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Abstract With the pervasive use of recommender systems and web/mobile applica-
tions such as TripAdvisor and Booking.com, an emerging interest is to generate per-
sonalized tourist routes based on a tourist’s preferences and time budget constraints,
often in real-time. The problem is generally known as the Tourist Trip Design Prob-
lem (TTDP) which is a route-planning problem on multiple Points of Interest (POIs).
TTDP can be considered as an extension of the classical problem of Team Orienteer-
ing Problem with Time Windows (TOPTW). The objective of the TOPTW is to deter-
mine a fixed number of routes that maximize the total collected score. The TOPTW
also considers the time window constraints when the visit at a particular node has to
start within a predefined time window. In the context of the TTDP, the utility score
for a particular node can be treated as the user’s preference on a POI. In this paper, we
propose a mathematical model for the TTDP that extends the TOPTW constraints by
incorporating more real-world constraints, such as different total travel time budgets,
different start and end nodes for routes. We then propose an Iterated Local Search
(ILS) algorithm to solve both TTDP and TOPTW. We implement our ILS to provide
tour guidance in the Singapore context. We show experimentally that ILS is able to
solving real-world problem instances within a few seconds, and our ILS can improve
19 best known solution values on the benchmark TOPTW instances.

Keywords Recommender System · Tourist Trip Design Problem · Team Orienteer-
ing Problem with Time Windows · Iterated Local Search

1 INTRODUCTION

Recommender systems and apps are pervasive in the world of consumer choice,
where different people who use a recommender system expect to get their own recom-
mendations based on their own preferences [22]. In the e-Commerce world, we see

A. Gunawan, H.C. Lau and K. Lu
Singapore Management University
E-mail: aldygunawan, hclau, kunlu@smu.edu.sg

163

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



Aldy Gunawan et al.

increasing proliferation of product recommender systems such as those available on
Amazon and taobao. Likewise, in the travel world, we have recommender systems in
portals such as TripAdvisor, Booking.com and AirBnB to name a few. Much of rec-
ommendations provided by these websites are information-centric, based on ratings
given by past travellers. These portals generally do not provide planning capabilities
that enable a travel itinerary to be generated based on personalized preferences time
as well as monetary budget constraints.

From a planning perspective, what is needed when a tourist visits a country or a
city is to have a schedule for multiple Points of Interest (POIs) that maximizes his/her
experience based on his preferences and constraints such as time budget, the opening
and closing days/times of POIs, distances between POIs. This problem is generally
called the Tourist Trip Design Problem (TTDP) [36].

The OP is first introduced by Tsiligirides [31]. The objective of OP is to deter-
mine a route that consists of a subset of nodes and define the sequence of the selected
nodes so that the total collected score from nodes is maximized and the time budget
is not exceeded. The Team OP (TOP) is the extension of the OP to multiple routes.
The TTDP can also be considered as an extension of the Team OP with Time Win-
dows (TOPTW) [29] which needs to produce multiple routes subject to time window
constraints arising from the opening and closing times of POIs. In the context of the
TTDP, each route can be interpreted as a day trip. A node represents a particular POI.
The score of a node represents the tourist’s preference for that particular POI.

This paper is concerned with developing a fast algorithm that can be embed-
ded within a (real-time) personalized tour planning recommender system for use by
website/mobile apps. We introduce an extended mathematical model for TTDP that
includes some additional constraints, such as different start and end nodes and the
time budget for each route. We then propose an Iterated Local Search (ILS) approach
to solve both TTDP and TOPTW. The proposed algorithm is an extension of ILS
proposed by Gunawan et al. [8] for solving the OPTW. An initial feasible solution is
constructed by a greedy heuristic. The initial solution is further improved by Iterated
Local Search (ILS). Several additional components and operators of ILS are added.

In summary, the contribution of the paper is threefold:

– We introduce an extended mathematical model of the TTDP that addresses the
main drawbacks of the classical TOPTW mathematical model.

