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ABSTRACT
Device-free localization, which does not require any de-
vice attached to the target is playing a critical role in
many applications such as intrusion detection, elderly
monitoring, etc. This paper introduces D-Watch, a
device-free system built on top of low cost commodity-
off-the-shelf (COTS) RFID hardware. Unlike previous
works which consider multipaths detrimental, D-Watch
leverages the “bad” multipaths to provide a decimeter-
level localization accuracy without offline training. D-
Watch harnesses the angle-of-arrival (AoA) information
from the RFID tags’ backscatter signals. The key intu-
ition is that whenever a target blocks a signal’s propaga-
tion path, the signal power experiences a drop which can
be accurately captured by the proposed novel P-MUSIC
algorithm. The wireless phase calibration scheme pro-
posed does not interrupt the ongoing communication.
Real-world experiments demonstrate the effectiveness
of D-Watch. In a rich-multipath library environment,
D-Watch can localize a human target at a median accu-
racy of 16.5 cm. In a table area of 2 m×2 m, D-Watch
can track a user’s fist at a median accuracy of 5.8 cm.
D-Watch is capable of localizing multiple targets which
is well known to be challenging in passive localization.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design–Wireless communication

Keywords
Device-Free Localization; AoA; MUSIC; Multipath
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1. INTRODUCTION
While GPS localization has gained a huge success in

outdoor environment, we witnessed an ever-increasing
roll-out of indoor location-based applications such as
shop navigation [31, 38], augmented reality [58, 20] and
room occupancy detection [40] in recent years. Di-
verse technologies have been explored for localization
purposes including infrared [21, 19], camera [28, 30],
acoustic [14, 56], visible light [25, 26], Wi-Fi [53, 22,
23, 49], RFID [45, 45, 46, 55, 18], etc. Among all the
technologies, radio frequency (RF)-based localization is
considered most promising due to its ubiquitousness and
low cost. In particular, RFID is evolving as a major
candidate for identifying and tracking objects in indoor
environment [13]. It is no exaggeration to say that we
are almost surrounded by RFID tags in our daily lives.
These tags are widely used in the bus cards, car keys,
clothing security tags, etc. One main reason for this
widespread deployment is the simplicity of the tags and
the extremely low cost (each tag costs 5–10 cents USD).

The RF-based localization schemes can be further
categorized into device-based [53, 22, 23, 45, 46, 52, 50]
and device-free [47, 7, 8, 55, 49, 27]. The device-based
schemes require the target to be equipped with a device
or attached with a tag capable of emitting or reflect-
ing RF signals. However, device-based localization is
not applicable in some scenarios. In intruder detection,
the targets will deliberately discard any device that can
be tracked. In elderly care, old people are usually re-
luctant [55] to hold mobile devices, wear wearables or
be attached with RFID tags. These real-life scenar-
ios motive the needs of device-free localization which
does not require any device to be attached to the tar-
get. On the other hand, device-free localization is usu-
ally more challenging as the weak reflected signals are
employed for localization. For example, RFID adopts
backscattering strategy for communication and the sig-
nal backscattered from the RFID tag is relatively weak.
If the backscattered signal gets reflected again from the
human target, it becomes extremely weak and it is dif-
ficult to retrieve this subtle signal for localization. Also
multi-target tracking is not a problem for device-based
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(a) One tag deployed. (b) Three tags deployed. (c) 3 paths are blocked by a target.
Figure 1: Illustration of the basic idea of D-Watch.

localization but becomes challenging for device-free sys-
tems as the reflected signals from multiple targets are
all mixed together.

Most RF-based device-free systems [18, 10, 57, 49]
employ the received signal strength indicator (RSSI) or
channel state information (CSI) for localization which
are coarse in accuracy and require labour intensive of-
fline training to obtain the fingerprint database. The
fingerprints also need to be updated if there are changes
in the environment such as furniture movements, mak-
ing these systems less realistic for real-life deployment.
RSSI/CSI model-based schemes [33, 48, 54, 44] are pro-
posed later to mitigate the fingerprint collection load
but suffer from low accuracy in rich-multipath environ-
ments. In recent years, motivated by the radar array
system [40, 53, 17], AoA-based schemes [8, 55, 47, 58]
become popular with the opportunity of multiple an-
tennas attached to a single Wi-Fi access point (AP)
or an RFID reader. Wi-Fi APs nowadays are usu-
ally equipped with an antenna array due to the adop-
tion of MIMO technology [24] in the latest 802.11n and
802.11ac standards. In order to increase the trans-
mission range and accordingly the coverage area, the
commodity RFID readers also have multiple antenna
ports [46, 5]. The AoA-based schemes are able to achieve
a high accuracy without labour intensive offline train-
ing. However, one major challenge for the success of
AoA-based schemes is the identification of the LoS di-
rect path. This is critical as there are usually rich multi-
paths indoors and only the direct path signal bouncing
off the target contains the true angle information of the
target. The multipaths are considered detrimental and
several works [7, 8, 55] have been proposed to identify
or remove these “bad” multipaths.

This paper introduces D-Watch, the first RFID-based
device-free localization system that efficiently leverages
the “bad” multipath signals to provide decimeter level
accuracy. D-Watch is built on the COTS RFID hard-
ware. To locate the target, D-Watch employs the AoA
spectrum as shown in Fig. 1(a) and monitors the AoA
peak changes to detect the angle information of the tar-
get. Specifically, if a target blocks a signal propagation
path between the reader and the tag, the correspond-

ing AoA peak will experience a drop. By monitoring
the peak amplitude changes on the AoA spectrum, D-
Watch can identify the target’s angle information with-
out any tag attached to the target, like a “direction-
watcher (D-Watch)”. We then combine the angle infor-
mation from at least two non-collinear readers to local-
ize the target by the triangulation method.

To further illustrate D-Watch’s basic idea, Fig. 1 shows
a toy example with two readers and three tags. We can
see in Fig. 1(b) that the number of signal paths increases
rapidly with two more tags added. When there is a hu-
man target in the area, D-Watch localizes the target
as illustrated in Fig. 1(c). Specifically, multiple corre-
sponding peaks on the AoA spectra are decreased when
the target blocks path 1, path 2 and path 3. By reject-
ing the wrong angle from path 3 as we will discuss in
Section 4.3, D-watch is able to localize the target with
the other two paths.

