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Abstract In most metaheuristics, such as Iterated Local Search (ILS), Simulated An-
nealing (SA) and Tabu Search (TS), the Local Search (LS) procedure is embedded
in order to generate possible neighborhood solutions. LS consists of several opera-
tors, such as SWAP, 2-OPT and others, that would be called either independently or
sequentially. In this paper, we deal with the extension of Adaptive Operator Selection
(AOS). Instead of calling one operator at each iteration, we focus on how to arrange
the sequence of operators at one particular iteration. We introduce two metaheuristics
which are based on ILS and a hybridization of SA and ILS (SAILS), namely Adap-
tive ILS and Adaptive SAILS. In these two metaheuristics, we include a mechanism
based on the reinforcement learning system, called Learning Automata, to calculate
the probability of selecting the operators. Based on these probabilities, we generate
a sequence of operators for the next iteration by proposing three different scenarios:
rank-based selection, random selection and fitness proportionate selection. Adaptive
ILS and Adaptive SAILS are implemented to solve a variant of the Orienteering Prob-
lem (OP), namely Time Dependent OP. The extensive computational results show the
superiority of Adaptive SAILS with the fitness proportionate selection. We also con-
clude that the adaptive learning mechanism outperforms the state-of-the-art algorithm
for some benchmark instances.

Keywords Local Search · Adaptive operator selection · Time Dependent Orienteer-
ing Problem · Iterated Local Search

1 Introduction

Metaheuristics are generic frameworks for solving optimization problems in contrast
with problem-specific heuristics [2]. Some examples of metaheuristics are Iterated
Local Search (ILS), Simulated Annealing (SA), Tabu Search (TS) and Ant Colony
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Optimization (ACO). Metaheuristics are effective in solving many combinatorial op-
timization problems with small computational budget.

A Local Search (LS) procedure is often the underlying mechanism in metaheuris-
tics for generating a set of possible neighborhoods [13]. Central to LS are a set of op-
erators, such as SWAP, 2-OPT and others. The quality of operators influences the per-
formance of LS. The fundamental question in the design of LS is how to arrange the
sequence of operators at each iteration step. In most cases, the sequence is static and
deterministic, that is to say that the sequence is fixed at the beginning and constant
throughout the run of the algorithm. However, a number of authors have proposed
methods of adaptively controlling the operators [16].

Adaptive Operator Selection (AOS) is an online adaptive algorithm that adjusts
the probability of applying operators and select one suitable operator of Local Search
(LS) to the current solutions [12]. Thierens [18] classified adaptation methods in two
classes: self-adaptation and adaptive allocation rule. The former directly encodes the
values of the operator probabilities in the representation of the individual solutions
while the latter adapts the values of the operator probabilities based on an learning
rule.

AOS has been used quite extensively to solve complex optimization problems.
Burke et al. [3] applied it in the context of hyperheuristics for solving challenging
optimization problems. Thierens [19] introduced the adaptive pursuit algorithm for
selecting the perturbation step size of ILS. Computational results suggest that the
adaptive pursuit algorithm is able to achieve almost the same performance as the
ILS with the best perturbation step size, without the need to determine the optimal
parameter setting, in solving a knapsack problem.

Burke et al. [4] proposed two adaptive variants of a multiple neighborhood ILS.
Online learning techniques are employed in order to select which perturbation to ap-
ply iteratively from a set of available move operators. The proposed algorithms were
tested on four different combinatorial optimisation problem: permutation flow shop,
one-dimensional bin packing, maximum satisfiability and personal scheduling prob-
lems. Experimental results suggest that the adaptive variants outperform a baseline
ILS with uniform random selection of the move operators. Yuan et al. [23] proposed
an online parameter adaptation on the operator selection problem in Memetic Algo-
rithm (MA) for solving the Quadratic Assignment Problem (QAP). The performance
of online AOS methods is improved by considering different reward functions. Soria-
Alcaraz et al. [17] dealt with AOS in the context of the evolutionary algorithms. Their
proposed idea is to use metrics based on local characteristics of the fitness landscape
surrounding a solution to measure the impact of operators. They applied this idea to
three problems, Onemax, Royal Staircase and Multiple Knapsack Problems.