– We propose an ILS algorithm for solving the TTDP and TOPTW.
– We show experimentally that our ILS algorithm is effective in providing good and

fast solutions for the TTDP as well as improving 19 best known solution values
of the benchmark TOPTW instances.

The remainder of this paper is organized as follows. Section 2 provides a liter-
ature review. In Section 3, we present the description and the mathematical model
of the TTDP. Section 3 is also devoted to the proposed algorithm to solve the TTDP
instances and the benchmark TOPTW instances. Section 4 provides the computation
results together with the analysis of the results. Section 5 concludes the paper and
summarizes directions for further research.
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2 LITERATURE REVIEW

An evidence of the emerging importance in travel planning recommendation is demon-
strated by the popularity of web and mobile applications that provide personalized
tourist routes. Some web-based recommender systems are Otium (http://sinai.
ujaen.es/otium) [19] and City Trip Planner (http://www.citytripplanner.
com/en/home) [35]. One of the latest mobile apps built for the iOS platform is
GUIDEME system [32].

The underlying problem for travel planning is the TTDP, and Gavalas et al. [5]
provide a comprehensive survey. In the following, we summarize key contributions
related to the TTDP. Souffriau et al. [28] proposed Guided Local Search (GLS) for
solving the TTDP. The algorithm is applied to a real data set from the city of Ghent. It
is concluded that GLS is able to produce good solutions within shorter computational
times. Abbaspour and Samadzadegan [1] studied a more complex TTDP problem in
a large urban area. A nested architecture in which tour planning routine calls multi-
modal shortest path subroutine to generate an itinerary based on user preferences and
restrictions of interesting points is proposed. Two engines of both the tour planner
and the multi-modal shortest pathfinder are based on adapted Genetic Algorithms.
The real dataset of city of Tehran is used to test the proposed algorithm.

Maervoet et al. [18] studied another type of the TTDP problem, namely the Out-
door Activity Tour Suggestion Problem. The problem considers the total path attrac-
tiveness which is based on the sum of the average arc attractiveness and the sum of
the node scores in the path. A heuristic based on spatial filtering is presented. They
conclude that it is a promising approach with low computational impact. Divsalar et
al. [4] introduced another variant of the TTDP, namely the OP with Hotel Selection
and Time Windows, to model multi-day trips to tourism regions. The main assump-
tion is the location of the hotel may affect which POIs would be visited during the
day. They propose a hybrid Genetic Algorithm with an embedded Variable Neighbor-
hood Descent algorithm. Hasuike et al. [10] formulated the sightseeing route plan-
ning problem by introducing fuzzy random variables for travel times, satisfactions
and the tiredness-dependency of the user. The objective is to minimize the maximum
weighted total travel time and sightseeing under some possible conditions. Hasuike
et al. [11] introduced the bi-objective Sightseeing Route Planning by considering two
objectives: to minimize the maximum weighted total travel time and sightseeing and
to maximize the total satisfaction value.

The Team OP with Time Windows (TOPTW) is a simplified version of the TTDP.
Vansteenwegen et al. [33] provided an excellent review of the OP and its variants that
has been done up to 2009. Gunawan et al. [9] summarized the most recent literature
about the orienteering problem and its variants, including the proposed approaches
and applications.

In recent years, heuristic and metaheuristic algorithms have been proposed to
tackle the TOPTW efficiently for real-time applications, such as Iterated Local Search
[34], Variable Neighborhood Search [30], Ant Colony System [21], a hybridization
of a Greedy Randomized Adaptive Search Procedure and Evolutionary Local Search
[15], LP-based Granular Variable Neighborhood Search [16], Simulated Annealing
[25], a hybridization of Greedy Randomized Adaptive Search Procedure (GRASP)
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Fig. 1: TTDP Recommendation System

and Iterated Local Search [27], a hybridization of a local search procedure and Simu-
lated Annealing [12] and Artificial Bee Colony [3]. For the TOPTW with the number
of route = 1 (namely OPTW), there are some algorithms that have been proposed,
such as the pulse algorithm [17] and Iterated Local Search [8].