D-Watch efficiently utilizes both the direct path and
the reflection paths to identify the angle information of
the target. With rich multipaths in indoor environment,
D-Watch increases the coverage area significantly, so the
deployment density can be well reduced. Further, D-
Watch does not need to know the RFID tags’ locations
so the tags can be randomly placed with a high degree
of flexibility. D-Watch only requires baseline AoA mea-
surements between tags and readers, which take a few
seconds compared with hours measuring and updating
the RSS/CSI signatures at all possible locations in ex-
isting fingerprint-based location systems.

Though the basic idea sounds straightforward, it is
non-trivial to realize D-Watch in practice due to the
following challenges:

• Phase calibration: accurate AoA estimation is
highly dependent on the signal’s phase value mea-
sured at each antenna. However, each radio front
end has a random phase offset introduced by the
internal oscillator. This random phase offset needs
to be carefully addressed before correct AoA infor-
mation can be obtained. ArrayTrack [51] proposed
a wired calibration method by injecting the same
signals to the RF front ends with the help of a
splitter. However, the wired calibration scheme
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requires human intervention to plug/unplug the
antennas which is time consuming and interrupts
the ongoing communication.

• Signal power estimation of each path: the
signal power of a certain path can not be esti-
mated accurately with the well-known MUSIC al-
gorithm [34] widely used for AoA estimation. The
peak amplitude on an AoA spectrum estimated
by MUSIC is a probability function [34] and does
not have a clear linear relationship with the signal
power. When one path is blocked, more than one
peak on the MUSIC spectrum may get changed,
resulting in a false positive detection. When mul-
tiple paths are blocked, MUSIC may only detect
one path and miss the other blocked paths.

To deal with the above challenges, we propose a new
wireless phase calibration scheme. Compared to the ex-
isting methods [51, 37], the proposed scheme does not
interrupt the ongoing data communication and runs au-
tomatically without the requirement of human interven-
tion. The basic idea is that the estimated AoA angle
will match the true angle if the random phase offsets
are removed correctly. By deploying tags with known
direct path angles and treating the random phase off-
sets as unknowns, we can compose enough constraint
equations to determine the random phase offsets.

We further propose a novel power MUSIC (P-MUSIC)
algorithm, which reserves the AoA estimation capabil-
ity of the traditional MUSIC and incorporates the signal
power estimation capability so both the path angle and
path signal power can be obtained at the same time.
The key intuition behind P-MUSIC’s power estimation
is that it applies different weights to the signals received
at each antenna so the desired signals at a specific direc-
tion add constructively, whereas the signals along other
directions add randomly. This alignment boosts the
power at the desired direction and averages out the sig-
nals along other directions to a small value so the signal
power at a specific direction can then be estimated.

We build a prototype of D-Watch using four Imp-
inj readers [5] and 21 Alien tags [1]. We evaluate the
localization performance in three typical indoor envi-
ronments: a library, a laboratory and an empty hall
corresponding to high, medium and low multipath en-
vironment, respectively. D-Watch is able to achieve a
median localization accuracy of 16.5 cm for a human
target in the rich-multipath library environment. For a
smaller scale deployment, D-Watch is able to perform
fine-grained tracking of a user’s fist passively at a me-
dian accuracy of 5.8 cm. D-Watch also moves one step
further to localize multiple targets simultaneously which
is well known to be challenging for passive localization.
D-Watch is able to localize three glass bottles at the
same time at a maximum error of 17.2 cm as long as
they are separated by at least 20 cm from each other.
Contributions: The main contributions of this paper
are summarized as follows:

• D-Watch is the first device-free RFID system that
efficiently utilizes the “bad” multipaths for local-
ization. D-Watch does not require labour intensive
offline training nor needs to know the RFID tags’
locations, making D-Watch a promising candidate
for real life large scale deployments.

• The proposed wireless phase calibration scheme
operates without reliance on human intervention.
It outperforms the state-of-the-art wireless calibra-
tion method and does not interrupt the ongoing
communication.

• We propose a novel P-MUSIC algorithm, which
does not only capture the angle information as the
traditional MUSIC algorithm does but also obtains
the signal power information of each path.

• D-Watch is implemented on COTS RFID hard-
ware and comprehensive experiments demonstrate
the effectiveness of the system. D-Watch can be
easily extended to Wi-Fi and other RF-based sys-
tems for localization and tracking purposes.

Paper outline: We introduce the background and chal-
lenges in Section 2 and Section 3. We detail D-Watch’s
design in Section 4. The implementation is described in
Section 5 followed by the evaluation in Section 6. The
related work is in Section 7. We discuss some related
issues in Section 8 and conclude our work in Section 9.

2. BACKGROUND
In this section, we introduce the technical background

of RFID and MUSIC algorithm.

2.1 RFID System
An RFID system usually consists of a reader and mul-

tiple tags. Tags have no internal battery, so they har-
vest energy purely from the reader’s signal and reply to
the reader with a modulated backscatter signal. Typi-
cally, a COTS reader is connected to multiple antennas
to increase the coverage range. For example, the Impinj
xArray reader [5] has 52 antennas and covers more than
139 m2 space with a price of 2000 USD.

Two points about RFID system are particularly rel-
evant to the device-free localization. First, an RFID
tag is extremely cheap at a cost of 5–10 cents USD.
RFID reader is relatively expensive (the price [2] of the
ThingMagic reader is around 450 USD and the gen-
eral purpose Impinj R420 reader is around 1200 USD).
R420 is relatively expensive because of the HTTP/TCP
server function which is not used in our localization sys-
tem. One R420 reader has four RF port and is capable
of being connected to multiple antennas serving many
RFID tags so the price is well amortized. RFID-based
localization system is thus a promising candidate for
large-scale deployments in cargo transportation, retail-
ing and warehouse. Second, the communication range
of RFID today is significantly increased to more than
10 meters [5, 45]. Major RFID manufacturers are com-
peting to increase the range [46] and we expect the range
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Figure 2: Phase changes are different when a signal
arrives at different antennas of a linear array.

to continue growing in the next few years.

