrix by

K̂ = CW+
k C> ≈ K, (4)

where Wk is the best rank-k approximation of W, W+ denotes the pseudo inverse of matrix
W.

We now apply the above Nyström based kernel approximation to tackle large-scale online
kernel classification task. Similar to the previous approach, the key idea is to construct the
new representation for every newly arrived data instance based on the kernel approximation
principle. In particular, we propose the following scheme: (i) at the very early stage of
the online classification task, we simply run any existing online kernel learning methods
(e.g., kernel-based online gradient descent in our approach) whenever the number of SV’s
is smaller than the predefined budget B; (ii) once the budget is reached, we then use the
stored B SV’s to approximate the kernel value of any new instances (which is equivalent to
using the first B columns to approximate the whole kernel matrix). From the approximated
kernel matrix in (4), we could see the kernel value between i-th instance xi and j-th instance

7

Lu, Hoi, Wang, Zhao and Liu

Algorithm 1 FOGD — Fourier Online Gradient Descent for Binary Classification

Input: the number of Fourier components D, step size η, kernel function k;
Initialize w1 = 0.
Calculate p(u) for kernel k as (2).
Generate random Fourier components: u1, ...,uD sampled from distribution p(u)
for t = 1, 2, . . . , T do

Receive xt;
Construct new representation:
zt(xt) = (sin(u>

1 xt), cos(u>
1 xt), ..., sin(u>

Dxt), cos(u>
Dxt))

>

Predict ŷt = sgn(w>t z(xt));
Receive yt and suffer loss `

(
w>t z(xt); yt

)
;

if `
(
w>t z(xt); yt

)
> 0 then

wt+1 = wt − η∇`
(
w>t z(xt); yt

)
.

end if
end for

Algorithm 2 NOGD — Nyström Online Gradient Descent for Binary Classification

Input: the budget B, step size η, rank approximation k.
Initialize support vector set S1 = ∅, and model f1 = 0.
while |St| < B do

Receive new instance xt;
Predict ŷt = sgn(ft(xt));
Update ft by regular Online Gradient Descent (OGD);
Update St+1 = St ∪ {t} whenever loss is nonzero;
t = t+ 1;

end while
Construct the kernel matrix K̂t from St.
[Vk,Dk] = eigs(K̂t, k), where Vk and Dk are Eigenvectors and Eigenvalues of K̂t.
Initialize w>t = [α1, ..., αB](D−0.5

k V>k)−1.
Initialize the instance index T0 = t;
for t = T0, . . . , T do

Receive new instance xt;
Construct the new representation of xt:
z(xt) = D−0.5

k V>k (κ(xt, x̂1), ..., κ(xt, x̂B))>.
Predict ŷt = sgn(w>t z(xt));
Update wt+1 = wt − η∇`

(
w>t z(xt); yt

)
.

end for

8

Large Scale Online Kernel Learning

xj is approximated by the following

κ̂(xi,xj) = (CiVkD
− 1

2
k)(CjVkD

− 1
2

k)>

= ([κ(x̂1,xi), ..., κ(x̂B,xi)]VkD
− 1

2
k)(κ(x̂1,xj), ..., κ(x̂B,xj)VkD

− 1
2

k)>,

where x̂a, a ∈ {1, ..., B} is the a-th support vector.

For a new instance, we construct the new representation as follows:

z(x) = ([κ(x̂1,x), ..., κ(x̂B,x)]VkD
− 1

2
k)>.

Similarly, we can then apply the existing online gradient descent algorithm to learn the
linear predictive model on the new feature space induced from the kernel. We denote
the proposed algorithm the Nyström Online Gradient Descent (NOGD), as summarized
in Algorithm 2. Different from the FOGD algorithm, the algorithm follows the kernelized
online gradient descent until the number of SV’s reaches B. To initialize the linear classifier
w, we aim to achieve

w>z(x) = [α1, ..., αB][κ(x̂1,x), ..., κ(x̂B,x)]>,

thus

w>D
− 1

2
k V>k [κ(x̂1,x), ..., κ(x̂B,x)]> = [α1, ..., αB][κ(x̂1,x), ..., κ(x̂B,x)]>.

The solution is

w>D
− 1

2
k V>k = [α1, ..., αB];

w> = [α1, ..., αB](D
− 1

2
k V>k)−1.

4. Theoretical Analysis

In this section, we analyze the theoretical properties of the two proposed algorithms. We
may use `t(f) instead of `(f(xt); yt) for simplicity.

Theorem 1 Assume we have a shift-invariant kernel κ(x1,x2) = k(x1 − x2), where k
is some function and the original data is contained by a ball Rd of diameter R. Let
`(f(x); y) : R2 → R be a convex loss function that is Lipschitz continuous with Lipschitz
constant L. Let wt, t ∈ [T] be the sequence of classifiers generated by FOGD in Algo-
rithm 1. Then, for any f∗(x) =

∑T
t=1 α

∗
tκ(x,xt), we have the following with probability at

least 1− 28(
σpR
ε)2 exp(−Dε

2

4(d+2)),

T∑
t=1

`t(wt)−
T∑
t=1

`t(f
∗) ≤ (1 + ε)‖f∗‖21

2η
+
η

2
L2T + εLT‖f∗‖1,

where ‖f∗‖1 =
∑T

t=1 |α∗t |, σ2
p = Ep[u

>u] is the second moment of the Fourier transform
of the kernel function k given that p(u) is the probability density function calculated by the
Fourier transform of function k.

9

Lu, Hoi, Wang, Zhao and Liu

Proof Given f∗(x) =
∑T

t=1 α
∗
tκ(x,xt), according to the representer theorem (Schölkopf

et al., 2001), we have a corresponding linear model: w∗ =
∑T

t=1 α
∗
t z(xt), where

z(x) = (sin(u>1 x), cos(u>1 x), ..., sin(u>Dx), cos(u>Dx))>.

The first step to prove our theorem is to bound the regret of our sequence of linear model
wt learned by our online learner with respect to the linear model w∗ in the new feature
space. First of all, we have the following:

‖wt+1 −w∗‖2 = ‖wt − η∇`t(wt)−w∗‖2

=‖wt −w∗‖2 + η2‖∇`t(wt)‖2 − 2η∇`t(wt)(wt −w∗).

Combining the above and the convexity of the loss function, i.e.,

`t(wt)− `t(w∗) ≤ ∇`t(wt)(wt −w∗),

we then have the following

`t(wt)− `t(w∗) ≤
‖wt −w∗‖2 − ‖wt+1 −w∗‖2

2η
+
η

2
‖∇`t(wt)‖2.

Summing the above over t = 1, ..., T leads to:

T∑
t=1

(`t(wt)− `t(w∗)) ≤
‖w1 −w∗‖2 − ‖wT+1 −w∗‖2

2η
+
η

2

T∑
t=1

‖∇`t(wt)‖2

≤ ‖w
∗‖2

2η
+
η

2
L2T. (5)

Next we further examine the relationship between
∑T

t=1 `t(w
∗) and

∑T
t=1 `t(f

∗). According
to the uniform convergence of Fourier features (Claim 1 in Rahimi and Recht (2007)), we
have the high probability bound for the difference between the approximated kernel value
and the true kernel value, i.e., with probability at least 1 − 28(

σpR
ε)2 exp(−Dε

2

4(d+2)), where

σ2
p = Ep[u

>u] is the second moment of the Fourier transform of the kernel function k given
that p(u) is the probability density function calculated by the Fourier transform of function
k. We have ∀i, j

|z(xi)
>z(xj)− κ(xi,xj)| < ε.

Since we assume κ(xi,xj) ≤ 1, we can assume z(xi)
>z(xj) ≤ 1 + ε, which lead to:

‖w∗‖2 ≤ (1 + ε)‖f∗‖21. (6)

When |z(xi)
>z(xj)− κ(xi,xj)| < ε, we have

|
T∑
t=1

`t(w
∗)−

T∑
t=1

`t(f
∗)| ≤

T∑
t=1

|`t(w∗)− `t(f∗)|

≤
T∑
t=1

L
T∑
i=1

|α∗i ||z(xi)
>z(xt)− κ(xi,xt)|

≤
T∑
t=1

Lε
T∑
i=1

|α∗i | = εLT‖f∗‖1. (7)

10

Large Scale Online Kernel Learning

Combining (5), (6) and (7) leads to complete the proof.

Remark 1. In general, the larger the dimensionality D, the higher the probability of the
bound to be achieved. This means that by sampling more random Fourier components,
one can approximate the kernel function more accurately and effectively. From the above
theorem, it is not difficult to show that, by setting η = 1√

T
and ε = 1√

T
, we have

T∑
t=1

`t(wt)−
T∑
t=1

`t(f
∗) ≤ (

2‖f∗‖1 + L2

2
+ L‖f∗‖1)

√
T ,

which leads to a sub-linear regret O(
√
T). However, setting ε = 1√

T
requires to sample D =

O(T) random components in order to achieve a high probability, which seems unsatisfactory
since we will have to solve a very high-dimensional linear online learning problem. However,
even in this case, for our FOGD algorithm, the learning time cost for each instance is
O(c1T), while the time cost for classifying an instance by regular online kernel classification
is O(c2T), here c1 is the time for a scalar product by FOGD, while c2 is the time for
computing the kernel function. Since c2 � c1, our method is still much faster than the
regular online kernel classification methods.

Remark 2. This theorem bounds the regret for any shift-invariant kernel. Specially, we can
get the bound for a Gaussian kernel k(x1 − x2) = exp(−γ||x1 − x2||2), by setting σ2

p = 2dγ
(Rahimi and Recht, 2007).

The theoretical analysis for the NOGD algorithm follows the similar procedure as used
by the FOGD algorithm. We first introduce a lemma to facility our regret bound analysis.

Lemma 1 P (f) = λ
2‖f‖

2
H + 1

T

∑T
t=1 `t(f) is the objective function of an SVM problem,

where `t(f) is the hinge loss function of the t-th iteration. Define f∗ to be the optimal
solution when using the exact kernel matrix K and fN as the optimal when adopting the
Nyström approximated kernel matrix K̂. We have

P (fN)− P (f∗) ≤ 1

2Tλ
||K− K̂||2,

where ‖K− K̂‖2 is the spectral norm of the kernel approximation gap.

This lemma mainly follows the Lemma 1 in (Yang et al., 2012), we omit the proof for
conciseness.

Theorem 2 Assume we learn with kernel κ(xi,xj) ≤ 1, ∀i, j ∈ [T]. Let `(f(x); y) : R2 →
R be the hinge loss function. Let the sequence of T instances x1, ...,xT form a kernel
matrix K ∈ RT×T , and K̂ is the approximation of K using Nyström method. Let ft(x) =
w>t z(x), t ∈ [T] be the sequence of classifiers generated by NOGD in Algorithm 2. We
assume the norm of the gradients in all iterations are always bounded by a constant L,
which is easy to achieve by a few projection steps when necessary. In addition, define
fN (x) = w>Nz(x) be the optimal classifier when using Nyström kernel approximation and
assuming we had foresight for all instances. By defining f∗ as the optimal classifier in the

11

Lu, Hoi, Wang, Zhao and Liu

original kernel space with the assumption of the foresight for all the instances, we have the
following:

T∑
t=1

Lt(wt)−
T∑
t=1

Lt(f∗) ≤
‖wN‖2

2η
+
η

2
L2T +

1

2λ
||K− K̂||2.