3 PERSONALIZED TRAVEL PLANNING RECOMMENDATION

In this section, we describe our approach for constructing a personalized TTDP rec-
ommender system. A high level architecture is given in Figure 1. The user provides
essential personal information such as days of visit, start and end nodes for each
day, time budgets and preferences for the different POI categories. Then, the route
planning engine calls the ILS algorithm to find the routes. Finally, an itinerary is
recommended to the user. In the following, we present the underlying mathematical
model followed by our proposed algorithm for generating the itinerary.

3.1 Mathematical Model

The TTDP is formally defined as follows. We are given a graph defined by a set
of nodes N = {1,2, · · · , |N|} where each node i 2 N is associated with score ui and
service time Ti. The non-negative travel time between nodes i and j is represented as
ti j. Our goal is to find a set of routes M = {1,2, · · · , |M|} that maximizes the sum of
scores of visited nodes from all routes. In the context of the TTDP, one route can be
interpreted as one day trip. It is common for a tourist to visit a particular country /
city for multiple days / routes.

To define the mathematical model for TTDP, some additional notations are de-
fined as follows:

· Nstart = {nstart
1 ,nstart

2 , · · · ,nstart
|M| }, where nstart

m represents the start node in route m
(nstart

m 2 N,m 2M).
· Nend = {nend

1 ,nend
2 , · · · ,nend

|M|}, where nend
m represents the end node in route m (nend

m 2
N,m 2M).
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Each node i is associated with a time window [ei, li], where ei and li are the earliest
and latest times allowed for starting the service at node i. We assume that enstart

m = 0
(8nstart

m 2 Nstart ,m 2 M), enend
m

= 0 (8nend
m 2 Nend ,m 2 M), lnstart

m = T max
m (8nstart

m 2
Nstart ,m2M), lnend

m
= T max

m (8nend
m 2Nend ,m2M). Ti is set to 0 (8i2 (Nstart[Nend)).

Our mathematical model uses the following decision variables:
· Xi jm = 1 if a visit to node i is followed by a visit to node j in route m, 0 otherwise.
· Yim = 1 if a visit to node i in route m.
· Sim = the start time at node i in route m.
· Wim = the waiting time before entering node i in route m.

The TTDP mathematical programming model is presented below. The model can
also be considered as the extension of the classical TOPTW mathematical model.

Maximize Â
m2M

Â
i2N\(Nstart[Nend)

uiYim (1)

Â
j2N\Nstart

Xi jm = 1 8m 2M, i 2 Nstart (2)

Â
i2N\Nend

Xi jm = 1 8m 2M, j 2 Nend (3)

Â
i2N\Nend

Xikm = Ykm 8k 2 N \ (Nstart [Nend),m 2M (4)

Â
j2N\Nstart

Xk jm = Ykm 8k 2 N \ (Nstart [Nend),m 2M (5)

Â
m2M

Yim  1 8i 2 N \ (Nstart [Nend) (6)

Yim = 1 8m 2M, i 2 (Nstart [Nend) (7)

Sim � ei 8m 2M, i 2 N (8)

Sim  li 8m 2M, i 2 N (9)

Sim +Ti + ti j�S jm  L̂(1�Xi jm) 8i, j 2 N,m 2M (10)

S jm� (Sim +Ti + ti j) L̂(1�Xi jm)+Wjm 8i, j 2 N,m 2M (11)

Â
i2N

TiYim + Â
i2N\Nend

Â
j2N\Nstart

ti jXi jm + Â
i2N

Wim  T max
m 8m 2M (12)

Sim,Wim � 0 8i 2 N,m 2M (13)