2.2 AoA and MUSIC
AoA information. When an RF signal propagates

in the air, the phase keeps rotating and one wavelength
of distance corresponds to a 2π phase rotation. The
basic idea of AoA estimation is to measure the signal
phase difference at antennas [32] due to different prop-
agation distances. For example in Fig. 2, the adjacent
antennas are placed with a space of d = λ/2 in between,
where λ is wavelength. A signal arrives at the antennas
along direction θp. If the phase measurements at the
first two antennas are φ1 and φ2, we can then estimate
the AoA θp as:

θp = arccos(
λ ∙ |φ1 − φ2|

2π ∙ d
) = arccos(

|φ1 − φ2|
π

). (1)

AoA estimation by MUSIC. In reality, Equation
(1) does not work because of the multipath signals. MU-
SIC [34] algorithm is employed for multipath signal AoA
estimation. Consider a uniform linear array with M an-
tennas where the first antenna is taken as the reference
antenna as shown in Fig. 2. P signals S =[s1, s2, ∙ ∙ ∙ ,
sP ]T arrive at the array at directions of Θ=[θ1, θ2, ∙ ∙ ∙ ,
θP ]. Since the signals are all mixed, the measured signal
xm at “antenna m” can be expressed as:

xm =
P∑

p=1

sp ∙ e−j∙ω(m,θp), (2)

where ω(m, θp)=(m − 1) 2πd
λ cos(θp). The measured sig-

nal vector X = [x1, x2, ∙ ∙ ∙ , xM ]T at the array is:

X = AS + n, (3)

where n is noise, A=[a(θ1), ∙ ∙ ∙ , a(θp), ∙ ∙ ∙ , a(θP )] is the
steering matrix and a(θp) is an M × 1 steering vector:

a(θp) = [1, e−j∙ω(2,θp), ∙ ∙ ∙ , e−j∙ω(M,θp)]T , (4)

where (∙)T denotes the transpose operation.
MUSIC is based on eigenstructure analysis of the sig-

nal vector’s correlation matrix R. Based on (3), the
correlation matrix R can be expressed as:

R = E[XXH ] = AE[SSH ]AH + σ2I, (5)

where (∙)H denotes the Hermitian transpose operation,
E[SSH ] is the source correlation matrix. The array cor-
relation matrix R has M eigenvalues λ1,∙ ∙ ∙ , λM as-
sociated with M eigenvectors U=[u1, ∙ ∙ ∙ , uM ]. The

largest P eigenvalues correspond to the P incoming sig-
nals while the rest Q= M − P correspond to the noise.
We choose P value based on how many eigenvalues are
larger than a threshold and considered signals. Based
on this process, the corresponding eigenvectors in U can
be classified as signal and noise parts:

U = [US ,UN ] = [u1, ∙ ∙ ∙ ,uP︸ ︷︷ ︸
US

,uP+1, ∙ ∙ ∙ ,uM︸ ︷︷ ︸
UN

]. (6)

We refer to US as the signal subspace and UN as the
noise subspace. Due to the orthogonality between the
signal steering vector and noise subspace [34], we have:

a(θ)HUN = 0, (7)

when θ = θ1, ∙ ∙ ∙ , θP . Accordingly, the AoA spectrum
of MUSIC is given as:

B(θp)=
1

aH(θp)UNUH
Na(θp)

, (8)

which yields sharp peaks at the each signal’s AoA.

3. CHALLENGE AND VERIFICATION
We discuss the challenges in detail and employ bench-

mark experiments to validate our claims in this section.

3.1 Phase Calibration
Accurate AoA estimations are the key part of our

localization system. The AoA estimations are highly
dependent on the accurate phase measurements. How-
ever, a reader’s RF front ends introduce random phase
offsets into the phase measurements. To examine the
amount of phase offsets introduced, we conduct an em-
pirical study over the 16 RF ports on four Impinj R420
readers, with 4 RF ports on each reader. We deploy one
tag and one antenna with clear LoS path. The antenna
is connected to the 16 RF ports via a same RF cable one
by one and the phase measurements are recorded. We
select the first RF port as the reference and calculate
the phase offsets for the other 15 RF ports. Fig. 3 shows
the measured phase offsets ranging from −85.9◦ to 176◦.
These offsets are very random and need to be removed
in order to achieve reliable AoA estimates. Traditional
calibration methods, such as ArrayTrack [51], Argos [37]
and Phaser [17], though being able to obtain the phase
offsets, require human intervention and take minutes to
complete. What is worse, these methods interrupt the
ongoing data communication.

3.2 Limitation of Power Estimation
D-Watch detects the target’s direction by observing

an obvious signal power reduction when the target blocks
the signal path. Thus, an accurate path power change
detection is critical for D-Watch’s localization. How-
ever, the signal power of each path can not be estimated
accurately with the well-known MUSIC algorithm [35].
The AoA spectrum estimated by MUSIC is a proba-
bility function [34] and the peak amplitude does not
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Figure 3: Random phase offsets at different RF ports.

Figure 4: AoA spectrum change estimated by MUSIC.

represent the signal power level. We run a benchmark
experiment to verify this observation and show the re-
sults in Fig. 4. When one path at 50◦ is blocked, not just
the peak of the blocked path is decreased, the peak am-
plitudes of other paths may also get changed. That is to
say, the power information provided by traditional MU-
SIC is not reliable for target detection. What is worse,
when all three paths are blocked, the amplitudes for all
peaks do not change much on the spectrum as shown
in Fig. 4. MUSIC will then miss some of the blocked
paths and the targets may not even be detected.

4. SYSTEM DESIGN
We present the key components of D-Watch followed

by a summary of the system workflow.