In this paper, we focus two well known metaheuristics, ILS and SA, for solving a
variant of the Orienteering Problem (OP), namely the Time Dependent OP (TDOP).
For other methods and other variants of the OP, we refer the readers to the survey
of Vansteenwegen et al. [20] and Gunawan et al. [9]. OP is a routing problem in
which the goal is to determine a subset of nodes to visit within a particular path,
and in which order, so that the total collected score is maximized and a given time
budget is not exceeded. In TDOP, the travel time between two nodes depends on
the departure time at the first node. In this problem, the number of paths is set to 1.
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Fig. 1: Adaptive Operator Ordering

One common example is the combination of walking and using public transport that
affects the travel time for tourist trip planners [6]. TDOP is NP-hard since OP itself
is NP-hard [5].

Abbaspour and Samadzadegan [1] introduced two adaptive genetic algorithms for
solving the TDOP in the context of the city of Tehran. In these algorithms, chromo-
somes with variable lengths are used. Verbeeck et al. [21] introduced a fast solution
algorithm based on an Ant Colony System with a time dependent LS procedure. Re-
alistic benchmark instances are also constructed.

We extend the OP literature on AOS. Instead of calling and applying operators
individually at each iteration, we focus on how to determine the sequence of LS
operators. Some dependencies among operators may occur and multiple operators
may provide better results through interactions. It is called Adaptive Operator Or-
dering (AOO). This idea can be treated as an adaptive RELAY HYBRIDISATION ap-
proach [14] which determines a pair of low-level heuristics that can be used consecu-
tively. In our problem, we extend this by considering more than two operators. Here,
we treat operators of LS as low-level heuristics.

Figure 1 shows one example how the sequence of operators for two different
iterations are generated. At iteration t, Operator 1 would be called first, followed by
Operators 2, 3 and 4. After applying a particular scenario for updating the sequence
of the operators, the sequence would be rearranged at iteration (t +1).

A similar idea has been proposed by Walker et al. [22] in the context of hyper-
heuristics. HyFlex, a software framework, is proposed to assist in hyper-heuristics
and autonomous search control. They focus on selecting the move operators in the
perturbation stage of the adaptive ILS. Another variant considers the past perfor-
mance of the local search heuristics and put them in a sequence based on their perfor-
mance is also proposed. Those heuristics are then applied based on this order (rank-
based scenario). The proposed algorithms are tested on the vehicle routing problem
with time windows. By adding adaptation mechanisms, the performance of hyper-
heuristics is further improved.

We introduce two algorithms, namely Adaptive ILS (ADILS) and Adaptive SAILS
(ADSAILS) by incorporating an adaptive learning method based on Learning Au-
tomata. Both are the extended versions of ILS [7] and SAILS (a hybridization of SA
and ILS) [8], respectively. A learning automaton is an adaptive decision making unit
that improves its performance by learning how to choose the action from a finite set
of allowed actions through repeated interactions with a random environment [15]. In
the context of our problem, actions are equivalent to operators of LS. The operator
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Algorithm 1 ITERATED LOCAL SEARCH (ILS)
Set t 0 // iteration 0
Generate an initial solution S0
S⇤  LOCAL SEARCH (S0)
repeat

t t +1
S0  PERTURBATION (S⇤, history)
S” = LOCAL SEARCH (S0) // iteration t
S⇤  = ACCEPTANCE CRITERION (S⇤,S”, history)

until termination condition is met

is chosen based on a probability distribution kept over the operator-set. The operator
probability values depend on the reinforcement feedback from the environment. With
this selection, at each iteration step, the probabilities of selecting successful operators
are increased, while the ones of unsuccessful operators would be decreased.

In order to generate a sequence of operators, we compare three different scenar-
ios: 1) random selection, 2) rank-based selection and 3) fitness proportionate selection
(Roulette-Wheel selection). The performance of LA is measured through the exper-
iment on benchmark TDOP instances. Further comparisons with the state-of-the-art
algorithm with fixed sequence of operators are also conducted. We conclude that AD-
SAILS with the fitness proportionate selection performs best. The obtained results
also show the superiority of LA over other algorithms in terms of the overall average
of best and average deviation values from optimal solutions.