Xi jm,Yim 2 {0,1} 8i, j 2 N,m 2M (14)
The objective function 1 is to maximize the total collected score from visited

nodes from all routes. Constraints 2 and 3 ensure that each route m starts from its
start node nstart

m and ends at its end node nend
m . Constraints 4 and 5 determine the

connectivity of each route m. Constraints 6 prevent each node i to be visited on more
than one route.
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Constraints 7 ensure that the start node nstart
m and end node nend

m in each route
m are visited. Constraints 8 and 9 ensure that the start time at node i in route m is
within time window [ei, li]. Constraints 10 ensure that if nodes i and j are visited
consecutively, then the start time at node j has to be greater than or equal to the start
time at node i plus the service time at node i and the travel time from nodes i to j.
In constraints 11, the waiting time before entering node j in route m, Wjm, is at l east
equal to the start time at node j minus the arrival time at node j. Note that L̂ is a
very large constant value. Constraints 12 limit the time budget for each route m by
T max

m . Constraints 13 are the non-negativity condition for Sim and Wim. The binary
conditions for Xi jm and Yim are constrained by constraints 14. The binary condition
also ensures that each node is only visited at most once.

Note that unlike the classical TOPTW, the above mathematical model allows dif-
ferent start and end nodes and different time budgets for routes. Simpler mathematical
formulations of the TOPTW, when the start and end nodes are the same and the values
of T max

m for all routes are constant, can be found in [16] and [34].
Furthermore, in the TTDP context, ei and li refer to the opening and closing times

of a particular POI i, respectively. We need to ensure that the visitor has to leave the
POI before li. In this scenario, constraints 9 are replaced by constraints 15.

Sim +Ti  li 8m 2M, i 2 N (15)

3.2 Algorithm

We introduce a simple yet effective Iterated Local Search (ILS) algorithm that works
well in real-world problem instances and improves the state-of-the-art results. This
algorithm is an extension of ILS proposed by Gunawan et al. [8] for solving the
OPTW. In a nutshell, our algorithm constructs an initial feasible solution via a greedy
heuristic. The initial solution is further improved by Iterated Local Search (ILS).The
algorithm is briefly described in the following sub-sections. We still include some
explanations which are taken from the original paper [8] so the readers can have a
better understanding.

3.2.1 Greedy Construction Heuristic

The basic idea is to start with an empty solution as the current solution and insert
nodes iteratively to the current solution until there is no node can be inserted. The
greedy construction heuristic is outlined in Algorithm 1.

Let N0 and N⇤ be the sets of unscheduled and scheduled nodes, respectively
(N0 [N⇤ = N) and let F be the set of feasible candidate nodes to be inserted. N⇤
is initialized by Nstart and Nend , while N0 consists of unscheduled nodes. S0 refers
the current feasible solution obtained so far, represented as m-vector. Each row m is
initialized with nstart

m 2 Nstart and nend
m 2 Nend .

Let P(m) represents a set of scheduled node positions in route m. We examine
all possibilities of inserting an unscheduled node in position p 2 P(m) and store all
feasible insertions into F . Each element in F , which represents a feasible insertion
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Algorithm 1 CONSTRUCTION (N , M)
N0  N \{Nstart [Nend}
N⇤  {Nstart [Nend}
Initialize S0 N⇤
F  UPDATEF(N0 , M)
while F 6= /0 do
�n⇤, p⇤, m⇤�  SELECT(F )
S0 �n⇤, p⇤,m⇤�
Update P(m)
N0  N0 \{n⇤}
N⇤  N⇤ [{n⇤}
F  UPDATEF(N0 , M)

end while
return S0

of node n in position p of route m, is represented as �n, p,m�. For each �n, p,m�, we
calculate the benefit of insertion ration,p,m by using equation 16. �n,p,m represents
the difference between the total time spent before and after the insertion of node
n in position p of route m. All elements in F would be sorted in descending order
based on ration,p,m values and we only keep f elements. The idea of generating F is
summarized in Algorithm 2.

ration,p,m =

✓

u2
n

�n,p,m

◆

(16)

If F is not an empty set, Algorithm 3 is run in order to select �n⇤, p⇤, m⇤� to
be inserted. Each �n, p, m� corresponds to a probability value, probn,p,m, which is
calculated by Equation 17:

probn,p,m =

�

ration,p,m

Â�i, j,k�2F ratioi, j,k

�

(17)

Selecting �n⇤, p⇤, m⇤� from F is based on the Roulette-Wheel selection [6]. The
probability of selecting a candidate insertion is proportional to its benefit, ration,p,m.
S0, N0 and N⇤ will be updated after the insertion. The greedy construction heuristic is
terminated when F = /0.