4.1 Wireless Phase Calibration
We propose a subspace based wireless calibration met-

hod to estimate the phase offsets without interrupting
the ongoing communication. The main challenge faced
by wireless calibration is the multipath effect. With dif-
ferent propagation paths, the signals combine construc-
tively at some antennas while combine destructively at
other antennas. A naive approach is to remove the mul-
tipath signals so that we get the phase measurements
only caused by the direct path signal and the RF port
phase offsets. We can then obtain the phase offsets
because the phase difference introduced by the direct
path signal can be calculated. However, in a typical in-
door environment, multipaths exist and it’s difficult to
remove the multipath signals from the received mixed
signal and only keep the direct path signal.

In contrast, we propose a novel method which is able
to work in the presence of multipath signals. The key
intuition is the orthogonality property between the sig-
nal subspace and noise subspace, if we carry out eigen-
value analysis on the signal correlation matrix [34] as
we described in Section 2.2. Based on this orthogo-

nality property, the product of the noise subspace and
signal subspace approaches zero at the LoS angle when
the phase offsets are correctly removed. This observa-
tion motivates us to find the phase offsets by minimizing
the product of noise and signal subspace at the known
LoS angle1. With phase offsets, we revise the array sig-
nal model described by (2) as:

X = ΓAS + n, (9)

where X, A, S and n are the array signal vector, steer-
ing matrix, source signal and noise. Γ = diag {1, ej∙Δβ2,1 ,
∙ ∙ ∙ , ej∙ΔβM,1} is the phase offset diagonal matrix. Δβm,1

= βm − β1 refers to the phase offset between “antenna
m” and the reference “antenna 1”. From Equation (7),
we have a(θ)HΓHUN = 0 at θ = θ1, ∙ ∙ ∙ , θP . We then
estimate the unknown hardware phase offset matrix Γ̂
by solving the equation ||a(θ)HΓHUN ||2l2 = 0 with the
angle θ and the noise eigenvector UN known. The di-
rect path angle θ

(k)
LoS of the kth tag can be easily mea-

sured when the locations of the tags and antennas are
known2. The estimation accuracy of Γ̂ can be further
improved with larger number of tags. Thus, a more
general equation can be given as:

K∑

k=1

∥
∥
∥a(θ(k)

LoS)HΓHU(k)
N

∥
∥
∥

2

l2
= 0, (10)

where K is the total number of tags. Note that the
dimensions of a(∙), Γ and UN are 1 × M , M × M and
M×(M−P ), respectively. By expanding Equation (10),
we acquire a number of K × (M −P ) sub-equations. In
practice, the number of dominant paths P for indoor
environments is no larger than five [51]. Thus, we have
more than K(M −5) equations. While K(M −5) grows
in a quadratic fashion, the number of unknown phase
offsets M − 1 grows linearly. This suggests that given
enough number of tags, there are enough (K(M − 5) ≥
M − 1) equations to determine the unknown Γ̂.

There are several approaches to solve a set of over-
determined equations such as inverting the equations
directly or applying the least squares method. How-
ever, these approaches are not efficient in solving our
problem due to a large amount of non-linear exponen-
tial terms in the equations. In this paper, we formulate
an optimization problem to find Γ̂ that minimizing:

Γ̂ = argmin
Γ

K∑

k=1

∥
∥
∥a(θ(k)

LOS)HΓHU(k)
N

∥
∥
∥

2

l2
. (11)

The above optimization problem can be solved effec-
tively applying a hybrid method of genetic algorithm
(GA) [29] and gradient descent (GD) [9]. Specifically,
in each iteration, GA starts initiating all the unknowns

1To make sure the LoS path dominates, we place the
receiver close to the transmitter with clear LoS path.
2The tags’ locations are only required for phase calibra-
tion. We do not need the tags’ locations in localization.
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Figure 5: Illustration of obtaining the desired signal at
one particular direction with alignment and summation.

and then refines the solution with the GD algorithm to
find the closest local minimum.

4.2 Power MUSIC
We introduce a power MUSIC (P-MUSIC) algorithm

to address the issue of missing power information in tra-
ditional MUSIC algorithm. The key observations are:

• The mixed signal received at one antenna is differ-
ent from that received at another antenna due to
the propagation path difference of signals.

• For a signal at one direction, the phase difference
at any two adjacent antennas is the same and can
be easily calculated.

• Different phase weights can be applied to the mea-
sured signals at different antennas so the signals at
a designed direction add constructively, whereas
the signals along other directions randomly add.
This alignment boosts the power at the desired
direction and averages out the signals at other di-
rections to a small value, so the signal power at
the designed direction can be obtained.

Fig. 5 (a) shows a toy example with two antennas
spaced at a distance of d. Two signals arrive at two
different angles α and β. We donate the two signals
as Si1 and Si2 when they reach “antenna i”. The two
signals are mixed together at each antenna. To obtain
the signal power at angle α, we apply two carefully cho-
sen weights [1, ej 2π

λ d cos(α)] to the measured signals and
then sum them up. S11 and S′

21 then add up construc-
tively, while the other signals add up destructively, as
shown in Fig. 5 (d). With the alignment and summa-
tion, we successfully reduce the power in other angles
and obtain the power at angle α. Note that with just
two antennas, the other signals may still have a chance
of adding up constructively. However, with more an-
tennas, other signals add up with random phase shifts,
which will average out to a small value.

Without loss of generality, assume we want to iden-
tify the signal power s1 along direction θ1. The mea-
sured signal at “antenna m” is xm. Then the sum of the

weighted versions of xm at direction θ1 is given as:

M∑

m=1
xm ∙ ej∙ω(m,θ1)

=

(

s1 +
P∑

p=2
sp

)

+

(

s1 +
P∑

p=2
sp ∙ e−j∙[ω(2,θp)−ω(2,θ1)]

)

+ ∙ ∙ ∙ +

(

s1 +
P∑

p=2
sp ∙ e−j∙[ω(M,θp)−ω(M,θ1)]

)

= M ∙ s1 +
P∑

p=2

[

sp

(
M∑

m=1
e−j

2π(m−1)d
λ [cos(θp)−cos(θ1)]

)]

(12)
As shown in the above equation, the signal s1 adds con-
structively and the amplitude gets increased roughly M
times while other signals average out when adding up
with random phase shifts of 2π(m−1)d