This paper is organized as follows. Section 2 introduces three proposed scenar-
ios: random selection, rank-based selection and fitness proportionate selection, for
ordering the operators of LS. Section 3 provides the descriptions of benchmark in-
stances, experimental set-up and comprehensive computational results. Finally, Sec-
tion 4 gives concluding remarks and suggestions for future work.

2 Adaptive Operator Ordering

As mentioned earlier, our ADILS and ADSAILS are adopted from ILS [7] and
SAILS [8], respectively. Take note that ILS and SAILS use a fixed order of the opera-
tors in their LOCAL SEARCH. In this work, we emphasize on how to call the sequence
of operators for both ADILS and ADSAILS.

ILS [7] is a simple yet powerful metaheuristic that contains of two basic compo-
nents, LOCAL SEARCH and PERTURBATION, for generating new solutions. Operators
included in LOCAL SEARCH are as follows: SWAP, 2-OPT, REPLACE and INSERT.
First, we generate the initial solution S0 and apply LOCAL SEARCH to reach the cur-
rent solution S⇤. Given S⇤, we apply PERTURBATION that leads us to an intermediate
solution S0. LOCAL SEARCH is then applied to S0 to reach a solution S”. If S” passes
ACCEPTANCE CRITERION, it becomes S⇤; otherwise, we return to S⇤. Algorithm 1
summarizes the basic idea of ILS.

SAILS [8] is a hybrid algorithm that combines ILS and Simulated Annealing
(SA). The major difference between ILS and SAILS lies on ACCEPTANCE CRITE-
RION. Unlike ILS, SA may accept a worse solution S” with a probability that changes
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over time in order to escape from a local optimum. For more details, we refer to the
original papers [7, 8].

We propose an adaptive learning method based on Learning Automata (LA) in
order to calculate the probability of selecting the operators for the next iteration.
In our context, each iteration refers to the step of calling LOCAL SEARCH (Algo-
rithm 1). The probability value of each operator depends on the performance quality
after applying the operator. In the context of the TDOP, a successful operator is able
to either improve the objective function value or increase the remaining time bud-
get. The sequence of operators thus relies on those probability values. In the context
of hyperheuristics, selecting the next operator can be linked to the choice function
of hyperheuristics [3]. In the following subsections, we describe three different sce-
narios for generating the sequence of operators: 1) random selection, 2) rank-based
selection, and 3) fitness proportionate selection (Roulette-Wheel selection).

2.1 Random Selection

We have a set of K operators A = {a1, . . . ,aK} and a probability vector at iteration t,
P(t) = {Pa1(t), . . . ,PaK (t)}(8ai 2 A : 0 Pai(t) 1;ÂK

i=1 Pai(t) = 1). The probability
vector P(t) keeps track the probability of being selected for all operators at iteration
t.

In this random selection scenario, we assume that Pai(t) = 1
K (8ai 2 A). We select

the order of the operators randomly at each iteration t. We simply ignore whether
operators are successfully applied; therefore, it is not necessary to update the values
of Pai(t) at each iteration.

2.2 Rank-based Selection

In this scenario, the initial value of each operator i at iteration 0 is set as follows:
Pai(0) = 1

K (8ai 2 A). After all operators are run at one particular iteration, the reward
vector R(t) = {Ra1(t), . . . ,RaK (t)} is generated. This reward vector is an important
component of the adaptive schemes, whereby operators are rewarded according to
their performance. We use a simple way of calculating the reward values. The value
of Rai(t) for operator ai is a binary value, either 0 (unsuccessful operator) or 1 (suc-
cessful operator).

In the context of the OP, an operator is successful if it is able to either increase
the total remaining travel time (time budget) or improve the objective function value
(total collected score). We then calculate the probability of selecting operator ai for
next iteration (t +1), Pai(t +1), based on either Equation 1 (for a successful operator)
or Equation 2 (for an unsuccessful operator).