3.2.2 Iterated Local Search

Given the initial solution S0 generated from the greedy construction heuristic, we
propose ILS to improve the quality of S0. Three components of ILS PERTURBATION,
LOCALSEARCH and ACCEPTANCECRITERION are considered. Let S⇤ be the best
found solution so far. The outline of ILS is presented in Algorithm 4.

In PERTURBATION, we implement two steps: EXCHANGEROUTE and SHAKE. If
the number of iterations without improvement, NOIMPR, is larger than THRESHOLD2
and (NOIMPR + 1) Mod THRESHOLD3 = 0, EXCHANGEROUTE would be executed;
otherwise, SHAKE would be selected. THRESHOLD2 and THRESHOLD3 are constant
parameters need to be set.
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Algorithm 2 UPDATEF (N0 , M)
F  /0
for all n 2 N0 do

for all m 2M do
for all p 2 P(m) do

if insert node n in position p of route m is feasible then
calculate ration,p,m
F  F [�n, p,m�

end if
end for

end for
end for
Sort all elements of F in descending order based on ration,p,m
Select the best f number of elements of F and remove the rest
return F

Algorithm 3 SELECT (F )
SumRatio 0
for all �n, p,m� 2 F do

SumRatio SumRatio+ ration,p,m
end for
for all �n, p,m� 2 F do

probn,p,m ration,p,m/SumRatio
end for
U  rand(0,1)
AccumProb 0
for all �n, p,m� 2 F do

AccumProb AccumProb+ probn,p,m
if U  AccumProb then
�n⇤, p⇤,m⇤�  �n, p,m�
break

end if
end for
return �n⇤, p⇤,m⇤�

In the EXCHANGEROUTE step, all nodes of one route are moved to the other
route in the same order and vice versa. The strategy of selecting two different routes
are based on generating of permutations by adjacent transposition method [14]. The
SHAKE step is adopted from [34] with some modifications. During SHAKE step, one
or more nodes will be removed in each route m, which depends on two integer val-
ues, CONS and POST. CONS indicates how many consecutive nodes to remove for a
particular route while POST indicates the first position of the removing process in a
particular route. If we reach the last scheduled node, the process will then be back to
the first node after the start node nstart

m . Both CONS and POST are initially set to 1. Af-
ter each SHAKE step, POST is increased by CONS. CONS would also be increased by
one after a fixed number of consecutive iterations.If POST is greater than the size of
the smallest route, POST is subtracted with the size of the smallest route to determine
the new position POST. If CONS is greater than the size of the largest route, or S⇤ is
updated, CONS is reset to one. After removing CONS nodes, we update N0 and N⇤
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Algorithm 4 ILS (N,M)
S0  CONSTRUCTION(N,M)
S0  LOCALSEARCH(S0,N⇤,N0,M)
S⇤  S0
NOIMPR 0
while TIMELIMIT has not been reached do

S0  PERTURBATION(S0,N⇤,N0,M)
S0  LOCALSEARCH(S0,N⇤,N0,M)
if S0 better than S⇤ then

S⇤  S0
NOIMPR 0

else
NOIMPR NOIMPR + 1

end if
if (NOIMPR+1) MOD THRESHOLD1 = 0 then

S0  S⇤
end if

end while
return S⇤

accordingly. F is then regenerated based on Algorithm 2 and an unscheduled node
that needs to be inserted is selected using Algorithm 3. This is repeated until F = /0.

Table 1: LOCAL SEARCH operations

Operations Descriptions
SWAP1 Exchange two nodes within one route
SWAP2 Exchange two nodes within two routes
2-OPT Reorder the sequence of certain nodes within one route
MOVE Move one node from one route to another route
INSERT Insert nodes into a route
REPLACE Replace one scheduled node with one unscheduled node

In LOCALSEARCH, we run six different operations consecutively, as shown in
Table 1. Take note that four operations: SWAP1, 2-OPT, INSERT and REPLACE
are taken from [8]. In this paper, we only explain two additional operations, SWAP2
and MOVE.