λ cos(θp). For any
interested signal sp, with the alignment and summation,
the power of the designed signal along direction θp will
be much higher than the power along other directions
with a relatively large M . The signal power along the
direction θp with the received signals at the M antennas
is then given as:

PB(θp) = ‖sp‖
2 ≈

∥
∥
∥
∑M

m=1 xm ∙ ej∙ω(m,θp)
∥
∥
∥

2

M2
. (13)

We then integrate this power information into the tra-
ditional MUSIC to acquire both AoA and power esti-
mations. Intuitively, we can simply dot-multiply the
power estimation PB(θp) and the MUSIC AoA spec-
trum B(θp). However, the MUSIC peak amplitude is
a probability value, which distorts the estimated signal
power. We solve this problem by designing a normal-
ization function Nor(B(θp)) to normalize all the peak
amplitudes to“1”. We thus remove the peak amplitudes
from MUSIC and only keep the angle information of the
peaks. Our P-MUSIC function is then given as below:

Ω(θp) = PB(θp) ∙ Nor(B(θp))

= ‖
∑M

m=1 xm∙ej∙ω(m,θp)‖2

M2∙Nor(aH(θp)UNUH
Na(θp))

,
(14)

where M is the number of antennas, a(θp) and UN are
the steering vector and the noise subspace eigenvector
defined in Section 2.2.

Note that P-MUSIC does not need to know the value
of θp. By searching θp from 0 to π like the traditional
MUSIC, P-MUSIC is able to estimate the signal power
along each direction of the signal path. The coherence
between signals affects the performance of P-MUSIC
and we adopt the spatial smoothing method [36] to re-
move the coherence among received signals.

4.3 Target Localization
D-Watch combines the identified target angles from

several readers to determine the target’s location. Sup-
pose ξ readers identify a set of AoA spectra changes
ΔΩ1(θ), ∙ ∙ ∙ , ΔΩξ(θ). To localize a target, we compute
the likelihood function L(O) of the target be located
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(a) Laboratory environment. (b) Library environment. (c) Hall environment.
Figure 6: Three typical indoor environments corresponding to medium, high and low multipath environment.

(a) Laboratory deployment layout. (b) Library deployment layout. (c) Hall deployment layout.
Figure 7: Deployment layouts with the positions of arrays, tags and test locations marked.

at a position O, and take the location estimate with a
maximum likelihood as the target location. To compute
the likelihood, the basic idea is that a larger AoA peak
change indicates a higher probability that the target is
at this angle. The likelihood L(O) is given as:

L(O) =
ξ∏

i=1

ΔΩi(θ). (15)

We then divide the monitoring area into grids3 and
search for the grid with the highest L(O). The hill
climbing scheme is employed to quickly find the most
likely target location estimate.

Note that we may retrieve wrong angle information
if the target blocks a reflection path before the signal
reaches the reflector. In Fig. 1(b), Path 3 is blocked
but the angle information detected is not correct. In
reality, this wrong angle information can be identified if
there is only one target. Because a target cannot block
two paths at the same reader at the same time. When-
ever we detect multiple blocked paths at one reader, we
know only one of the detected angles is pointing to the
true location of the target. We further discover that
the locations estimated from the wrong angles are dis-
tributed at random positions and even far outside of the
monitoring area. On the other hand, the correct angles
will localize the target to close-by positions. We can
then apply outlier rejection to identify the wrong angle.

4.4 Putting Things Together
Now we put all the pieces together and sketch the

workflow of D-Watch.

3Smaller grid size leads to more accurate results but
takes more time to search. We balance this tradeoff
and set the grid size as 5 cm×5 cm for the three indoor
environments and 2 cm×2 cm for the smaller table area.

Step 1: Data collection. D-Watch collects a set
of baseline AoA data between the tags and the reader
when no target is present. Note that this process is
very different from the traditional fingerprint database
collection which takes hours. This process for D-Watch
is just several transmissions between the readers and
tags which can be well completed within seconds. D-
Watch then acquires another set of measurements when
the target moves into the monitoring area.

Step 2: Data pre-processing. D-Watch first em-
ploys the proposed wireless phase calibration method
to remove the phase offsets that exist in the collected
data. Note that the calibration process is a one-time
effort for one power on-off cycle so D-Watch does not
need to carry out phase calibration frequently.

Step 3: Target angle estimation. With proposed
P-MUSIC algorithm, D-Watch generates two sets of
AoA spectra based on the online data and the base-
line data. By comparing the amplitude changes of the
AoA peaks, D-Watch can accurately identify the tar-
get’s angle information at each reader.

Step 4: Target localization. By combining the
identified angle information from multiple readers, D-
Watch is able to obtain the target’s location estimate
with triangulation scheme.

5. IMPLEMENTATION
Experimental environments: we conduct experi-

ments in three typical indoor environments: a library, a
laboratory and an empty hall corresponding to high,
medium and low multipath environment. The labo-
ratory with a size of 9 m×12 m has many small ob-
jects such as test chambers, displays, etc., as shown
in Fig. 6(a). Part of the library area with a size of
7 m×10 m has many book shelves full of books, as
shown in Fig. 6(b). The shelf has a height of 2.5 m
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Figure 8: RFID hardware and antennas employed.

and is made of metal and wood, resulting in rich multi-
paths and strong NLoS. Part of the empty hall with a
size of 7.2 m×10.4 m is shown in Fig. 6(c).

Human target and object target: We ask the
students to act as the human target in the experiments.
To demonstrate the high accuracy of D-Watch in a small
scale deployment, we employ three glass bottles full of
water as our object targets. The bottle has a bottom
diameter of 7.8 cm and a height of 22 cm.

Implementation: (i) Readers and tags. We employ
four Impinj Speedway R420 readers [5] for our experi-
ments without any hardware or firmware modification.
Each reader has four RF ports and is equipped with
one Impinj GPIO Adapter [5]. An Impinj antenna hub
is connected to one of the reader’s four RF ports as
shown in Fig. 8. Usually, we need 8 antennas for high
accuracy AoA estimation [51]. However, the Impinj
Speedway R420 reader only has four antenna ports, thus
we use the antenna hub provided by Impinj to support
more antennas. The readers are compatible with EPC
Gen2 standard [4] and the antennas work in a time divi-
sion multiplexing mode. The time slot for each antenna
is about 200 us [5]. The reader operates in frequency
range of 920.5–924.5 MHz, which is the legal UHF band
in China. We use 21 cheap Alien ALN-9634 tags [32] as
shown in Fig. 8, which cost 1.5 USD in total.