Pai(t +1) = Pai(t)+l1Rai(t)(1�Pai(t))�l2(1�Rai(t))Pai(t) (1)

Pai(t +1) = Pai(t)�l1Rai(t)Pai(t)+l2(1�Rai(t))[(K�1)�1�Pai(t)] (2)
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Algorithm 2 LOCAL SEARCH (RANK-BASED SELECTION)
Generate eA(t) //at iteration t
for all i 2 eA(t) do

Call the operator ãi(t)
Determine the value of Rãi (t)
if Rãi (t) = 0 then

Update Pãi (t +1) using Equation 1
else

Update Pãi (t +1) using Equation 2
end if

end for

Algorithm 3 LOCAL SEARCH (FITNESS PROPORTIONATE SELECTION)
AccumProb0 0
for all ai 2 A do

AccumProbi AccumProbi�1 +Pai (t)
end for
Ā = /0
repeat

U  rand(0,1)
Find operator a j such that AccumProba j�1 < U  AccumProba j

if a j has not been included in Ā then
Ā Ā[{a j}

end if
until all operators are included in Ā
for all i 2 Ā(t) do

Call the operator āi(t)
Determine the value of Rāi (t)
if Rāi (t) = 0 then

Update Pāi (t +1) using Equation 1
else

Update Pāi (t +1) using Equation 2
end if

end for

The l1 and l2 values are the learning rates used to update the selection probabili-
ties. The first one is used to reward an action while the latter parameter is to penalize
an unfavorable action.

At iteration t, we generate eA(t) = {ã1(t)� . . .� ãK(t)} where Pã1(t)� Pã2(t)�
. . .� PãK (t). The adaptation mechanism that decides which operator to select first is
based on the sequence in Ã(t). The operator with the highest probability value would
be selected first. The details are shown in Algorithm 2.

2.3 Fitness Proportionate Selection

The details of fitness proportionate selection (Roulette-Wheel selection) are sum-
marized in Algorithm 3. Similar to the rank-based selection scenario, the initial value
of each operator i is set as follows: Pai(0) = 1

K (8ai 2 A). The next step is to generate
Ā(t) = {ā1(t), . . . , āK(t)}. The sequence of elements in Ā(t) is defined as follows.
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AccumProb0 is initially set to 0. The accumulative of probability values of operator
ai, AccumProbai is calculated subsequently by adding AccumProba(i�1)

and Pai(t).

In order to arrange the order of operators in Ā(t), we generate a random number
U ⇠ rand(0,1) and find operator a j such that AccumProba( j�1)

< U  AccumProba j .
The underlying assumption of the Fitness Proportionate Selection (Roulette-Wheel
Selection) is the chance of selecting operator i is proportional to the probability value
Pāi(t).

This loop is repeated until all operators are inserted in Ā. Each operator is called
according to its sequence in Ā. We then calculate the respective R(t) 2 {0,1} includ-
ing P(t + 1) value of the selected operator. This is applied until all operators have
been called and we move to the next iteration.

3 Computational Experiments

In the first subsection, we provide a short description of the benchmark instances of
the TDOP, including the state-of-the-art algorithms for comparison purpose. We then
explain how we set up the experiment and analyze the results obtained for the TDOP
in the next subsections.

3.1 Benchmark Instances and Approach Comparison

Verbeeck et al. [21] introduced a mathematical model for the TDOP. An issue related
to the modeling of time-dependent travel times and the generation of realistic bench-
mark instances are also discussed. The characteristics of benchmark TDOP instances
are summarized in Table 1. All instances are also available in http://www.mech.
kuleuven.be/en/cib/op#section-23. The number of nodes vary from 21 to 102
nodes. An algorithm based on an Ant Colony System (ACS-TDOP) [21] is the state-
of-the-art algorithm for the TDOP. This algorithm obtains high-quality results within
very small computational times on benchmark instances.

Table 1: Benchmark TDOP instances

Dataset Number of instances Number of nodes
1 9 32
2 9 21
3 9 33
4 10 100
5 3 66
6 9 64
7 10 102

Enhancing Local Search with Adaptive Operator Ordering and Its Application
to the Time Dependent Orienteering Problem 187

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



Aldy Gunawan et al.