Proof Following the similar analysis as in Theorem 1, the regularized loss function in the
t-th iteration, Lt(w) = λ

2 ||w||
2
2 + `t(w) satisfies the following bound,

T∑
t=1

(Lt(wt)− Lt(wN)) ≤ ‖wN‖2

2η
+
η

2
L2T.

As proven in (Yang et al., 2012), the linear optimization problem in z(x) space, i.e.,
P (w) = λ

2 ||w||
2
2 + 1

T

∑T
t=1 `t(w) is equivalent to the approximated SVM P (f) = λ

2 ||f ||
2
H +

1
T

∑T
t=1 `t(f) when f ∈ HN is the functional space of Nyström method. From Lemma 1,

we have,

T∑
t=1

Lt(wN) =
T∑
t=1

Lt(fN) = TP (fN) ≤ TP (f∗)+
1

2λ
||K−K̂||2 =

T∑
t=1

L(f∗)+
1

2λ
||K−K̂||2.

We complete the proof by combining the above two formulas.

Remark. As shown in Theorem 5 of (Yang et al., 2012), the kernel approximation gap
||K− K̂||2 ≤ O(TB). Consequently when setting B =

√
T and η = 1√

T
, we have

T∑
t=1

Lt(wt)−
T∑
t=1

L(f∗) ≤ O(
√
T).

This theorem bounds the regret of the NOGD algorithm when using all singular values
of matrix W but only O(

√
T) support vectors. However, when the rank of the Nyström

approximated matrix K̂ is only k, the bound should be slightly worse. As (Cortes et al.,
2010)(Theorem 1) shows, the following holds with probability at least 1− ε,

‖K̂−K‖2 ≤ ‖K−Kk‖2 +
T√
B

Kmax(2 + log
1

ε
),

where ‖K −Kk‖2 is the spectral norm of the best rank-k approximated gap and Kmax is
the maximum diagonal entry of K. This indicates that to get the O(

√
T) regret bound, we

should set the budget size B = T/c, where c is some constant. This seems suboptimal, but
we will demonstrate that only a small budget size is needed for satisfactory performance in
our experimental results. In addition, the time cost of using k-rank approximation is only
k/B times of that when using all singular values, which makes the algorithm extremely
efficient.

12

Large Scale Online Kernel Learning

5. Large Scale Online Kernel Learning for Multi-class Classification

In this section, we extend the proposed Fourier Online Gradient Descent and Nyström
Online Gradient Descent methods, which are originally designed for binary classification, to
online multi-class classification task. We also give theoretical analysis of the two approaches.

5.1 Problem Settings

Similar to online binary classification tasks, online multi-class classification is performed
over a sequence of training examples (xt, yt), t = 1, . . . , T , where xt ∈ Rd is the observed
features of the t-th training instance. Unlike binary classification where class label yt ∈
Y = {+1,−1}, in a multi-class classification task, each label belongs to a finite set Y of size
m > 2, i.e., yt ∈ Y = {1, . . . ,m}. The true class label yt is only revealed after the prediction
ŷt ∈ Y is made.

We follow the protocol of multi-prototype classification for deriving multi-class online
learning algorithm (Crammer et al., 2006). Specifically, it learns a function f r : Rd → R
for each of the classes r ∈ Y. During the t-th iteration, the algorithm predicts a sequence
of scores for the classes: (

f1
t (xt), . . . , f

m
t (xt)

)
.

The predicted class is set to be the class with the highest prediction score:

ŷt = arg max
r∈Y

f rt (xt). (8)

We then define st as the irrelevant class with the highest prediction score:

st = arg max
r∈Y,r 6=yt

f rt (xt).

The margin with respect to the hypothesis in the t-th iteration is defined to be the gap
between the prediction score of class yt and st:

γt = fytt (xt)− f stt (xt).

Obviously, in a correct prediction, the margin γt > 0. However, as stated in (Crammer
et al., 2006), we are not satisfied by a positive margin value and thus we define a hinge-loss
function:

`
(
ft,xt, yt

)
= max(0, 1− γt),

where f t denotes the set of all m functions for all classes.

5.2 Multi-class Fourier Online Gradient Descent

As introduced in the previous section for binary classification task, the online multi-class
kernel classification task in the original input space can also be approximated by solving a
linear online learning task in the new feature space. First, we use the same Fourier feature
mapping approach as in the binary case to map each input instance xt to z(xt). Then
Online Gradient Descent method is applied to learn a linear classifier.

13

Lu, Hoi, Wang, Zhao and Liu

Following the multi-class problem setting, we learn a weight vector wr ∈ Rd for each of
the classes r ∈ Y. And use the linear classifier f r(xt) = wr · z(xt) to approximate to kernel
prediction score. During the t-th iteration, the algorithm predicts a sequence of scores for
the m classes: (

w1
t · z(xt), . . . ,w

m
t · z(xt)

)
.

We define the hinge-loss function as following:

`
(
wt,xt, yt

)
= max(0, 1− γt) = max(0, 1−wyt

t · z(xt) + wst
t · z(xt)), (9)

where wt denotes the set of all m weight vectors.
Following the Online Gradient Descent approach, the update strategy of wt when ` > 0

is:

wr
t+1 = wr

t − η∇`
(
wt,xt, yt

)
,

where η is a positive learning rate parameter and the gradient is taken with regards to wr
t .

By rewriting the loss function explicitly, we can rewrite the above as follows:

wyt
t+1 = wyt

t + ηz(xt); (10)

wst
t+1 = wst

t − ηz(xt). (11)

Only two of the weight vectors are updated during each iteration. Thus, we can derive the
FOGD algorithm for multi-class versions, as summarized in Algorithm 3.

5.3 Multi-class Nyström Online Gradient Descent

Similar to the binary task, in the first a few iterations of multi-class online Nyström algo-
rithm (before the size of SV set reaches the predetermined budget size B), the algorithm
performs a regular Online Gradient Descent update to the m kernel classifiers when ` > 0:

f rt+1 = f rt − η∇`
(
f t,xt, yt

)
,

where η > 0 is the gradient descent step size and the gradient is taken with regard to f rt .
By rewriting the loss function explicitly, we have

fytt+1 = fytt + ηκ(xt, ·); (12)

fstt+1 = fstt − ηκ(xt, ·). (13)

Therefore, we need to store a SV set S and update it when necessary: St+1 = St∪{t}. Note
that all the m classifiers share the same SV set, which is the same setting as that of binary
case. However, the storage strategy for αi, i.e., the coefficient of the i-th SV, is different
from that of binary case. In multi-class task, a vector αi ∈ Rm is used to represent the
coefficients of the i-th SV. Each of its element αri is the coefficient of the i-th SV for the
kernel classifier f r. Obviously, αri = 0 if r 6= yt and r 6= st.

After the size of SV set reaches the budget B, we do a Nyström feature mapping as the
approach discussed in the binary section to map each input instance xt to z(xt). The follow-
ing linear update steps follow that in the multi-class Fourier Gradient Descent algorithm,
as equation (10) and (11).

We derive the NOGD algorithm for multi-class version, as summarized in Algorithm 4.

14

Large Scale Online Kernel Learning

Algorithm 3 MFOGD — Multi-class Fourier Online Gradient Descent

Input: the number of Fourier components D, step size η, kernel function k;
Initialize wr

1 = 0, r = 1, ...,m.
Calculate p(u) for kernel k as (2).
Generate random Fourier components: u1, ...,uD sampled from distribution p(u).
for t = 1, 2, . . . , T do

Receive xt;
Construct new representation:
z(xt) = (sin(u>

1 xt), cos(u>
1 xt), ..., sin(u>

Dxt), cos(u>
Dxt))

>

Predict as in (8);
Receive yt and suffer loss `

(
wt,xt, yt

)
(9);

if `
(
wt,xt, yt

)
> 0 then

update wt as (10) and (11)
end if

end for

Algorithm 4 MNOGD — Multi-class Nyström Online Gradient Descent

Input: the budget B, step size η, rank approximation k.
Initialize support vector set S1 = ∅, and model f r1 = 0, r = 1, ...,m.
while |St| < B do

Receive xt;
Predict as in (8);
Update ft by regular Online Gradient Descent (OGD), as (12) and (13);
Update St+1 = St ∪ {t} whenever loss is nonzero;
t = t+ 1;

end while
Construct the kernel matrix K̂t from St.
[Vk,Dk] = eigs(K̂t, k), where Vk and Dk are Eigenvectors and Eigenvalues of K̂t.
Initialize wr

t
> = [αr1, ..., α

r
B](D−0.5

k V>k)−1, r = 1, ...,m.
Initialize the instance index T0 = t;
for t = T0, . . . , T do

Receive xt;
Construct the new representation of xt:
z(xt) = D−0.5

k V>k (κ(xt, x̂1), ..., κ(xt, x̂B))>.
Predict as in (8);
Update wt as (10) and (11)

end for

15

Lu, Hoi, Wang, Zhao and Liu

5.4 Theoretical Analysis

In this section, we analyze the theoretical properties of the two proposed multi-class algo-
rithms. We may use `t(f) instead of `(f,xt, yt) for simplicity.

Theorem 3 Assume we have a shift-invariant kernel κ(x1,x2) = k(x1 − x2), where k is
some function and the original data is contained by a ball Rd of diameter R. Let `

(
f,x, y

)
be the hinge-loss we talked above, where f denotes the set of m classifiers for the m classes
and its output is a sequence of prediction scores. Let wt, t ∈ [T] be the sequence of clas-
sifiers generated by MFOGD in Algorithm 3. Then, for any f r∗ (x) =

∑T
t=1 α

r∗
t κ(x,xt),

r ∈ {1, ...,m}, we have the following with probability at least 1− 28(
σpR
ε)2 exp(−Dε

2

4(d+2))

T∑
t=1

`t(wt)−
T∑
t=1

`t(f∗) ≤
m(1 + ε)‖f∗‖21

2η
+ ηTD + 2Tε‖f∗‖1,

where ‖f∗‖1 =
∑T

t=1 maxr∈Y |αr∗t |, and σ2
p = Ep[u

>u] is the second moment of the Fourier
transform of the kernel function k given that p(u) is the probability density function calcu-
lated by the Fourier transform of function k.

Proof Given f r∗ (x) =
∑T

t=1 α
r∗
t κ(x,xt), r = 1, ...m, according to the Representer Theo-

rem (Schölkopf et al., 2001), we have a corresponding linear model: wr
∗ =

∑T
t=1 α

r∗
t z(xt),

where
z(x) = (sin(u>1 x), cos(u>1 x), ..., sin(u>Dx), cos(u>Dx))>.

The first step to prove our theorem is to bound the regret of the sequence of linear models
wt learned by online learner with respect to the linear model w∗ in the new feature space.
We first have

‖wr
t+1 −wr

∗‖2 − ‖wr
t −wr

∗‖2 = ‖wr
t −wr

∗ + βrt z(xt)‖2 − ‖wr
t −wr

∗‖2

= (βrt)
2‖z(xt)‖2 + 2βrt (w

r
t · z(xt)−wr

∗ · z(xt)),

where βrt is the parameter used to update wr
t as (10) and (11). Thus, it may be η, −η, or

0. Obviously, ‖z(xt)‖2 = D. We first assume that `t(wt) > 0 and there are updates in the
t-th iteration. Summing the above over r = 1, ...,m, we have

m∑
r=1

(
‖wr

t+1 −wr
∗‖2 − ‖wr

t −wr
∗‖2
)

= 2η2D + 2η(wyt
t · z(xt)−wst

t · z(xt))− 2η(wyt
∗ · z(xt)−wst

∗ · z(xt)),

where yt is the true label in the t-th iteration and st is the label of the largest scored
irrelevant label classified by the classifier set wt, not by the classifier set w∗. Thus we have:

wyt
t · z(xt)−wst

t · z(xt) = γw,t wyt
∗ · z(xt)−wst

∗ · z(xt) ≥ γw∗,t.