(ii) Antenna and array. We employ two different
types of antennas for our experiments as shown in Fig. 8.
The small one is ANS-900 omni-directional antenna [3]
and the large one is Q900F-900 omni-directional an-
tenna [6]. Since RFID devices communicate by backscat-
tering the signal which is usually weak, the small an-
tenna [3] provides a relatively small communication range
of 3 m. The large antenna provides a communication
range of 12 m. Each linear array is consisted of 8 anten-
nas with a half wavelength space of 16.25 cm between
adjacent antennas. The antennas and the RF front ends
have been calibrated using the wireless phase calibra-
tion method introduced in Section 4.1.

(iii) Server and algorithm implementation : The pro-
posed schemes and algorithms are implemented in C#
and Matlab. The server is a desktop with 3.6 GHz CPU
(Intel i7-4790) and 8 GB memory. The server commu-
nicates with the RFID readers using low level reader
protocol (LLRP) [15]. All the tags’ backscatter pack-
ets received at the readers are forwarded to the server
through Ethernet cables. The size of a RFID backscat-

ter packet is small since the packet only contains the
tag’s ID which is 12 bytes at most [5]. The reader does
not need to emit signals all the time and a 0.1 s trans-
mission interval is good enough for our localization and
does not increase the transmission overheads.

Default deployment setup: The deployment lay-
outs of the three environments are shown in Fig. 7. In
each environment, we deploy four4 readers and 21 tags.
The locations of the readers are known while the tags
are randomly placed without a need to know their lo-
cations. We choose 63, 66 and 75 test locations in the
laboratory, library and hall, respectively. The test lo-
cations are uniformly distributed with a 0.5 m distance
in between. The objects attached with tags are usually
placed on the table or held in the hand so their heights
are between 1 to 1.5 m above the ground. We place the
antenna array at a height of 1.25 m. When we evalu-
ate the impact of number of tags and tag-array height
difference, we employ more tags and change the default
setup. Unless specifically mentioned, we use the default
setup for performance evaluation.

Experimental methodology: When a target moves
into the monitoring area, the readers receive 10 backscat-
ter packets from each tag and forward them to the
server. At the server side, D-Watch identifies the angle
information of the target at each reader and combines
the information from several readers to obtain the tar-
get’s location estimate. We repeat the experiments 40
times at each test location.

6. PERFORMANCE EVALUATION

6.1 Microbenchmark
We start with two benchmark experiments to vali-

date the effectiveness of the proposed wireless calibra-
tion method and P-MUSIC algorithm.

6.1.1 Verification of phase calibration method
We measure the random phase offsets caused by the

reader’s radio front ends and compare our method with
the state-of-the-art wireless calibration method proposed
in Phaser [17]. We take the phase offsets obtained
from the wired calibration method proposed in Array-
Track [51] as the ground truth. In the laboratory envi-
ronment, tags are randomly attached to objects located
1–8 m away from the array. We vary the number of
tags to estimate the phase offset matrix Γ̂. The phase
offset estimation errors are shown in Fig. 9. The pro-
posed method is able to achieve phase error less than
0.05 radians when more than four tags are employed. It
suggests that the proposed method achieves a high cal-
ibration accuracy even with a relatively small number
of tags. Note that a phase calibration error of 0.05 ra-
dians will cause an even smaller AoA error since there

4Note that the number of readers can be reduced to
one if we employ coaxial cables to connect four antenna
arrays to one reader.
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Figure 9: The proposed phase calibra-
tion method is much more accurate.
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Figure 10: LoS AoA estimation with
proposed calibration method.

Figure 11: Deployment layout for
Power MUSIC verification.
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Figure 12: AoA spectrum changes estimated by P-
MUSIC when one or more paths are blocked.
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Figure 13: Target detection rate comparison between
MUSIC and P-MUSIC.

are multiple antennas and the calibration errors have
positive and negative values which may cancel out each
other. We then compare the direct path AoA estima-
tion errors when employing different calibration meth-
ods. The results in Fig. 10 show that our calibration
method achieves a high AoA estimation accuracy, i.e.,
a median error of 2◦, outperforming the Phaser system.

6.1.2 Verification of power MUSIC
To minimize the influence of multipath, we conduct

this experiment in the empty hall environment. We
place two laptops with metal shells as reflectors to ob-
tain two controlled reflection signals. The deployment
layout is shown in Fig. 11. Three human targets walk
around to block the direct path and reflection paths.
We increase the distance dTA between the tag and the
array from 2 m to 9 m, while keep the distances (i.e.,
dR1A=2 m and dR2A=2.6 m) from the two reflectors to
the array unchanged. For the same distance, we also
change the locations of the tag and the reflectors to
have multiple measurements. To detect the presence of
targets, we compare the changes of AoA peaks when
there is no target and when targets are present.

Fig. 12 illustrates the changes of AoA spectra when
we apply P-MUSIC. Compared with traditional MU-
SIC shown in Fig. 4, the changes of the AoA peaks
estimated by P-MUSIC match our expectations, i.e.,
the blocked path peak experiences a clear drop and
the unblocked peaks remain unchanged. The detection
rate of P-MUSIC is close to 100% as shown in Fig. 13.
On the other hand, the detection performance of tradi-
tional MUSIC is poor even when the signal strength is

strong. Traditional MUSIC fails when multiple targets
are present and block more than one paths at the same
time. The proposed P-MUSIC is able to capture the
power changes of each path much more accurately than
the traditional MUSIC.

6.2 Overall Localization Performance
In reality, human target is too big to be treated as a

point. As the human targets have a width of 32 cm to
40 cm, we consider there is no localization error as long
as the estimation is within the 36 cm range. Other-
wise, we calculate the error as the minimum difference
between the estimated location and this 36 cm range.