The idea of exchanging two scheduled nodes within one particular route SWAP1
is extended to two different routes with the lowest and the second lowest unused
time budget, namely SWAP2. The swapping is executed if the total of unused time
budgets of both selected routes is increased. All possible combinations of selecting
two different nodes are examined.

MOVE is performed by reallocating one node from one route to another one. It is
started from the first scheduled node n⇤ from the first route m⇤. The idea is to generate
F using Algorithm 2 where N0 = {n⇤} and M = M \{m⇤}. If F 6= /0, node n⇤ would
be reallocated based on Algorithm 3. Otherwise, we continue to the next scheduled
node. This operation would be terminated if node n⇤ is moved or we have reached the
last scheduled node of the last route |M|.

If S⇤ is not updated for a certain number of iterations,((NOIMPR+1) MOD THRESH-
OLD1 = 0), we apply an intensification strategy. This strategy restarts the search from
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the best found solution, S⇤. Finally, the entire algorithm will be run within a given
computational budget, TIMELIMIT.

4 COMPUTATIONAL EXPERIMENTS

4.1 Instances and Experimental Setup

Table 2 summarizes the details of the instances used in our paper. The experiments
were carried out on a personal computer Intel Core i7 - 4770 with 3.4 GHz processor
and 16 GB RAM.

Table 2: Benchmark Instances

Reference Problem Category Name Instance sets |N| |M|
- TTDP - Real-world R1-R5 50 1 to 5

[24] TOPTW INST-M Solomon 100 c⇤ 100, r⇤ 100, rc⇤ 100 100 1 to 4
Cordeau 1-10 pr01 - pr10 [48, 288]

[20] TOPTW INST-M Solomon 200 c⇤ 200, r⇤ 200, rc⇤ 200 100 1 to 4
Cordeau 11-20 pr11 - pr20 [48, 288]

[34] TOPTW OPT
Solomon 100 & 200 c⇤ 100, r⇤ 100, rc⇤ 100 100 3 to 20

c⇤ 200, r⇤ 200, rc⇤ 200 100
Cordeau 1-10 pr01 - pr10 [48, 288]

4.1.1 Real-world TTDP Instances

We introduce a set of real-world TTDP instances derived from the city of Singapore
with 50 Point of Interests (POIs). The score for each POI was derived from local
knowledge, which can be adjusted according to user’s preferences. In order to obtain
a quick response, we limit the run time to 5 seconds for each instance. The ILS was
executed in 1 run for each instance.

The start and end nodes are different for each route m and the time budget for each
route m, T max

m , may vary. The time window [ei, li] for POI i represents the opening
and closing times of POI i. The user has to leave POI i before the closing time li. The
score related to the attractiveness of POI ui is assumed to be known. The travel time
between two POIs, the service time, the opening and closing time for POIs are also
known.

4.1.2 Benchmark TOPTW Instances

Since test instances for the extended TOPTW problem are not available, we use
benchmark TOPTW instances to validate the performance of ILS. The OPTW in-
stances were initially proposed by Righini and Salani [24]. 48 test problems were gen-
erated from Solomon’s instances [26] and 10 instances were adapted from Cordeau’s
instances [2]. Both Solomon’s and Cordeau’s instances were originally designed for
vehicle routing problems with time windows and multi-depot vehicle routing prob-
lems, respectively. [20] developed another set of 37 instances for the OPTW. The
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Table 3: Estimation of single-thread performance [12]

Algorithm Experimental environment SuperPi Estimate of
single-thread
performance

Number of tri-
als for each in-
stance

IterILS Intel Core 2 with 2.5 gigahertz
CPU, 3.45 gigabytes RAM

18.6 0.53 1

VNS Intel Pentium 4 with 2.4 gigahertz
CPU, 4 gigabytes RAM

unknown 0.53 10

EACS Dual AMD Opteron 250 2.4 giga-
hertz CPU, 4 gigabytes RAM

unknown 0.22 5

SSA Intel Core 2 CPU, 2.5 gigahertz 18.6 0.53 1
GVNS Intel Pentium (R) IV, 3 gigahertz