As we have assumed `t(wt) > 0, we have `t(wt) = 1 − γw,t. And from the fact that
`t(w∗) ≥ 1− γw∗,t, we have:

γw,t − γw∗,t ≤ 1− `t(wt)− (1− `t(w∗)) = `t(w∗)− `t(wt).

16

Large Scale Online Kernel Learning

Combining the three formula above, we get

`t(wt)− `t(w∗) ≤ ηD +

∑m
r=1 ‖wr

t −wr
∗‖2 −

∑m
r=1 ‖wr

t+1 −wr
∗‖2

2η
.

Note that in some iterations, `t(wt) = 0 and there is no update in the t-th iteration, i.e.,
wr
t = wr

t+1. The above formula still holds. Summing it over t = 1, ...T and assuming
wr

1 = 0 for all r = 1, ...,m leads to:

T∑
t=1

`t(wt)−
T∑
t=1

`t(w∗) ≤ ηTD +

∑m
r=1 ‖wr

∗‖2

2η
. (14)

Next we further examine the relationship between
∑T

t=1 `t(w∗) and
∑T

t=1 `t(f∗). According
to the uniform convergence of Fourier features (Claim 1 in Rahimi and Recht (2007)), we
have the high probability bound for the difference between the approximated kernel value
and the true kernel value, i.e., with probability at least 1 − 28(

σpR
ε)2 exp(−Dε

2

4(d+2)), where

σ2
p = Ep[u

>u] is the second moment of the Fourier transform of the kernel function k given
that p(u) is the probability density function calculated by the Fourier transform of function
k. We have ∀i, j

|z(xi)
>z(xj)− κ(xi,xj)| < ε.

Similar to the binary case:

m∑
r=1

‖wr
∗‖2 ≤ m‖f∗‖21(1 + ε). (15)

When |z(xi)
>z(xj)− κ(xi,xj)| < ε, we have

|
T∑
t=1

`t(w∗)−
T∑
t=1

`t(f∗)| ≤
T∑
t=1

|`t(w∗)− `t(f∗)| ≤
T∑
t=1

L|γw∗,t − γf∗,t|

=

T∑
t=1

|
T∑
i=1

(αyt∗i z(xi)
>z(xt)− αst∗i z(xi)

>z(xt))−
T∑
i=1

(αyt∗i κ(xi,xt)− α
s′t∗
i κ(xi,xt))|

≤
T∑
t=1

(T∑
i=1

|αyt∗i z(xi)
>z(xt)− αyt∗i κ(xi,xt)|+

T∑
i=1

|αst∗i z(xi)
>z(xt)− α

s′t∗
i κ(xi,xt)|

)
,

where L in the first line is the Lipschitz constant and can be set to 1 in hinge loss case, and
st is the largest scored irrelevant label with regards to w∗ and s′t with regard to f∗. Thus
the bound of the first term is easy to find and we will focus on the second term. Without

loss of generality, we assume αst∗i z(xi)
>z(xt) ≥ α

s′t∗
i κ(xi,xt). According to the definition

of st and s′t, α
s′t∗
i κ(xi,xt) > αst∗i κ(xi,xt), leading to:

|αst∗i z(xi)
>z(xt)− α

s′t∗
i κ(xi,xt)| ≤ |αst∗i

(
z(xi)

>z(xt)− κ(xi,xt)
)
| ≤ |αst∗i |ε.

17

Lu, Hoi, Wang, Zhao and Liu

Consequently, we have

|
T∑
t=1

`t(w∗)−
T∑
t=1

`t(f∗)| ≤ 2Tε‖f∗‖1. (16)

Combining (14), (15) and (16) leads to complete the proof.

Similar to the analysis of the binary classification case, it is not difficult to observe that
the proposed MFOGD algorithm also achieves sub-linear regret O(

√
T). We will continue

the analysis of MNOGD method in the following. As in the binary analysis, we first pro-
pose a lemma that bounds the gap of averaged loss between the exact kernel SVM and
approximated kernel SVM. Unlike the binary classification problem, there are many differ-
ent problem settings for the multi-class SVM problem, as surveyed by Hsu and Lin (2002).
For consistency, in the following analysis, we adopt the common slack variables for all classes
setting (Crammer and Singer, 2001, 2002).

Lemma 2 P (f) = λ
2

∑m
r=1 ‖f r‖2H+ 1

T

∑T
t=1 `t(f) is the objective function of an multi-class

SVM problem, where `t(f) is the multi-class hinge loss function of the t-th iteration. Define
f∗ as the optimal solution of P (f) when using the exact kernel matrix K and fN as the
optimal solution of SVM algorithm when adopting the Nyström approximated kernel matrix
K̂. We have

P (fN)− P (f∗) ≤ m

2Tλ
||K− K̂||2,

where ‖K− K̂‖2 is the spectral norm of the kernel approximation gap.

Proof The dual problem of multi-class SVM is

maxP (α) = − 1

2λ

m∑
r=1

α>r Kαr −
m∑
r=1

α>r er,

s.t.
m∑
r=1

αt,r = 0, ∀t ∈ {1, 2, ..., T};

αt,r ≤ 0, if yt 6= r, αt,r ≤
1

T
, if yt = r, ∀t ∈ {1, 2, ..., T}, ∀r ∈ {1, 2, ...m}

where αr = [α1,r, α2,r, ..., αT,r]
>, er = [e1,r, e2,r, ..., eT,r]

> and et,r = 0 if yt = r, otherwise
et,r = 1.

We can get the dual problem of the Nyström approximated multi-class SVM by replacing
the kernel matrix K with K̂.

P (fN) = max

[
− 1

2λ

m∑
r=1

α>r K̂αr −
m∑
r=1

α>r er

]

= max

[
− 1

2λ

m∑
r=1

α>r (K̂−K + K)αr −
m∑
r=1

α>r er

]

= max

[
1

2λ

m∑
r=1

α>r (K− K̂)αr

]
+ max

[
− 1

2λ

m∑
r=1

α>r Kαr −
m∑
r=1

α>r er

]
.

18

Large Scale Online Kernel Learning

Consequently,

P (fN)− P (f∗) ≤ max
1

2λ

m∑
r=1

α>r (K− K̂)αr ≤ max
m∑
r=1

1

2λ
||αr||22||K− K̂||2.

We complete the proof by considering |αt,r| ≤ 1
T .

Theorem 4 Assume we learn with kernel κ(xi,xj) ≤ 1, ∀i, j ∈ [T]. Let `(f(x); y) : R2 → R
be the multi-class hinge loss function. Let the sequence of T instances x1, ...,xT form a
kernel matrix K ∈ RT×T , and K̂ is the approximation of K using Nyström method . Let
f rt (x) = w>t,rz(x), t ∈ [T], r ∈ {1, 2, ...,m} be the sequence of classifiers generated by NOGD
in Algorithm 4. We assume the norm of the gradients in all iterations are always bounded
by a constant L, which is easy to achieve by a few projection steps when necessary. In
addition, define f rN (x) = w>N,rz(x), r ∈ {1, 2, ...,m} be the optimal classifier when using
Nyström kernel approximation and assuming we had foresight for all instances. By defining
f
∗

as the optimal classifier in the original kernel space with the assumption of the foresight
for all the instances, we have the following:

T∑
t=1

Lt(wt)−
T∑
t=1

Lt(f∗) ≤
m∑
r=1

‖wN,r‖2

2η
+
η

2
L2T +

m

2λ
||K− K̂||2.

This theorem is a combination of standard online gradient descent analysis and Lemma 2.
The proof is omitted since it is similar to the binary analysis and straightforward. It’s easy
to find that the multi-class NOGD algorithm enjoys the similar regret bound as the binary
algorithm.

6. Large Scale Online Kernel Learning for Regression

In this section, we extend the proposed FOGD and NOGD algorithms to tackle online
regression tasks. Consider a typical online regression task with a sequence of instances
(xt, yt), t = 1, ..., T , where xt ∈ Rd is the feature vector of the t-th instance and yt ∈ R is
the real target value, which is only revealed after the prediction is made at each iteration.
The goal of online kernel regression task is to learn a model f(x) that maps a new input
instance x ∈ Rd to a real value prediction:

f(x) =
B∑
i=1

αiκ(xi,x).

We apply the squared loss as the evaluation metric of regression accuracy:

`(f(xt); yt) = (f(xt)− yt)2.

As the same approximation strategy with the previous task, with a feature mapping function
z(x), the kernel regression task can be tackled by solving its approximated problem: to find
a linear model f(x) = w>z(x) that minimizes the accumulated squared loss of all the

19

Lu, Hoi, Wang, Zhao and Liu

training instances. We use online gradient descent algorithm in this new feature space.
In order to reduce the frequency of update, we define ε as the threshold. Update is only
performed when the loss exceeds threshold ε. We denote the proposed algorithms the FOGD
for Regression (FOGD-R) and NOGD (NOGD-R) for regression tasks, as summarized in
Algorithm 5 and Algorithm 6.

We omit the theoretical analysis of regression since it is similar to the binary case.

7. Experimental Results

In this section, we conduct an extensive set of experiments to examine the efficacy of the
proposed algorithms for several kinds of learning tasks in varied settings. Specifically,
our first experiment is to evaluate the empirical performance of the proposed FOGD and
NOGD algorithms for regular binary classification tasks by following a standard batch
learning setting where each dataset is divided into two parts: training set and test set.
This experiment aims to make a direct comparison of the proposed algorithms with some
state-of-the-art approaches for solving batch classification tasks.

Our second major set of experiments is to evaluate the effectiveness and efficiency of the
proposed FOGD and NOGD algorithms for online learning tasks by following a purely online
learning setting, where the performance measures are based on average mistake rate and
time cost accumulated in the online learning process on the entire dataset (there is no split
of training and test sets). In particular, we conduct such experiments for three different
online learning tasks: binary classification, multi-class classification, and regression, by
comparing the proposed algorithms with a variety of state-of-the-art budget online kernel
learning algorithms.

All the source code and datasets for our experiments in this work can be downloaded
from our project web page:http://LSOKL.stevenhoi.org/. We are planning to release
our algorithms in the future release of the LIBOL library (Hoi et al., 2014).

7.1 Experiment for Binary Classification Task in Batch Setting

In this section, we compare our proposed algorithms with many state-of-the-art batch clas-
sification algorithms. Different from online learning, the aim of a batch learning task is to
train a classifier on the training dataset so that it achieves the best generalized accuracy on
the test dataset.

7.1.1 Experimental Test bed and Setups

Table 2 summarizes the details of the datasets used in this experiment. All of them can
be downloaded from LIBSVM website 1 or KDDCUP competition site 2. We follow the
original splits of training and test sets in LIBSVM. For KDD datasets, a random split of
4/1 is used.