Table 2: Estimation of single-thread performance

Algorithm Experimental environment Estimate of single-thread performance
ADILS Intel(R) Core(TM) with an i5 3.2 GHz CPU and 12 GB RAM 1

ADSAILS Intel(R) Core(TM) with an i5 3.2 GHz CPU and 12 GB RAM 1
ACS-TDOP PC with an i5 2.6 GHz CPU and 8 GB RAM 20.64

Table 3: Operators of ILS [7] and SAILS [8]

Operators Description
INSERT Insert nodes into a path
SWAP Swap two nodes within one path
2-OPT Reorder the sequence of certain nodes within one path

REPLACE Replace one scheduled node with one unscheduled node

Table 4: Proposed algorithms

Algorithms Abbreviations
ADILS & ADSAILS with random selection ADILS-RAND & ADSAILS-RAND

ADILS & ADSAILS with rank-based selection ADILS-RANK & ADSAILS-RANK
ADILS & ADSAILS with fitness proportionate selection ADILS-AUTO & ADSAILS-AUTO

ADILS & ADSAILS with fixed sequence ADILS-FIX & ADSAILS-FIX

3.2 Algorithm Setup

Take note that ADILS, ADSAILS and ACS-TDOP are executed in 5 runs. In order
to ensure the fairness among algorithms, we use the SuperPi benchmark to adjust
the computational time to the speed of the computers used in other solutions [10].
The performance of our machine is set to 1 and other processors are estimated by
multiplying with the single-thread performance estimation, as shown in Table 2. For
example, if ACS-TDOP is run for 2 seconds, the computational budget using our
processor is set to (20.64 ⇥ 2) seconds.

Table 3 summarizes the description of operators used in both ILS [7] and SAILS
[8]. The operators for the TDOP are arranged in the following sequence: INSERT
! SWAP ! 2-OPT ! REPLACE since the problem only concern with a single
path. These sequences would be treated as the initial sequence in our ADILS and
ADSAILS and adjusted accordingly based on our proposed scenarios. Table 4 sum-
marizes our proposed algorithms with their abbreviations that would be used in this
paper. The learning rates (l1 and l2) for LA are set to 0.5 and 0.01, respectively.

3.3 Computational Results

We start this section by comparing three different scenarios for generating the se-
quence of operators. We also implement the fixed sequence scenario [7, 8] and com-
pare the results. All above-mentioned algorithms are compared with different values
of computational times. Since the main objective is to generate solutions within few
seconds, we set the computational times (CPU times) within a range of 1 to 10 sec-
onds.
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Fig. 2: Algorithms results showing the impacts of computational time

Table 7: The performance of the proposed algorithms on based on ACS-TDOP’s CPU
times

Algorithm Best (% gap) Average (% gap)
ADILS-RAND 0.85 2.05
ADILS-RANK 0.98 1.93
ADILS-AUTO 0.93 1.80
ADILS-FIX 0.91 1.93

ADSAILS-RAND 1.03 2.05
ADSAILS-RANK 1.21 2.03
ADSAILS-AUTO 0.82 1.80
ADSAILS-FIX 1.36 1.92

ACS-TDOP 0.94 1.38

The performance of algorithms is determined by calculating the percentage devi-
ation from the optimal solution for each benchmark instance. The optimal solutions
are obtained by using the commercial solver, CPLEX [21]. We collect the best devia-
tion and average deviation values from 5 runs for each instance. The overall average
of best and average deviation values for all instances, BEST (% GAP) and AVERAGE
(% GAP), are summarized in Table 5.

Table 5 yields insights into the effect of computational times. In general, AD-
SAILS performs better than ADILS for all scenarios. BEST (% GAP) values of AD-
SAILS are below 2% while those of ADILS are above 2% for CPU = 1 second.
Similar observations are applied to other computational times. We observe that the
results keep improving when the computational time is increased for all algorithms
(Figure 2). All algorithms obtain high-quality results on benchmark instances since
the values of BEST (% GAP) and AVERAGE (% GAP) are between 0.00% to 4.30%.
ADSAILS-AUTO is able to deliver the best performance, except for AVERAGE (%
GAP) with CPU = 3 seconds.