We show the localization performance for the human
target in three different environments in Fig. 14. The
results in Fig. 14 (a) show that D-Watch achieves the
best performance in the library environment with a me-
dian and 90% error as small as 16.5 cm and 28.9 cm,
respectively. D-Watch’s median accuracy slightly de-
creases in laboratory and hall environments to 25.3 cm
and 32.1 cm. The mean errors are shown in Fig. 14 (b).
The results are interesting as indoor localization sys-
tems usually achieve worse performance in richer mul-
tipath environments. In contrast, D-Watch performs
even better, implying that “bad” multipaths are effi-
ciently utilized to improve the localization performance.

6.3 Impact of Number of Antennas
We show the performance of D-Watch with varying

number of antennas at the reader. In general, with more
antennas at each reader, D-Watch is able to achieve a
finer resolution in AoA estimation and capture more
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Figure 14: Localization performance in different environments.
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varying number of antennas.
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Figure 16: Localization errors with
varying number of reflectors.
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varying tag-array height differences.

paths, which accordingly increases the localization accu-
racy as shown in Figure 15. In the library environment,
the mean localization error is 54.3 cm for four antennas,
35.6 cm for six antennas and 17.6 cm for eight antennas.

6.4 Impact of Number of Multipaths
Besides the direct path, D-Watch utilizes the multi-

paths to localize a target. With more multipaths, D-
Watch achieves a higher coverage rate5 and improves
the localization accuracy. To demonstrate this, we place
up to 12 reflectors such as laptops and metal reflectors
to create more multipaths in the hall environment. Fig.
16 shows that the coverage rate gets increased signifi-
cantly since more propagation paths exist in the mon-
itoring area. It also shows a mean error decrease from
31.2 cm to 20.8 cm as more paths are now restricting
the target’s location estimate.

6.5 Impact of Number of Tags
With more tags, more signals will be reflected creat-

ing more paths to cover the monitoring area and con-
straint the target’s location. In the library environment,
we vary the number of tags from 7 to 47 with a step size
of 5. The experimental results match our expectations
as shown in Fig. 17. So both the number of tags and
reflectors can actually increase the multipaths in the en-
vironment. Thus, in an indoor environment with more
reflectors, the density of the tags can then be reduced.

Note that, more tags are helpful for improving the lo-
calization accuracy. However, the localization accuracy
of D-Watch is mainly related to the AoA estimation ac-

5Coverage rate is defined as the number of locations can
be localized divided by total number of test locations.

curacy so the number of antennas at the reader side is
the main factor deciding the localization accuracy.

6.6 Impact of Tag-Array Height Difference
In reality, tags attached on books or laptops are placed

on the table or held in the hand with a height of 1–1.5 m
above the ground. If the tags and the arrays are not at
the same height, we would like to study whether such
a height difference will cause significant localization er-
rors. Fig. 18 shows that D-Watch can still achieve a
mean localization error of 40 cm even when the height
difference is as large as 120 cm. When the height dif-
ference is 40 cm, the mean error is 24 cm which is only
slightly higher.

6.7 Multi-Target Localization
The high spatial resolution of D-Watch’s AoA spec-

trum enables a fine-grained multi-target localization.
The intuition is that a target is not able to block all
the paths simultaneously. When multiple targets are
located sparsely, each target will block a disjoint sub-
set of paths and thus can be separated and individually
located. However, when many targets exist or two tar-
gets are too close to each other, it’s still challenging to
accurately localize each of them.

We study the performance of D-Watch for multi-target
localization. To evaluate the granularity of multi-target
localization, we employ three glass bottles placed on a
2 m×2 m table as shown in Fig. 20. The bottles are
filled with water. We place two small-antenna arrays at
the midpoint of the bottom and right of the table. 26
tags are placed at the other two sides. Fig. 19 (a)∼(c)
shows three snapshot localization results when the three
targets are separated roughly by 130 cm, 50 cm and
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(a) Targets are 130cm apart. (b) Targets are 50cm apart. (c) Targets are 20cm apart.
Figure 19: Performance of multi-target localization. (a)-(c) show the heatmaps of three snapshot localization results.

Figure 20: A 2 m × 2 m table area
with three glass bottle targets.

Figure 21: Passively track the fist’s
writing in the air.

Figure 22: Fist tracking accuracy of
D-Watch.

20 cm respectively. For each snapshot, we collect 30
data samples and the localization results are mapped
into the heatmap, where the red dot represents the lo-
cation estimate and the black cross indicates the ground
truth. D-Watch localizes the three targets accurately
with a maximum error of 17.2 cm when they are lo-
cated sparsely, such as 130 cm and 50 cm apart. When
the three targets are close to each other within 20 cm,
the three targets have a tendency to merge into one on
the heatmap and D-Watch can not localize each individ-
ual of them accurately. We believe with more number
of antennas such as 16 and 64, finer AoA resolution can
be achieved and we can further increase the accuracy
and separability for multi-target localization.

6.8 Application Example: Tracking Fist in
the Air for Virtual Screen Touch

One popular application in the research community
recently is drawing in the air [39] or tracking the hu-
man’s fine-grained gestures [12]. We briefly investigate
the capability of D-Watch on these applications. We let
a human user write the characters “P” and “O” along a
pre-marked trajectory using his fist in the 2 m×2 m ta-
ble area as shown in Fig. 21. The user moves his hand
at a natural writing speed, i.e., about 0.5 m/s. Fig. 21
shows that the trajectory of the user’s fist measured by
D-Watch matches the ground truth quite well. To un-
derstand the tracking accuracy of D-Watch, we mark
a set of continuous test points on the table. Fig. 22

shows that the median tracking error can be as small
as 5.8 cm and 9.7 cm when 26 tags and 13 tags are
employed respectively.