We compare the proposed algorithms with the following widely used algorithms for
training kernel SVM for batch classification tasks:

1. http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
2. http://www.sigkdd.org/kddcup/

20

http://LSOKL.stevenhoi.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://www.sigkdd.org/kddcup/

Large Scale Online Kernel Learning

Algorithm 5 FOGD-R — Fourier Online Gradient Descent for Regression

Input: the number of Fourier components D, step size η, threshold ε;
Initialize w1 = 0.
Calculate p(u) as (2). Generate random Fourier components:u1, ...,uD sampled from
distribution p(u).
for t = 1, 2, . . . , T do

Receive xt;
Construct new representation:
z(xt) = (sin(u>

1 xt), cos(u>
1 xt), ..., sin(u>

Dxt), cos(u>
Dxt))

>

Predict ŷt = w>t z(xt);
Receive yt and suffer loss `

(
w>t z(xt); yt

)
;

if `
(
w>t z(xt); yt

)
> ε then

wt+1 = wt − η∇`
(
w>t z(xt); yt

)
.

end if
end for

Algorithm 6 NOGD-R — Nyström Online Gradient Descent for Regression

Input: the budget B, step size η, rank approximation k, threshold ε.
Initialize support vector set S1 = ∅, and model f1 = 0.
while |St| < B do

Receive new instance xt;
Predict ŷt = ft(xt);
Update ft by regular Online Gradient Descent (OGD);
Update St+1 = St ∪ {t} whenever loss exceeds threshold;
t = t+ 1;

end while
Construct the kernel matrix K̂t from St.
[Vk,Dk] = eigs(K̂t, k), where Vk and Dk are Eigenvectors and Eigenvalues of K̂t, re-
spectively.
Initialize w>t = [α1, ..., αB](D−0.5

k V>k)−1.
Initialize the instance index T0 = t;
for t = T0, . . . , T do

Receive new instance xt;
Construct the new representation of xt:
z(xt) = D−0.5

k V>k (κ(xt, x̂1), ..., κ(xt, x̂B))>.
Predict ŷt = w>t z(xt);
Update when loss exceeds ε: wt+1 = wt − η∇`

(
w>t z(xt); yt

)
.

end for

21

Lu, Hoi, Wang, Zhao and Liu

Dataset # training instances # testing instances # features

codrna 59,535 271,617 8
w7a 24,692 25,057 300
w8a 49,749 14,951 300
a9a 32,561 16,281 123
KDDCUP08 81,835 20,459 117
KDDCUP99 905,257 226,314 127

Table 2: Details of Binary Classification Datasets.

• “LIBSVM”: one of state-of-the-art implementation for batch kernel SVM available at
the LIBSVM website Chang and Lin (2011);

• “LLSVM”: Low-rank Linearization SVM algorithm that transfers kernel classification
to a linear problem using low-rank decomposition of the kernel matrix (Zhang et al.,
2012);

• “BSGD-M”: The Budgeted Stochastic Gradient Descent algorithm which extends the
Pegasos algorithm (Shalev-Shwartz et al., 2011) by exploring the SV Merging strategy
for budget maintenance (Wang et al., 2012b);

• “BSGD-R”: The Budgeted Stochastic Gradient Descent algorithm which extends the
Pegasos algorithm (Shalev-Shwartz et al., 2011) by exploring the SV Random Removal
strategy for budget maintenance (Wang et al., 2012b).

To make a fair comparison of algorithms with different parameters, all the parameters,
including regularization parameter (C in LIBSVM, λ in pegasos), the learning rate (η in
FOGD and NOGD) and the RBF kernel width (σ) are optimized by following a standard
5-fold cross validation on the training datasets. The budget size B in NOGD and pegasos
algorithms and the feature dimension D in FOGD are set individually for different datasets,
as indicated in the tables of experimental results. In general, these parameters are chosen
such that they are roughly proportional to the size of support vectors output by the batch
SVM algorithm in LIBSVM, since we would expect a relatively larger budget size for tackling
more challenging classification tasks in order to achieve competitive accuracy. The rank k
in NOGD is set to 0.2B for all datasets. For the online learning algorithms, all models
are trained by a single pass through the training sets and the reported accuracy and time
cost are averaged over the five experiments conducted on different random permutations of
the training instances. All the algorithms were implemented in C++, and conducted on a
Windows machine with CPU of 3.0GHz. For the existing algorithms, all the codes can be
downloaded from LIBSVM website and BudgetedSVM website 3.

7.1.2 Performance Evaluation Results

Table 3 shows the experimental results of batch binary classification tasks. We can drawn
several observations from the results.

3. http://www.dabi.temple.edu/budgetedsvm/algorithms.html

22

http://www.dabi.temple.edu/budgetedsvm/algorithms.html

Large Scale Online Kernel Learning

Algorithm
codrna, B=400, D=1600 w7a, B=400, D=1600

Train (s) Test (s) Accuracy Train (s) Test (s) Accuracy

LIBSVM 80.20 126.02 96.67% 54.91 20.21 98.33%
LLSVM 19.04 37.34 95.93% 25.96 4.20 97.92%

BSGD-M 132.50 12.77 94.89%± 0.41 37.41 3.91 97.50%± 0.02

BSGD-R 3.32 12.77 67.16%± 0.68 1.79 1.71 97.50%± 0.01

FOGD 5.47 24.49 94.24%± 0.22 1.58 1.46 97.59%± 0.28

NOGD 2.55 9.90 95.92%± 0.18 1.57 1.44 97.71%± 0.09

Algorithm
w8a, B=1000, D=4000 a9a, B=1000, D=4000

Train (s) Test (s) Accuracy Train (s) Test (s) Accuracy

LIBSVM 254.03 40.42 99.40% 97.81 24.80 85.04%
LLSVM 146.97 13.02 98.51% 70.85 14.43 84.89%

BSGD-M 230.51 2.42 97.52%± 0.02 150.16 3.32 84.21%± 0.18

BSGD-R 8.72 2.34 97.06%± 0.04 7.03 3.28 81.96%± 0.27

FOGD 13.04 3.85 97.93%± 0.08 9.35 4.57 84.93%± 0.03

NOGD 14.10 2.94 98.36%± 0.10 16.94 3.37 84.99%± 0.07

Algorithm
KDD08, B=200, D=800 KDD99, B=200, D=400

Train (s) Test (s) Accuracy Train (s) Test (s) Accuracy

LIBSVM 1052.12 124.22 99.43% 20772.10 48.91 99.996%
LLSVM 24.31 3.53 99.38% 86.71 17.49 99.995%

BSGD-M 197.78 3.07 99.37%± 0.01 948.21 12.11 99.994%± 0.001

BSGD-R 12.34 3.03 99.12%± 0.23 52.82 12.20 99.980%± 0.031

FOGD 17.22 4.33 98.95%± 3.34 26.81 6.80 99.996%± 0.001

NOGD 7.60 2.14 99.43%± 0.04 20.71 9.03 99.993%± 0.001

Table 3: Performance Evaluation Results on Batch Binary Classification Tasks.

First of all, by comparing the four online algorithms against the two batch algorithms,
we found that the online algorithms in general enjoy significant advantage in terms of com-
putational efficiency especially for large scale datasets. By further examining the learning
accuracy, we found that some online algorithms, especially the proposed FOGD and NGOD
algorithms, are able to achieve slightly lower but fairly competitive learning accuracy com-
pared with the state-of-the-art batch SVM algorithm. This demonstrates that the proposed
online kernel learning algorithms could be potentially a good alternative solution of the ex-
isting SVM solvers when solving large scale batch kernel classification tasks in real-world
applications due to their significant advantage of much lower learning time and memory
costs.

Further, by comparing the four different online algorithms, we found that, in terms of
learning accuracy, despite running faster, the BSGD-R (“pegasos+remove”) algorithm suf-
fers from very high mistake rate in most of the datasets. This is due to its naive budget
maintenance strategy that simply discards the oldest support vector that may contain im-
portant information. While for BSGD-M (“pegasos+merging”) algorithm, the main draw-
back is its relatively high computational cost. This can be easily observed in some datasets

23

Lu, Hoi, Wang, Zhao and Liu

(e.g., a9a, w7a and codrna), in which the difference between the number of support vectors
of LIBSVM and the budget size is relatively larger than that of the other datasets. Thus,
we can conclude that the high time cost of the BSGD-M(“pegasos+merging”) is due to the
complex computation in the merging steps. Compared with the other online learning algo-
rithms, the proposed NOGD algorithm achieves the highest accuracy for most cases while
spending almost the lowest learning time cost. Similarly, FOGD algorithm also obtains
more accurate result than the two budget Pegasos algorithms on most of the datasets with
comparable or sometimes ever lower learning time cost. These facts indicate that the two
proposed budget online kernel learning algorithms are both efficient and effective in solving
large scale kernel classification problems.

Finally, by comparing the two proposed algorithms, we found that the performance of
NOGD is better than that of FOGD. This reflects that the Nyström kernel approximation
tends to have a better approximation of the original RBF kernel than the Fourier feature
based approximation.

7.2 Experiments for Online Binary Classification Tasks

In this section, we test the performance of our proposed algorithms on the online binary
classification task.

7.2.1 Experimental Test beds and Setup

Table 4 shows the details of 9 publicly available datasets of diverse sizes for online binary
classification tasks. All of them can be downloaded from LIBSVM website, UCI machine
learning repository 4 and KDDCUP competition site. As a yardstick for evaluation, we

Dataset # instances # features

german 1,000 24
spambase 4,601 57
w7a 24,692 300
w8a 64,700 300
a9a 48,842 123
KDDCUP08 102,294 117
ijcnn1 141,691 22
codrna 271,617 8
KDDCUP99 1,131,571 127

Table 4: Details of Online Binary Classification Datasets.

include the following two popular algorithms for regular online kernel classification without
concerning budget:

• “Perceptron”: the kernelized Perceptron (Freund and Schapire, 1999) without budget;

• “OGD”: the kernelized online gradient descent (Kivinen et al., 2001) without budget.

4. http://www.ics.uci.edu/˜mlearn/

24

http://www.ics.uci.edu/~mlearn/

Large Scale Online Kernel Learning

Further, we compare the proposed budget online kernel learning algorithms with the fol-
lowing state-of-the-art budget online kernel learning algorithms:

• “RBP”: the random budget perceptron by random removal strategy (Cavallanti et al.,
2007);

• “Forgetron”: the Forgetron by discarding oldest support vectors (Dekel et al., 2005);

• “Projectron”: the Projectron algorithm using the projection strategy (Orabona et al.,
2009);

• “Projectron++”: the aggressive version of Projectron algorithm (Orabona et al., 2008,
2009);

• “BPA-S”: the Budget Passive-Aggressive algorithm with simple SV removal strategy
in (Wang and Vucetic, 2010);

• “BOGD”: the Budget Online Gradient Descent algorithm by SV removal strategy
(Zhao et al., 2012);

To make fair comparisons, all the algorithms follow the same setups. We adopt the hinge
loss as the loss function `. Note that hinge loss is not a smooth function, whose gradient
is undefined at the point that the classification confidence yf(x) = 1. Following the sub-
gradient definition, in our experiment, gradient is only computed under the condition that
yf(x) < 1, and set to 0 otherwise. The Gaussian kernel bandwidth is set to 8. The step
size η in the all online gradient descent based algorithms is chosen through a random search
in range {2, 0.2, ..., 0.0002}. We adopt the same budget size B = 100 for NOGD and
other budget algorithms. In the setting of FOGD algorithm, D = ρfB, where 0 < ρf <∞
is a predefined parameter that controls the number of random Fourier components. For
NOGD algorithm, k = ρnB, where 0 < ρn < 1 is a predefined parameter that controls the
accuracy of matrix approximation. We set ρf = 4 and ρn = 0.2 and will evaluate their
influence on the algorithm performance in the following discussion. For each data set, all
the experiments were repeated 20 times using different random permutation of instances in
the dataset. All the results were obtained by averaging over these 20 runs. For performance
metrics, we evaluate the online classification performance by standard mistake rates and
running time (seconds). All algorithms are implemented in Matlab R2013b, on a Windows
machine with 3.0 GHZ CPU,6 cores.