CPU
44.3 0.22 10

GRILS Intel Xeon with 2.5 gigahertz CPU,
4 gigabytes RAM

unknown 0.53 10

I3CH Intel Xeon E5430 with 2.66 giga-
hertz CPU, 8 gigabytes RAM

14.7 0.67 1

ILS Intel Core i7-4770 with 3.4 GHz
processor, 16 gigabytes RAM

9.8 1 10

TOPTW instances are constructed by extending the OPTW instances with different
values of routes: m = 2, 3 and 4. This set of instances is considered under the ”INST-
M” category [12].

Vansteenwegen et al. [34] added more benchmark instances based on instances of
[26] and [2]. Those instances are considered more difficult instances, with the number
of routes |M| is set to the number of vehicles. The optimal solution for these instances
are known due to the specific setting on the number of provided vehicles, which is
equal to the total score collected from all customers. Hu and Lim [12] considered this
set of benchmark instances as the ”OPT” category.

ILS was executed in 10 runs with different random seeds for each benchmark
instance. The performances of the proposed ILS in solving benchmark TOPTW in-
stances are compared to the state-of-the-art algorithms: IterLS [34], VNS [30], EACS
[21], SSA [25], GVNS [16], GRILS [27] and I3CH [12].

Gunawan et al. [8] and Hu and Lim [12] used the SuperPi benchmark to com-
pare the computer speeds and ensure the fairness among algorithms. SuperPi is a
single-threaded program that computes the first 1 million digits of � of a particular
processor. Table 3 summarizes the experimental environment of each algorithm [12]
for comparing the speed of the computers. Labadie et al. [15] show the comparability
of processors used by ACS⇤ and GVNS since the SuperPi for ACS⇤ is not available.
The same conclusion is applied to VNS [30] and GRILS [27]. For the details, please
refer to [12].

Take note that only EACS uses one hour computational time for each instance,
while others use the number of iterations. We decide to implement EACS’s compu-
tational time as our reference since we are more concerned with solution quality. We
adjust the computational time and decide to use only 35% of the adjusted EACS’s
computational time (⇠3600 seconds) for solving each instance. Therefore, the com-
putational time for each instance is set to 35%⇥ 0.22⇥ 3600 seconds = 272 seconds
using our processor.

We also implement another scenario by referring to the computational times of
I3CH. I3CH is considered as the best among the state-of-the-art algorithms [12].

A Fast Algorithm for Personalized Travel Planning Recommendation 173

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



Aldy Gunawan et al.

Fig. 2: Example Routes of R3

4.2 Experimental Results

The summary of results obtained are reported in the following sub-sections. The
details of results can also be downloaded at http://centres.smu.edu.sg/larc/
Orienteering-Problem-Library.

4.2.1 Real-world TTDP Instances

As described in Section 4.1.1, we generate different instances to simulate different
user behaviors. Table 4 provides the details of those five different instances. We also
vary the number of routes, the start and end nodes and the time budget for each route.
The last column of Table 4 represents the solutions in terms of the number of POIs
that can be visited. In general, the higher the value of m, the more POIs can be visited.
For example, the total numbers of POIs are 11, 20 and 26 POIs for instances R1,R2
and R3, respectively. The number of POIs visited is slightly decreased for m = 4
(instance R4) since the user is moved to a hotel which is closer to the airport and far
from most of POIs.