We compare the results based on the group of instances by calculating BEST (%
GAP) and AVERAGE (% GAP) values per dataset. Table 6 only summarizes the results
for CPU = 1 second. For datasets 1,2 and 3 which are considered small instances, all
algorithms perform well, especially on Dataset 2. The optimal solutions are obtained
for every run. For larger instances, the best two performers are ADSAILS-AUTO and
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Table 8: Comparison between ADSAILS-AUTO and ACS-TDOP with the same
computational time

Dataset Metric Algorithm
ACS-TDOP ADSAILS-AUTO

1 Best (% gap) 0.00 0.00
Average (% gap) 0.17 0.50

2 Best (% gap) 0.00 0.00
Average (% gap) 0.00 0.00

3 Best (% gap) 0.00 0.00
Average (% gap) 0.20 0.13

4 Best (% gap) 1.84 1.38
Average (% gap) 2.76 3.08

5 Best (% gap) 1.20 1.78
Average (% gap) 1.40 4.27

6 Best (% gap) 0.26 0.51
Average (% gap) 0.78 1.38

7 Best (% gap) 3.09 2.47
Average (% gap) 3.94 4.47

ADSAILS-RANK, as highlighted in bold. Similar observations can be obtained for
other CPU values.

We further compare the performance of ADSAILS-AUTO with the state-of-the-
art algorithm, ACS-TDOP [21]. We set the computational times to the ones by the
ACS-TDOP and run our proposed algorithms accordingly. From Table 7, three al-
gorithms, ADILS-RAND, ADILS-AUTO and ADSAILS-AUTO, outperform ACS-
TDOP in terms of BEST (% GAP) values. On the other hand, ACS-TDOP produces
a better value of AVERAGE (% GAP).

Since ADSAILS-AUTO is the best performer with others, we further compare
its results with the ones of ACS-TDOP, as shown in Table 8. We observe that
ADSAILS-AUTO is comparable to ACS-TDOP. For small instances (datasets 1-3),
both are able to obtain the optimal solutions. For the dataset with the largest num-
ber of nodes (dataset 7), ADSAILS-AUTO outperforms ACS-TDOP in terms of the
values of BEST (% GAP).

4 Conclusion

This paper presents two metaheuristics, Adaptive Iterated Local Search (ADILS) and
Adaptive SAILS (ADSAILS) for solving a variant of the Orienteering Problem (OP),
namely the Time Dependent Orienteering Problem (TDOP). In both metaheuristics,
Local Search (LS) with a set of operators is embedded for generating possible neigh-
borhood solutions.

We introduce a learning mechanism based on Learning Automata to calculate the
probability of selecting the operators for the next iteration. These probabilities are
used to determine the sequence of the operators of LS. We propose three different
scenarios to determine the sequence of the operators: random selection, rank-based
selection and fitness proportionate selection.
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The performances of three different scenarios are compared with the one of the
fixed sequence of operators and the state-of-the-art algorithms as well. ADSAILS
with the fitness proportionate selection is considered as the best performer in solving
the benchmark TDOP instances.

Further research could focus on implementing the algorithms for real-life appli-
cations. The fast computational time of proposed algorithms enables some interest-
ing applications where it is necessary to update paths. Furthermore, we can consider
some additional requirements for the TDOP, such as allowing a fleet of vehicles and
including time windows, that can add the practical relevance of the problems. Another
possible research direction is how to set the learning rate in the learning automaton.
Last but not least, it would be interesting to compare with hyper-heuristics and some
automated algorithm configurations, such as ParamILS [11].
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13. Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Handbook of metaheuristics, pp. 320–
353. Springer (2003)

192 Aldy Gunawan, Hoong Chuin Lau, Kun Lu

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



Enhancing Local Search with Adaptive Operator Ordering and Its Application to the TDOP

14. Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-heuristic as a general
problem solver: an implementation in hyFlex. Journal of Scheduling 16(3), 291–311 (2013)

15. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: an introduction. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1989)

16. Smith, J.E., Fogarty, T.C.: Operator and parameter adaptation in genetic algorithms. Soft Computing
1, 81–87 (1997)

17. Soria-Alcaraz, J.A., Ochoa, G., Carpio, M., Puga, H.: Evolvability metrics in adaptive operator se-
lection. In: Proceedings of the 16th annual conference on Genetic and Evolutionary Computation
(GECCO’14), pp. 1327–1334. Vancouver, Canada (2014)

18. Thierens, D.: Adaptive strategies for operator allocation. Studies in Computational Intelligence 54,
77–90 (2007)

19. Thierens, D.: Adaptive operator selection for iterated local search. In: T. Stützle, M. Birattari, H.H.
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