7.2.2 Performance Evaluation Results

Table 5 summarizes the empirical evaluation results on the nine diverse data sets. From
the results, we can draw the following observations.

First of all, in terms of time efficiency, we found that the budget online classification
algorithms in general run much faster than the regular online kernel classification algo-
rithms (Perceptron and OGD) especially on the large datasets, validating the importance
of studying scalable online kernel methods. By further examining their results of mistake
rates, we found that the budget online classification algorithms are generally worse than
the two non-budget algorithms, validating the motivation of exploring effective techniques
for budget online kernel classification.

25

Lu, Hoi, Wang, Zhao and Liu

Algorithm
german spambase w7a

Mistake Rate Time(s) Mistake Rate Time(s) Mistake Rate Time(s)

Perceptron 35.2 %± 0.9 0.112 24.5 %± 0.1 1.606 4.01 %± 0.10 74.0
OGD 29.5 %± 0.5 0.130 22.0 %± 0.1 4.444 2.96 %± 0.10 119.9

RBP 37.5 %± 1.1 0.086 33.3 %± 0.4 0.613 5.07 %± 0.13 11.20
Forgetron 38.1 %± 0.9 0.105 34.6 %± 0.5 0.743 5.28 %± 0.06 11.77
Projectron 35.6 %± 1.5 0.101 30.8 %± 1.2 0.644 5.38 %± 1.15 11.22
Projectron++ 35.1 %± 1.1 0.299 30.4 %± 1.0 1.865 4.79 %± 1.87 13.43
BPA-S 33.9 %± 0.9 0.092 30.8 %± 0.8 0.604 2.99 %± 0.06 11.60
BOGD 31.6 %± 1.5 0.114 32.2 %± 0.6 0.720 3.49 %± 0.16 11.56

FOGD 29.9 %± 0.7 0.045 26.9 %± 1.0 0.263 2.75 %± 0.03 1.474
NOGD 30.4 %± 0.8 0.109 29.1 %± 0.4 0.633 2.98 %± 0.01 11.58

Algorithm
w8a a9a ijcnn1

Mistake Rate Time(s) Mistake Rate Time(s) Mistake Rate Time(s)

Perceptron 3.47 %± 0.01 642.8 20.9 %± 0.1 948.7 12.27 %± 0.01 812.6
OGD 2.81 %± 0.01 1008.5 16.3 %± 0.1 1549.5 9.52 %± 0.01 1269.0

RBP 5.10 %± 0.08 37.8 27.1 %± 0.2 15.4 16.40 %± 0.10 18.5
Forgetron 5.28 %± 0.07 40.0 27.8 %± 0.4 19.3 16.99 %± 0.32 21.2
Projectron 5.42 %± 1.10 38.1 21.6 %± 1.9 15.3 12.38 %± 0.09 19.2
Projectron++ 5.41 %± 3.30 38.7 18.6 %± 0.5 23.4 9.52 %± 0.03 30.3
BPA-S 2.84 %± 0.03 39.2 21.1 %± 0.2 15.4 11.33 %± 0.04 18.3
BOGD 3.43 %± 0.08 38.9 27.9 %± 0.2 15.9 11.67 %± 0.13 19.2

FOGD 2.43 %± 0.03 3.0 17.4 %± 0.1 1.8 9.06 %± 0.05 3.3
NOGD 2.92 %± 0.03 38.9 17.4 %± 0.2 15.6 9.55 %± 0.01 19.1

Algorithm
codrna KDDCUP08 KDDCUP99

Mistake Rate Time(s) Mistake Rate Time(s) Mistake Rate Time(s)

Perceptron 14.0 %± 0.1 1015.7 0.90 %± 0.01 72.6 0.02 %± 0.00 1136
OGD 9.7 %± 0.1 1676.7 0.52 %± 0.01 421.7 0.01 %± 0.00 8281

RBP 20.3 %± 0.1 24.9 1.06 %± 0.03 34.3 0.02 %± 0.00 682
Forgetron 19.9 %± 0.1 28.9 1.07 %± 0.03 34.8 0.03 %± 0.00 684
Projectron 15.8 %± 0.5 26.0 0.94 %± 0.02 34.1 0.02 %± 0.00 642
Projectron++ 13.6 %± 1.2 83.0 0.84 %± 0.03 77.2 0.01 %± 0.00 520
BPA-S 15.4 %± 0.3 26.5 0.62 %± 0.01 37.8 0.01 %± 0.00 796
BOGD 15.2 %± 0.1 32.5 0.61 %± 0.01 38.2 0.81 %± 0.06 805

FOGD 10.3 %± 0.1 10.3 0.71 %± 0.01 4.1 0.01 %± 0.00 45
NOGD 13.8 %± 2.1 27.2 0.59 %± 0.01 38.9 0.01 %± 0.00 511

Table 5: Evaluation of Large-scale Online Kernel Learning on Binary Classification Task .

26

Large Scale Online Kernel Learning

Second, by comparing the proposed algorithms (FOGD and NOGD) with the budget
online classification algorithms, we found that they generally achieve the best classification
performance for most cases using fairly comparable or even lower time cost. While other
algorithms, are either too slow because of their extremely complex updating methods or of
low accuracy because of their simply SV removal steps. Similarly to the batch setting, this
demonstrates the effectiveness and efficiency of the proposed algorithms.

Third, it might seem surprising to find that the FOGD algorithm achieves extremely low
mistake rate and even outperforms the OGD algorithm in some datasets (w7a,w8a, ijcnn1).
Ideally, FOGD should perform nearly the same as the kernel-based OGD approach if the
number of Fourier components D is extremely large. However, choosing a too large value
of D will result in underfitting for a relatively small data set, meanwhile choosing a too
small value of D will result in overfitting. In our experiments, we choose an appropriate
value of D (D = 4B) , which not only could save computational cost, but also may prevent
both underfitting and overfitting. In contrast, the kernel OGD always add a new support
vector whenever the loss is nonzero. Thus, the predicted model learned by the kernel OGD
will become more and more complicated as time goes, and thus would likely suffer from
overfitting for noisy examples.

Finally, we note that there are several differences in this result compared with the pre-
vious section in batch setting. To begin with, FOGD achieves extremely low time cost in
all datasets. While in batch setting using C++ implementation, its time cost is comparable
with that of NOGD. This can be explained by the different settings of the two implemen-
tation methods. In C++ setting, the most time consuming step in FOGD is to compute
the large number of random features, while in Matlab setting, it is automatic transformed
to a matrix calculation and parallelized on all cores of CPU. In addition, FOGD tends to
performance better than NOGD in terms of accuracy. This is the result of different budget
size. For NOGD, it is difficult to approximate the whole kernel matrix with small number
of support vectors (such as the setting in this section B = 100). But with larger budget
size, as in the batch case, the approximation accuracy is better than that of FOGD.

7.3 Experiments for Multi-class Classification Tasks

This section tests the performance of our proposed algorithms on online multi-class classi-
fication task.

7.3.1 Experimental Test beds and Setup

In this section, we evaluate the multi-class versions of FOGD and NOGD algorithms on 9
real-world datasets for multi-class classification tasks from the LIBSVM website. Table 6
summarizes the details of these datasets.

We adopt the same set of compared algorithms and similar parameter settings in multi-
class task as that of binary case. Larger the budget size parameter B is used for multiclass
classification than binary case since we should ensure enough support vectors for each class
label. We set B = 200 for the first 3 datasets and B = 100 for the last 6 large scale datasets.
For time efficiency, we omit the experiments of non-budget algorithms on extremely large
datasets.

27

Lu, Hoi, Wang, Zhao and Liu

Dataset # instances # features # classes

dna 2,000 180 3
satimage 4,435 36 6
usps 7,291 256 10
mnist 10,000 780 10
letter 15,000 16 26
shuttle 43,500 9 7
acoustic 78,823 50 3
covtype 581,012 54 7
poker 1,000,000 10 10

Table 6: Details of Multi-class Classification Datasets.

7.3.2 Performance Evaluation Results

Table 7 summarizes the average performance evaluation results for the compared algorithms
on multi-class classification task. To further inspect more details of online multi-class clas-
sification performance, Figure 1 and Figure 2 also show the online performance convergence
of all the compared algorithms in the entire online learning process. From these results, we
can draw some observations as follows.

First of all, similar to the binary case, budget online kernel learning algorithms are much
more efficient than the regular online kernel learning algorithms without budget, which is
more obvious for larger scale datasets. For the three largest datasets (acoustic, covtype and
poker), some of which consists of nearly one million instances, we have to exclude the non-
budget online learning algorithms due to their extremely expensive costs in both time and
memory. This again demonstrates the importance of exploring budget online kernel learning
algorithms. Among the two non-budget online kernel learning algorithms, we found that
OGD often achieves the highest accuracy, which is much better than Perceptron. However,
its high-accuracy performance is paid by spending significantly higher computational time
cost in comparison to the Perceptron algorithm. This is because OGD performs much more
aggressive updates than Perceptron in the online learning process, which thus results in a
significantly larger number of support vectors.

Second, when comparing the performance of different existing budget online kernel learn-
ing algorithms, it is clear to observe that the algorithms based on support vector projection
strategy (projectron and projectron++) achieve significantly higher accuracy than the algo-
rithms using simple support vector removal strategy. However, the gain of accuracy is paid
by the sacrifice of efficiency, as shown by the time cost results in the table. Furthermore,
one might be surprised to observe that BPA-S, which is relatively efficient in binary case, is
extremely slow in multi-class case. This is due to the different updating approach of BPA-S
for multi-class classification. In particular, for other budget multi-class algorithms, their
time complexity of each prediction is O(2B), i.e., only 2 out of the m classes (y and s)
are updated when adding a new support vector. By contrast, during the update of BPA-S
at each iteration, every class has to be updated, leading to the overall time complexity of
O(mB). Consequently, the BPA-S is much more expensive than the other algorithms.