Table 5 illustrates POIs that can be visited for a three-days trip (R3) generated by
ILS. Figure 2 visualizes the proposed routes for R3. We conclude that ILS is effective
for solving real-world problems related to the TTDP within a few seconds. Take note
that the scores of POIs can always been adjusted with respect to the user preferences.
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4.2.2 Benchmark TOPTW Instances

Table 6 reports the new best known solutions (new BKs) obtained by ILS. Most of
new BKs are from m = 1 and 2, while the rest are from m = 3 and 4. Table 7 sum-
marizes the overall results of ”INST-M” instances solved by IterILS, VNS, EACS,
GVNS, SSA, GRILS, I3CH and our proposed ILS. The table reports the average
relative percentage deviation (AG), which refers to the average of percentage gap
between BK and the average solutions obtained by a particular algorithm across all
benchmark instances. We observe that ILS can produce a better AG against those of
VNS, EACS, GVNS and GRILS. However, IterILS, SSA and I3CH only reported
their best known solution obtained; therefore, we calculate the best relative percent-
age deviation (BG) that represents the average of percentage gap between BK and
the best solution obtained across all instances. In average, ILS provides a better BG
value compared with those of other methods, except VNS. Although the BG of VNS
is smaller, but it requires more computational time.

Table 6: New best known solution values found by ILS

Instance m Old BK New BK Instance m Old BK New BK
r203 1 1021 1026 r107 2 536 538
r204 1 1086 1093 r205 2 1380 1385
r209 1 950 956 r209 2 1405 1406
r211 1 1046 1049 rc206 2 1546 1552

rc202 1 936 938 r104 3 777 778
rc206 1 895 899 rc104 3 834 835
rc208 1 1053 1057 r104 4 972 973
pr15 2 1219 1220 rc107 4 980 985

The computational times of EACS and ILS represent the average of computa-
tional times to obtain the best found BK (in seconds). IterILS, VNS, SSA, GVNS,
GRILS and I3CH report the average of computational times for solving each in-
stance. ILS requires shorter computational times than VNS and EACS do. On the
other hand, ILS needs longer computational times compared against the ones of
GVNS and GRILS. Table 8 reports the results of the ”OPT” category. In terms of
BG values, ILS result is comparable to that of SSA, although it is worse than that of
I3CH.

We compare the performance of ILS against I3CH in solving the ”INST-M” in-
stances by setting the computational times to those of I3CH. The results are shown in

Table 7: Comparison for ”INST-M”

Algorithm AG(%) BG(%) Time (seconds)
IterILS - 3.50 1.6
VNS 1.42 0.48 197.9

EACS 2.33 1.69 310.3
SSA - 1.09 46.5

GVNS 1.74 1.00 14.2
GRILS 3.87 2.81 5.6
I3CH - 0.69 134
ILS 1.19 0.54 126.6

Table 8: Comparison for ”OPT”

Algorithm AG(%) BG(%) Time (seconds)
IterILS - 1.30 3.5

SSA - 0.45 76.6
GVNS 0.74 - 4.9
I3CH - 0.15 183.0
ILS 0.82 0.45 188.8
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Table 9: Comparison with the same computational time

Algorithm AG(%) BG(%) Time (seconds)
I3CH - 0.69 134.7
ILS 1.33 0.53 134.7

Table 10: New best known solution values found by ILS using I3CH computational
time

Instance m Old BK New BK Instance m Old BK New BK
pr15 1 707 708 r206 2 1440 1442
r209 2 1405 1407 pr04 2 925 926

Table 9. More new BKs especially for m = 2 instances have been found, as listed in
Table 10. The best known of instance r209 (m = 2) has also been further improved to
1407.

5 CONCLUSION

We develop a fast algorithm based on Iterated Local Search (ILS) for generating
a personalized tour planning recommendation. We introduce a TTDP mathematical
model which extends the TOPTW model by including several additional real-world
constraints, such as different maximum total travel times and different start and end
nodes. A factorial experimental design is implemented for tuning the parameter val-
ues of ILS. Computational results have shown that our approach is capable of gen-
erating good and fast itineraries for the TTDP, as well as improving 19 best known
solution values among benchmark instances of the TOPTW.

Our future focus is to improve the performance of ILS by modifying it in order
to solve larger values of m, e.g. focusing on allocating nodes with shorter time win-
dows that are more difficult to allocate. It would be interesting to apply the proposed
algorithm to other variants of the OP, e.g. the Time Dependent OP and the Multi-
Constraint Team OP with (Multiple) Time Windows.
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