28

Large Scale Online Kernel Learning

Algorithm
dna mnist satimage

Mistake Rate Time(s) Mistake Rate Time(s) Mistake Rate Time(s)

Perceptron 20.4 %±0.7 4.891 15.4 %±0.1 456.76 29.6 %±0.5 4.675
OGD 16.1 %±0.4 25.068 10.7 %±0.2 1004.65 23.6 %±0.3 6.917

RBP 31.1 %±1.4 2.707 43.4 %±0.5 59.98 49.3 %±0.8 2.409
Forgetron 30.9 %±2.1 2.949 43.9 %±0.6 64.32 48.2 %±1.4 2.503
Projectron 22.7 %±4.4 4.254 17.7 %±0.1 434.53 29.6 %±0.5 3.685
Projectron++ 23.1 %±6.1 4.330 17.7 %±0.3 430.38 25.9 %±0.4 3.771
BPA-S 25.3 %±1.2 11.055 32.4 %±1.2 91.25 27.9 %±0.3 17.337
BOGD 36.3 %±0.9 3.103 42.5 %±0.4 62.51 48.2 %±0.6 2.670

FOGD 20.8 %±0.7 0.887 11.8 %±0.2 1.792 29.5 %±0.4 0.915
NOGD 20.7 %±0.9 2.292 15.6 %±0.6 46.90 23.7 %±0.3 1.869

Algorithm
usps letter shuttle

Mistake Rate Time(s) Mistake Rate Time(s) Mistake Rate Time(s)

Perceptron 10.0 %±0.2 89.790 71.5 %±0.5 80.901 15.2 %±0.3 137.886
OGD 6.7 %±0.2 310.072 71.2 %±0.3 94.222 12.3 %±0.1 377.328

RBP 24.0 %±0.4 30.180 91.7 %±0.2 18.783 29.3 %±0.5 12.989
Forgetron 22.7 %±0.5 30.478 96.1 %±0.1 19.034 34.1 %±0.4 12.776
Projectron 10.6 %±0.1 192.347 71.5 %±0.5 26.921 15.3 %±0.3 20.034
Projectron++ 9.9 %±0.2 194.366 71.4 %±0.3 27.584 16.8 %±0.5 20.879
BPA-S 15.4 %±0.6 54.457 84.6 %±0.5 47.459 14.1 %±0.2 58.856
BOGD 23.2 %±0.4 30.966 92.7 %±0.2 18.510 27.9 %±0.2 14.399

FOGD 10.1 %±0.2 9.589 71.5 %±0.6 2.322 15.6 %±0.5 4.039
NOGD 9.0 %±0.2 24.332 71.5 %±0.2 3.380 12.3 %±0.1 8.484

Algorithm
acoustic covtype poker

Mistake Rate Time(s) Mistake Rate Time(s) Mistake Rate Time(s)

RBP 57.4 %±0.2 40.469 60.1 %±0.1 445.238 56.6 %±0.0 398.423
Forgetron 61.2 %±0.4 46.865 60.4 %±0.4 491.403 56.5 %±0.0 413.807
Projectron 43.0 %±0.1 46.469 41.1 %±0.2 930.646 54.5 %±0.1 810.421
Projectron++ 40.3 %±0.1 47.400 38.3 %±0.2 937.860 53.2 %±0.1 825.526
BPA-S 46.2 %±0.3 210.916 45.2 %±0.2 1569.255 54.7 %±0.4 2566.812
BOGD 58.0 %±0.1 40.266 57.4 %±0.0 456.692 53.2 %±0.0 465.020

FOGD 43.0 %±0.2 12.637 40.4 %±0.1 80.774 52.6 %±0.1 190.102
NOGD 37.8 %±0.1 25.883 41.0 %±0.6 211.354 50.3 %±0.2 216.717

Table 7: Evaluation of Large-scale Online Kernel Learning on Multi-class Classification
Task .

29

Lu, Hoi, Wang, Zhao and Liu

200 400 600 800 1000 1200 1400 1600 1800 2000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of samples

O
n
lin

e
 a

v
e
ra

g
e
 r

a
te

 o
f
m

is
ta

k
e
s

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of samples

O
n

lin
e

 a
v
e

ra
g

e
 r

a
te

 o
f

m
is

ta
k
e

s

0 500 1000 1500 2000 2500 3000 3500 4000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of samples

O
n
lin

e
 a

v
e
ra

g
e
 r

a
te

 o
f
m

is
ta

k
e

s

Perceptron

OGD

RBP

forgetron

projectron

projectron++

BPAS

BOGD

FOGD

NOGD

(a) dna (b) mnist (c) satimage

0 1000 2000 3000 4000 5000 6000 7000 8000
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of samples

O
n
lin

e
 a

v
e
ra

g
e
 r

a
te

 o
f
m

is
ta

k
e
s

0 5000 10000 15000
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of samples

O
n
lin

e
 a

v
e
ra

g
e
 r

a
te

 o
f
m

is
ta

k
e
s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of samples

O
n
lin

e
 a

v
e
ra

g
e
 r

a
te

 o
f
m

is
ta

k
e
s

(d) usps (e) letter (f) shuttle

0 1 2 3 4 5 6 7 8

x 10
4

0.35

0.4

0.45

0.5

0.55

0.6

Number of samples

O
n

lin
e

 a
v
e

ra
g

e
 r

a
te

 o
f

m
is

ta
k
e

s

0 1 2 3 4 5 6

x 10
5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of samples

O
n

lin
e

 a
v
e

ra
g

e
 r

a
te

 o
f

m
is

ta
k
e

s

1 2 3 4 5 6 7 8 9 10

x 10
5

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Number of samples

m
is

ta
k
e

 r
a

te

(g) acoustic (h) covtype (i) poker

Figure 1: Convergence evaluation of multi-class datasets: mistake rate (best viewed in
color).

Furthermore, by comparing the two proposed algorithms, FOGD and NOGD, with the
existing budget online kernel learning algorithms, we observe that the proposed algorithms
achieve the highest accuracy for most cases, and meanwhile run significantly faster than
the other algorithms, which again validates the effectiveness and efficiency of our proposed
technique. Thus, we can conclude that the proposed functional approximation approach
for budget online kernel learning is a promising technique for building scalable online ker-
nel learning algorithms for large scale learning tasks. Finally, by comparing FOGD and
NOGD, we found that their accuracy performance is nearly comparable while FOGD is
relatively faster. As mentioned in the binary section, this indicates that FOGD is easier for
parallelization.

30

Large Scale Online Kernel Learning

200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

Perceptron

OGD

RBP

forgetron

projectron

projectron++

BPAS

BOGD

FOGD

NOGD

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

0 500 1000 1500 2000 2500 3000 3500 4000
−1.5

−1

−0.5

0

0.5

1

1.5

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

(a) dna (b) mnist (c) satimage

0 1000 2000 3000 4000 5000 6000 7000 8000
−1.5

−1

−0.5

0

0.5

1

1.5

2

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

0 5000 10000 15000
−1

−0.5

0

0.5

1

1.5

2

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−1

−0.5

0

0.5

1

1.5

2

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

(d) usps (e) letter (f) shuttle

0 1 2 3 4 5 6 7 8

x 10
4

−0.5

0

0.5

1

1.5

2

2.5

3

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

0 1 2 3 4 5 6

x 10
5

0.5

1

1.5

2

2.5

3

3.5

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

1 2 3 4 5 6 7 8 9 10

x 10
5

0.5

1

1.5

2

2.5

3

3.5

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

(g) acoustic (h) covtype (i) poker

Figure 2: Convergence evaluation of multi-class datasets: time cost (best viewed in color).

7.3.3 Evaluation for the ρf and ρn on Multi-class Tasks

As mentioned in the previous experiments, we set the parameter for the number of Fourier
components D = ρf × B and the rank of Nyström matrix approximation k = ρnB, where
different choices of parameters ρf and ρn could affect the resulting performance of FOGD
and NOGD, respectively. In this section, we evaluate the sensitivity of these two param-
eters and examine their influence to both learning accuracy and time cost of multi-class
classification tasks.

Specifically, we fix the budget size B to 200 for all datasets, and set the other parameters
(except B, ρf , and ρn) by following the same settings as the previous multi-class classifi-
cation tasks. Figure 3 summarizes the performance evaluation results, including average
mistake rates and average time costs. From the results, we can draw some observations as
follows.

First of all, we observe that increasing the value of ρf or ρn leads to better classification
accuracy but higher running time cost. This is not difficult to understand since increasing

31

Lu, Hoi, Wang, Zhao and Liu

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ
f

O
n
lin

e
 a

v
e
ra

g
e
 r

a
te

 o
f
m

is
ta

k
e
s

0 2 4 6 8 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

ρ
f

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

dna

satimage

usps

letter

shuttle

(a) The effect of ρf on the mistake rate of FOGD (b) The effect of ρf on the time cost of FOGD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
n

O
n
lin

e
 a

v
e
ra

g
e
 r

a
te

 o
f
m

is
ta

k
e
s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.5

0

0.5

1

1.5

ρ
n

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

dna

satimage

usps

letter

shuttle

(c) The effect of ρn on the mistake rate of NOGD (d) The effect of ρn on the time cost of NOGD

Figure 3: Performance evaluation on different values of ρf and ρn.

the value ρf is essential to increasing the number of Fourier components, leading to a
better approximation of lower variance and thus higher classification accuracy. Meanwhile
the computational time cost of FOGD is proportional to the number of Fourier components,
and thus is proportional to the value of ρf . Similarly, for NOGD, the large the value of ρn,
the more accurate approximation achieved by the Nystrom kernel matrix approximation,
and meanwhile the more computational cost required. Thus, the choice of parameter ρf
or ρn for FOGD or NOGD is essentially a trade off between learning effectiveness and
computational efficiency.

Second, we found there is some common tendency of the impact on the learning accuracy
by the two parameters, although different datasets may have slightly different results. In
particular, we observe that when the value of ρf or ρn is large enough (e.g., ρf > 5 or
ρn > 0.1), increasing their value has limited impact on the improvement of the learning
accuracy while the time cost keeps growing linearly. This gives an important guideline
for one to choose the two parameters properly in order to gain computational efficiency
without sacrificing learning accuracy. Specifically, as shown in the figure, by choosing the
two parameters roughly in the ranges of ρf ∈ (4, 6) and ρn ∈ (0.2, 0.4), we are able to
achieve satisfactory tradeoff for most cases.

32

Large Scale Online Kernel Learning

100 150 200 250 300 350 400 450 500
5

6

7

8

9

10

11

12
x 10

−3

Budget (B)

m
is

ta
k
e

 r
a

te

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

a
v
e

ra
g

e
 t

im
e

 c
o

s
t

(l
o

g
1
0
 t

)

Budget (B)
(a) KDDCUP08 (binary) mistake rate (b) KDDCUP08 (binary) time cost

0 100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Budget (B)

m
is

ta
k
e

 r
a

te

Perceptron

OGD

RBP

forgetron

projectron

projectron++

BOGD

BOGDpp

BPAs

FOGD

NOGD

0 100 200 300 400 500
0.5

1

1.5

2

2.5

3

3.5

Budget (B)

a
v
e

ra
g

e
 t

im
e

 c
o

s
t

(l
o

g
1
0
 t

)

(c) codrna (binary) mistake rate (d) codrna (binary) time cost

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Budget (B)

O
n

lin
e

 a
v
e

ra
g

e
 r

a
te

 o
f

m
is

ta
k
e

s

0 50 100 150 200
−0.5

0

0.5

1

1.5

2

Budget (B)

a
v
e

ra
g

e
 t

im
e

 c
o

s
t

(l
o

g
1
0
 t

)

(e) usps (multi-class) mistake rate (f) usps (multi-class) time cost

0 100 200 300 400 500

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Budget (B)

m
is

ta
k
e

 r
a

te

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Budget (B)

a
v
e

ra
g

e
 t

im
e

 c
o

s
t

(l
o

g
1
0
 t

)

(g) acoustic (multi-class) mistake rate (h) acoustic (multi-class) time cost

Figure 4: The effect of different budget sizes (B) (best viewed in color).

33

Lu, Hoi, Wang, Zhao and Liu

7.3.4 Evaluation for the Selection of Budget Size on Multi-class
Classification Task

For all the budget online kernel learning algorithms, the choice of budget size parameter B
can have a considerable impact on the resulting performance. In our previous experiments,
we simply fix the budget size parameter B to some constants for the compared budget online
kernel learning algorithms to enable a fair and simplified comparison. In this section, we
aim to evaluate the sensitivity of the budget size parameter B and examine if the proposed
algorithms are consistently better than the other budget online kernel learning algorithms
under varied settings of the budget size parameter. Specifically, in this experiment, we
follow the same experimental setups as the previous experiments, except that we evaluate
the influence of varied values of budget size parameter B.

Figure 4 shows the experimental results of both average mistake rates and average time
costs of different algorithms during the online learning processes under different values
of the budget size parameter B on four randomly chosen datasets, including two binary
classification datasets and two multi-class classification datasets. From the experimental
results, we can draw several observations on the impact of the budget size parameter to the
performances as follows.

First of all, we observe that increasing the budget size generally results in better clas-
sification accuracy and higher learning time cost for all the budget online kernel learning
algorithms. This is not difficult to understand since a larger budget size potentially leads
to a more precise approximation to their non-budget original algorithm, and thus a bet-
ter prediction accuracy. Second, similar to the previous experiments, we notice that when
the budget size is large enough, further increasing the budget size has limited gain on the
improvement of classification accuracy. This observation indicates that selecting a proper
budget size parameter B is a tradeoff between classification accuracy and learning time
cost. Moreover, by comparing different budget learning algorithms under varied values of
B, we found that the projectron algorithms and the proposed two algorithms (FOGD and
NOGD) tend to achieve the best classification accuracy results for most cases, particularly
when the value of budget size B is small. By further examining the time costs, we found
that the proposed algorithms (especially FOGD) are significantly more efficient than the
Projectron for varied values of B. These encouraging results again validate that the pro-
posed algorithms not only achieve consistently better accuracy results than the existing
budget online kernel learning methods for most cases, but also have a significant advantage
in computational efficiency for large-scale online kernel learning tasks.

7.4 Experiments for Online Regression Tasks

This section tests the performance of our proposed algorithms on online regression tasks.

7.4.1 Experimental Test beds and Setup

Table 8 summarizes the details of the 9 datasets of diverse sizes in our online regression
experiments. All of them are publicly available at the LIBSVM and UCI websites.

For comparison schemes, we compare the proposed FOGD-R and NOGD-R algorithms
with three non-budget online regression algorithms including OGD, Perceptron, and Norma

34

Large Scale Online Kernel Learning

Dataset # instances # features

housing 506 13
mg 1,385 6
abalone 4,177 8
parkinsons 5,875 20
cpusmall 8,192 12
cadata 20,640 8
casp 45,730 9
slice 53,500 385
year 463,715 90

Table 8: Details of Regression Datasets.

(Kivinen et al., 2001), and four other existing budget online kernel learning algorithms
including RBP, Forgetron, Projectron, and BOGD.

For parameter setting, we follow the same setup as the previous experiments for most of
the parameters. For the Norma algorithm, the adaptable threshold parameter ε is learned
and updated at each iteration. For all the other algorithms, this parameter ε is simply
fixed to 0.1. We set ρf = 15 and B = 30 for all the regression datasets. According to our
empirical experience on online regression tasks, the regular perceptron based algorithms
that simply use the default step size 1 would perform extremely poor because of the inap-
propriate learning rate. In order to have a stronger baseline for comparison, we conduct a
validation experiment by searching for the best learning rate parameter (about 0.1) for all
the perceptron-based algorithms.

7.4.2 Performance Evaluation Results

Table 9 shows the summary of empirical evaluation results on the nine datasets, and Figures
6 and 6 show the detailed regressions results in terms of both regression errors and time
cost in the online learning processes. From these results, we can draw several observations
as follows.

First of all, by examining the running time costs of different algorithms, it is clear to see
that the budget online kernel learning algorithms are more efficient than the non-budget
algorithms, particularly on larger scale datasets. This observation is consistent to the pre-
vious classification experiments, again validating the importance of studying budget online
kernel learning methods. By examining the non-budget algorithms, we found that NORMA
runs faster than the other two algorithms (OGD and Perceptron) which is primarily be-
cause of it the adaptive threshold which reduces the frequency of update and thus obtains
a relatively smaller support vector set size. Among all the budget algorithms, the proposed
FOGD algorithm is able to achieve the smallest time cost for all cases.

Second, in terms of regression accuracy, among the existing budget algorithms, the pro-
jectron algorithm outperforms the other existing budget online learning algorithms due to
its sophisticated projection strategy. By further comparing the proposed FOGD and NOGD
algorithms with the existing ones, we found that our algorithms achieve the lowest squared

35

Lu, Hoi, Wang, Zhao and Liu

Algorithm
housing mg abalone

Squared Loss Time Squared Loss Time Squared Loss Time
OGD 0.04017±0.00043 0.028 0.05341±0.00071 0.103 0.01137±0.00007 0.388
Perceptron 0.04018±0.00080 0.029 0.05682±0.00084 0.103 0.01280±0.00010 0.388
Norma 0.04329±0.00065 0.028 0.06446±0.00073 0.086 0.01224±0.00006 0.448
RBP 0.05837±0.00140 0.028 0.09652±0.00253 0.075 0.02498±0.00034 0.200
Forgetron 0.05848±0.00216 0.037 0.09742±0.00334 0.106 0.02483±0.00042 0.269
Projectron 0.04023±0.00080 0.027 0.05683±0.00084 0.070 0.01280±0.00010 0.183
BOGD 0.05270±0.00134 0.024 0.08936±0.00198 0.064 0.01558±0.00017 0.175
FOGD 0.04009±0.00071 0.016 0.05590±0.00073 0.037 0.01169±0.00005 0.104
NOGD 0.04063±0.00043 0.031 0.05356±0.00076 0.073 0.01138±0.00007 0.202

Algorithm
parkinsons cpusmall cadata

Squared Loss Time Squared Loss Time Squared Loss Time
OGD 0.04835±0.00018 2.025 0.02508±0.00009 1.905 0.03976 ±0.00018 11.63
Perceptron 0.05306±0.00045 2.116 0.02660±0.00015 1.257 0.04155±0.00019 11.50
Norma 0.05084±0.00018 1.385 0.03403±0.00014 2.060 0.05739±0.00008 8.45
RBP 0.07540±0.00102 0.349 0.04895±0.00058 0.449 0.08115±0.00029 1.09
Forgetron 0.07488±0.00114 0.496 0.04905±0.00062 0.581 0.08128±0.00061 1.54
Projectron 0.05306±0.00046 0.320 0.02660±0.00015 0.375 0.04155±0.00020 1.00
BOGD 0.06159±0.00037 0.295 0.04972±0.00048 0.406 0.07259±0.00031 0.94
FOGD 0.04909±0.00020 0.187 0.02577±0.00050 0.217 0.04097±0.00015 0.55
NOGD 0.04896±0.00068 0.336 0.02559±0.00024 0.427 0.03983±0.00018 1.05

Algorithm
casp slice year

Squared Loss Time Squared Loss Time Squared Loss Time
RBP 0.12425±0.00048 2.56 0.04799±0.00025 22.13 0.03151±0.00007 89.7
Forgetron 0.12455±0.00046 3.76 0.04843±0.00024 35.43 0.03148±0.00005 139.7
Projectron 0.08709±0.00021 2.40 0.01493±0.00142 21.84 0.01627±0.00013 87.1
BOGD 0.09683±0.00012 2.23 0.04730±0.00011 21.61 0.05430±0.00002 88.3
FOGD 0.08021±0.00031 1.37 0.00726±0.00019 4.65 0.01427±0.00004 19.3
NOGD 0.07844±0.00008 2.51 0.02636±0.00460 22.05 0.01519±0.00021 89.1

Table 9: Evaluation of Large-scale Online Kernel Learning on Regression Task (Time in
Seconds).

loss for most cases while spending comparable or even lower time cost. This encouraging
results again validate the advantages of the proposed technique for online kernel regression
tasks.

Finally, by examining the two proposed algorithms, FOGD and NOGD, we found that
they in general achieve fairly comparable regression accuracy, while FOGD tends to perform
more efficiently than NOGD in terms of running time cost. This is primarily because NOGD
has to involve the Nystrom matrix approximation which could be computationally intensive.

7.5 Comparison between FOGD and NOGD

In the previous experiments, we have made some comparisons of different budget online
kernel learning algorithms for different learning tasks, in which the proposed algorithms

36

Large Scale Online Kernel Learning

0 100 200 300 400 500
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Number of samples

A
v
e
ra

g
e
 l
o
s
s

OGD

Perceptron

Norma

RBP

forgetron

projectron

BOGD

FOGD

NOGD

0 200 400 600 800 1000 1200 1400
0.05

0.06

0.07

0.08

0.09

0.1

0.11

Number of samples

A
v
e
ra

g
e
 l
o
s
s

0 500 1000 1500 2000 2500 3000 3500 4000
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

Number of samples

A
v
e
ra

g
e
 l
o
s
s

(a) housing (b) mg (c) abalone

0 1000 2000 3000 4000 5000 6000
0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Number of samples

A
v
e
ra

g
e
 l
o
s
s

0 1000 2000 3000 4000 5000 6000 7000 8000
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Number of samples

A
v
e
ra

g
e
 l
o
s
s

0 0.5 1 1.5 2 2.5

x 10
4

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Number of samples

A
v
e
ra

g
e
 l
o
s
s

(d) parkinsons (e) cpusmall (f) cadata

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.08

0.09

0.1

0.11

0.12

0.13

Number of samples

A
v
e
ra

g
e
 l
o
s
s

0 1 2 3 4 5 6

x 10
4

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of samples

A
v
e
ra

g
e
 l
o
s
s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Number of samples

A
v
e
ra

g
e
 l
o
s
s

(g) casp (h) slice (i) year

Figure 5: Evaluation of online average squared loss on the regression tasks (best viewed in
color).

show promising performance. In this section, we conduct both quantitative comparison
and in-depth qualitative analysis of the two proposed algorithms in order to better under-
stand their strengths and weaknesses in different scenarios. Specifically, we summarize the
comparison of the two algorithms as follows.

First of all, as observed in the previous experiments, the two proposed algorithms in
general tends to achieve comparable learning accuracy for most cases. However, NOGD
outperforms FOGD in batch setting while FOGD is more accurate in online setting. In
terms of running time costs, the result seems relatively implementation dependent. Specif-
ically, when comparing the Matlab implementations of both algorithms, FOGD is faster,

37

Lu, Hoi, Wang, Zhao and Liu

0 100 200 300 400 500
−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

OGD

Perceptron

Norma

RBP

forgetron

projectron

BOGD

FOGD

NOGD

0 200 400 600 800 1000 1200 1400
−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

0 500 1000 1500 2000 2500 3000 3500 4000
−2.5

−2

−1.5

−1

−0.5

0

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

(a) housing (b) mg (c) abalone

0 1000 2000 3000 4000 5000 6000
−2

−1.5

−1

−0.5

0

0.5

1

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

0 1000 2000 3000 4000 5000 6000 7000 8000
−2

−1.5

−1

−0.5

0

0.5

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

0 0.5 1 1.5 2 2.5

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

(d) parkinsons (e) cpusmall (f) cadata

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

0 1 2 3 4 5 6

x 10
4

−1

−0.5

0

0.5

1

1.5

2

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0

0.5

1

1.5

2

2.5

Number of samples

a
v
e
ra

g
e
 t
im

e
 c

o
s
t
(l
o
g

1
0
 t
)

(g) casp (h) slice (i) year

Figure 6: Evaluation of online average time cost on online regression tasks (best viewed in
color).

while NOGD is faster when comparing their C++ implementations. We conjecture that
the reason is primarily because the FOGD algorithm is naturally easier for parallelization
than NOGD. When running the Matlab implementations, FOGD may take advantages of
Matlab-embedded speedup with implicit multi-core parallelization. While running the C++
implementations, we do not explicitly engage any parallelization, and thus NOGD is faster
than FOGD when no parallelization is exploited.

Second, the efficiency performance of the two proposed algorithms also depends on the
dataset size. For small-sized datasets, FOGD tends to be more efficient, while NOGD
tends to be more efficient on larger-sized datasets. The main reason is that a key step of

38

Large Scale Online Kernel Learning

NOGD is the Nystrom approximation that involves the eigen-decomposition. The eigen-
decomposition computation could be potentially very computationally intensive a small-
scale dataset, but relatively small or even negligible for a large-scale dataset. By contrast,
FOGD does not involve eigen-decomposition and thus does not suffer from such issue for
small-scale datasets.

Third, FOGD suffers from high space complexity (high memory cost) when handling
datasets with relatively high dimensionality. This is because FOGD has to maintain a
ρfB×d matrix in memory for the random Fourier features computation, while NOGD only
needs to keep B × ρnB matrix for storing the feature mapping matrix. For a large-scale
high-dimensional learning task where d� B and ρf > 1, FOGD will clearly suffer a much
higher memory cost than NOGD.

Forth, FOGD has some restrictions in terms of applicable kernels, e.g., shift-invariant
kernels as mentioned before. It may be difficult to be generalized for other divers kernels.
By contrast, NOGD is based on the the Nyström approximation which only requires the
computation of kernel matrix and does not have a restriction on the applicable kernel type
as long as it is a valid kernel.

Finally, FOGD may suffer from some practical limitations and implementation chal-
lenges for novel feature extension in some real-world applications. For example, consider
learning tasks with stream data where novel features may arrive at different time periods in
the online learning process. At the beginning of the online learning task, it is impossible to
know the full set of features. During the online learning process, whenever a novel feature
appears, FOGD has to update the list of D random Fourier components by expanding their
dimensionality. Such kind of updating process usually involves a series of memory opera-
tions, such as new memory space allocation, copying existing vectors, and freeing memory
space of obsolete data, which could be quite expensive if novel feature appears frequently.
By contrast, NOGD suffers less for the novel feature extension issue in that we can simply
treat the value of a novel feature as zero when computing kernel value between an existing
support vector and a new example with the novel feature.

8. Conclusions

This paper presented a novel framework of large-scale online kernel learning via functional
approximation, going beyond conventional online kernel methods that often adopt the bud-
get maintenance strategy for ensuring the size of support vector is bounded. The basic
idea of our framework is to approximate a kernel function or kernel matrix by exploring
functional approximation techniques, which transforms the online kernel learning task into
an approximate linear online learning problem in a new kernel-inducing feature space that
can be further resolved by applying existing efficient and scalable online algorithms. We
presented two new algorithms for large-scale online kernel learning tasks: Fourier Online
Gradient Descent (FOGD) and Nyström Online Gradient Descent (NOGD), and applied
them to tackle different tasks, including binary classification, multi-class classification, and
regression tasks. Our promising results on large-scale datasets show the proposed new al-
gorithms are able to achieve the state-of-the-art performance in both learning efficacy and
efficiency in comparison to a variety of existing techniques. By comparing the two proposed
algorithms, we found that they in general achieve quite comparable learning performance

39

Lu, Hoi, Wang, Zhao and Liu

for most cases, while have different advantages and disadvantages under different scenar-
ios. As the first comprehensive work of exploring functional approximation for large-scale
online kernel learning, our framework is generic and can be extended to tackle different
learning tasks in other settings (e.g., structured prediction). To facilitate other researchers
to re-produce our results, we have released the source code of our implementations. In our
future work, we plan to extend our work by exploring parallel computing techniques to
make kernel methods practical for massive-scale data analytics tasks.

Acknowledgments

This work was supported by Singapore MOE tier 1 research grant (C220/MSS14C003).
This work was done when Jialei Wang visited Dr Hoi’s group.

References

Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. Tracking the best hyper-
plane with a simple budget perceptron. Machine Learning, 69(2-3):143–167, 2007.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):27, 2011.

Radha Chitta, Rong Jin, Timothy C Havens, and Anil K Jain. Approximate kernel k-means:
Solution to large scale kernel clustering. In Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 895–903. ACM, 2011.

Radha Chitta, Rong Jin, and Anil Jain. Efficient kernel clustering using random fourier
features. In IEEE International Conference on Data Mining, 2012.

Corinna Cortes, Mehryar Mohri, and Ameet Talwalkar. On the impact of kernel approxi-
mation on learning accuracy. In International Conference on Artificial Intelligence and
Statistics, 2010.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2:265–292, 2001.

Koby Crammer and Yoram Singer. On the learnability and design of output codes for
multiclass problems. Machine Learning, 47(2-3):201–233, 2002.

Koby Crammer, Jaz S Kandola, and Yoram Singer. Online classification on a budget. In
Neural Information Processing Systems, volume 2, page 5, 2003.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online
passive-aggressive algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clus-
ters. Communications of the ACM, 51(1):107–113, 2008.

Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. The forgetron: A kernel-based per-
ceptron on a fixed budget. In Neural Information Processing Systems, 2005.

40

Large Scale Online Kernel Learning

Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-weighted linear classifica-
tion. In Proceedings of the International Conference on Machine Learning, pages 264–271,
2008.

Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron
algorithm. Maching Learning., 37(3):277–296, 1999.

Steven C. H. Hoi, Rong Jin, and Michael R. Lyu. Learning nonparametric kernel matrices
from pairwise constraints. In Proceedings of the International Conference on Machine
Learning, pages 361–368, Corvalis, Oregon, 2007. ISBN 978-1-59593-793-3.

Steven C. H. Hoi, Rong Jin, Peilin Zhao, and Tianbao Yang. Online multiple kernel classi-
fication. Machine Learning, 90(2):289–316, 2013.

Steven CH Hoi, Michael R Lyu, and Edward Y Chang. Learning the unified kernel ma-
chines for classification. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 187–196. ACM, 2006.

Steven C.H. Hoi, Jialei Wang, and Peilin Zhao. Libol: A library for online learning
algorithms. Journal of Machine Learning Research, 15:495–499, 2014. URL http:
//jmlr.org/papers/v15/hoi14a.html.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector
machines. Neural Networks, IEEE Transactions on, 13(2):415–425, 2002.

Jyrki Kivinen, Alex J. Smola, and Robert C. Williamson. Online learning with kernels. In
Neural Information Processing Systems, pages 785–792, 2001.

Bin Li, Peilin Zhao, Steven CH Hoi, and Vivekanand Gopalkrishnan. Pamr: Passive ag-
gressive mean reversion strategy for portfolio selection. Machine learning, 87(2):221–258,
2012.

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M Hellerstein. Distributed graphlab: a framework for machine learning and data
mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Identifying suspicious
urls: an application of large-scale online learning. In Proceedings of the International
Conference on Machine Learning, pages 681–688. ACM, 2009.

Francesco Orabona, Joseph Keshet, and Barbara Caputo. The projectron: a bounded
kernel-based perceptron. In Proceedings of the International Conference on Machine
Learning, pages 720–727, 2008.

Francesco Orabona, Joseph Keshet, and Barbara Caputo. Bounded kernel-based online
learning. Journal of Machine Learning Research, 10:2643–2666, 2009.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Neural
Information Processing Systems, 2007.

41

http://jmlr.org/papers/v15/hoi14a.html
http://jmlr.org/papers/v15/hoi14a.html

Lu, Hoi, Wang, Zhao and Liu

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386–407, 1958.

W. Rudin. Fourier Analysis on Groups. Wiley-Interscience, 1990.

Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer theorem.
In Conference on Learning Theory, pages 416–426, 2001.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: primal
estimated sub-gradient solver for svm. Math. Program., 127(1):3–30, 2011.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
university press, 2004.

Ameet Talwalkar, Sanjiv Kumar, and Henry A. Rowley. Large-scale manifold learning. In
Computer Vision and Pattern Recognition, 2008.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New York,
Inc., New York, NY, USA, 1995. ISBN 0-387-94559-8.

Vladimir N Vapnik. Statistical Learning Theory. Wiley, 1998.

Jialei Wang, Peilin Zhao, and Steven C. H. Hoi. Cost-sensitive online classification. In
IEEE International Conference on Data Mining, pages 1140–1145, 2012a.

Jialei Wang, Steven CH Hoi, Peilin Zhao, Jinfeng Zhuang, and Zhi-yong Liu. Large scale
online kernel classification. In Proceedings of International Joint Conference on Artificial
Intelligence, pages 1750–1756. AAAI Press, 2013.

Zhuang Wang and Slobodan Vucetic. Twin vector machines for online learning on a budget.
In International Conference on Data Mining, pages 906–917. SIAM, 2009.

Zhuang Wang and Slobodan Vucetic. Online passive-aggressive algorithms on a budget. In
International Conference on Artificial Intelligence and Statistics, pages 908–915, 2010.

Zhuang Wang, Koby Crammer, and Slobodan Vucetic. Breaking the curse of kernelization:
Budgeted stochastic gradient descent for large-scale svm training. Journal of Machine
Learning Research, 13:3103–3131, 2012b.

Christopher K. I. Williams and Matthias Seeger. Using the nyström method to speed up
kernel machines. In Neural Information Processing Systems, pages 682–688, 2000.

Hao Xia, Pengcheng Wu, and Steven C. H. Hoi. Online multi-modal distance learning for
scalable multimedia retrieval. In ACM International Conference on Web Search and Data
Mining, pages 455–464, 2013.

Tianbao Yang, Yufeng Li, Mehrdad Mahdavi, Rong Jin, and Zhi hua Zhou. Nystrom
method vs random fourier features: A theoretical and empirical comparison. In Neural
Information Processing Systems, 2012.

42

Large Scale Online Kernel Learning

Kai Zhang and James T. Kwok. Density-weighted nyström method for computing large
kernel eigensystems. Neural Computation, 21(1):121–146, 2009.

Kai Zhang, Liang Lan, Zhuang Wang, and Fabian Moerchen. Scaling up kernel svm on
limited resources: A low-rank linearization approach. In International Conference on
Artificial Intelligence and Statistics, pages 1425–1434, 2012.

Peilin Zhao and Steven CH Hoi. Otl: A framework of online transfer learning. In Proceedings
of the International Conference on Machine Learning, 2010.

Peilin Zhao, Steven C. H. Hoi, and Rong Jin. Double updating online learning. Journal of
Machine Learning Research, 12:1587–1615, 2011.

Peilin Zhao, Jialei Wang, Pengcheng Wu, Rong Jin, and Steven C. H. Hoi. Fast bounded
online gradient descent algorithms for scalable kernel-based online learning. In Proceedings
of the International Conference on Machine Learning, 2012.

43

	Large scale online kernel learning
	Citation

	Introduction
	Related Work
	Large Scale Online Kernel Learning for Binary Classification
	Problem Formulation
	Fourier Online Gradient Descent
	Nyström Online Gradient Descent

	Theoretical Analysis
	Large Scale Online Kernel Learning for Multi-class Classification
	Problem Settings
	Multi-class Fourier Online Gradient Descent
	Multi-class Nyström Online Gradient Descent
	Theoretical Analysis

	Large Scale Online Kernel Learning for Regression
	Experimental Results
	Experiment for Binary Classification Task in Batch Setting
	Experimental Test bed and Setups
	Performance Evaluation Results

	Experiments for Online Binary Classification Tasks
	Experimental Test beds and Setup
	Performance Evaluation Results

	Experiments for Multi-class Classification Tasks
	Experimental Test beds and Setup
	Performance Evaluation Results
	Evaluation for the f and n on Multi-class Tasks
	Evaluation for the Selection of Budget Size on Multi-class Classification Task

	Experiments for Online Regression Tasks
	Experimental Test beds and Setup
	Performance Evaluation Results

	Comparison between FOGD and NOGD

	Conclusions