7. RELATED WORK
Device-free Localization. Early device-free local-

ization works rely on visible light camera [28, 30] and
infrared sensor [21, 19]. Camera-based methods heav-
ily reply on lighting conditions and have severe privacy
issue. Infrared-based methods have difficulties to pene-
trate the walls. On the other hand, low frequency RF
waves can penetrate walls easily [7, 8, 55, 16] and RF in-
frastructures are widely available. Thus, there are grow-
ing interests in exploring RF signals for device-free lo-
calization. Among RF-based methods, most device-free
localization systems are RSSI/CSI fingerprint-based [41,
42, 10, 11, 49, 43]. They translate the localization
problem to a fingerprint matching problem while each
location is associated with a unique RSSI or CSI fin-
gerprint [49]. The feasibility has been demonstrated
for different technologies including RFID [55, 18], Wi-
Fi [33, 49] and ZigBee [57, 10]. However, fingerprint-
based methods need a large amount of human efforts to
acquire and update the fingerprint database. Changes
in the environment, such as the movements of furniture,
will change the fingerprints [51], causing mismatches
between the database and the new measurements. D-
Watch on the other hand, does not need any labor-
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intensive training efforts, and only requires several base-
line AoA measurements which can be carried out auto-
matically without human interventions within seconds.

Recently, a lot of RSSI model-based device-free lo-
calization systems were proposed in order to reduce or
even avoid the offline training efforts, such as RFID-
based Tadar [55] and Twins [18] systems, Wi-Fi-based
LiFS [44] and ACE [33] systems, ZigBee-based RTI [48]
and RASS [57] systems, etc. The basic idea of these ap-
proaches is to model the wireless propagation channels
mathematically and then estimate the target location
from the distorted wireless signal. However, due to the
complicated multipath situation in indoor environment,
mathematical models do not fit well and the location
accuracy is hence coarse. Also as the models focus on
the LoS path, a dense transceiver deployment is usu-
ally needed to cover the area. Moreover, they require
the prior knowledge of the locations of the transceivers,
which are sometimes impractical. In contrast, D-Watch
utilizes both the LoS path and the reflection paths for
localization purpose, which significantly increases the
coverage area and accuracy. The deployment density
can thus be reduced, making it a promising candidate
for large scale deployment. Further, D-Watch does not
need to know the locations of the signal sources (such
as the RFID tags or mobile devices) so the proposed
system has a high flexibility for real life deployment.

Researchers also proposed some fine-grained device-
free localization systems, such as Wi-Vi [8], Witrack [7],
mtrack [47], etc. These systems though being able to
achieve a high accuracy, require either dedicated sig-
nal (frequency modulated carrier wave, FMCW), spe-
cialized hardware (USRPs, WARP) or a very large band-
width (60 GHz). Unlike these approaches, D-Watch is
built on top of low cost COTS RFID devices and effi-
ciently utilizes the “detrimental” multipaths to improve
the coverage rate and localization accuracy.

Phase Calibration. Besides the wired phase cal-
ibration method introduced in ArrayTrack [51], some
wireless phase calibration methods have also been pro-
posed in Argos [37] and Phaser [17]. The method pro-
posed in Argos can not be applied directly to our case
as the RFID reader does not support transmission from
one antenna on the reader to the other antennas. Also
Argos requires all the transceivers to cooperate with
each other for calibration, which interrupts the ongo-
ing data transmissions. To overcome this limitation,
Phaser is proposed and can carry out auto-calibration
without interrupting the ongoing transmission. How-
ever, the calibration accuracy of Phaser is coarse. Our
proposed calibration method not only achieves a much
higher accuracy but also does not interrupt the ongoing
data communication.

8. DISCUSSION
Deadzone problem: When a target does not block

any path, it is in a “deadone” where the target can not

be detected. In this case, D-Watch can utilize the mo-
bility of a target to mitigate this problem. A human tar-
get moves continuously in space and the target can still
be localized before and after entering into the “dead-
zone”. These location information can then be utilized
to estimate the target’s current location when target is
in the “deadzone”. Moreover, there are rich multipaths
in a typical indoor environment and the tags are very
cheap so we can increase the number of tags to reduce
the amount of deadzones. Thus, the probability of this
extreme case is quite low in reality.

Mobility: Since the human target moves continu-
ously, we can track the target by snapshots. In the
indoor environment, the walking speed of a human is
around 1–2 m/s. Note that the transmission interval of
D-Watch is 0.1 s so the target moves only 10–20 cm in
this short period which does not affect D-Watch’s per-
formance much. Also Doppler shift can be applied to
estimate the target’s walking speed to further improve
the location accuracy.

Latency of D-Watch: The system latency includes
the time to collect packets and the time to calculate
the target location. We run our localization algorithm
many times and the average processing time is 57 ms.
2–3 packets are employed for localization in D-Watch.
The time taken to collect data packets depends on how
frequently the packets are sent out. If the packet is sent
out every 100 ms, the end-to-end system latency of our
system is still well below 0.5 s.

9. CONCLUSION
D-Watch is the first device-free localization system

that utilizes both the direct path and multipaths to
provide decimeter-level localization accuracy without
offline training. We propose a wireless phase calibra-
tion scheme to remove the random phase offsets at the
radio front ends and a novel power MUSIC algorithm
to accurately detect the angle information of the tar-
get. Comprehensive real-world experiments in differ-
ent environments demonstrate the effectiveness of D-
Watch. D-Watch can further localize multiple targets
accurately which is a well known challenging problem
in passive tracking. D-Watch outperforms the state-of-
the-art systems and can be extended to work with other
RF technologies and support other applications.

Acknowledgment
This work is supported by National Natural Science
Foundation of China (61272461, 61572219, 61502192,
61572402, 61672428), Fundamental Research Funds for
the Central Universities under Grant 2016JCTD118,
and the Google fund to Jie Xiong at Singapore Manage-
ment University. We also would like to thank the shep-
herd Swarun Kumar as well as the anonymous reviewers
for their valuable feedback on this paper. Hongbo Jiang
and Dingyi Fang are the corresponding authors.

264



10. REFERENCES
[1] Alien tags. www.alientechnology.com/tags/.
[2] Amazon, Inc. https://www.amazon.com/.
[3] Ans-900 rfid antenna.

rf-links.com/newsite/pdf/ans-900.pdf.
[4] Epc gen2, epcglobal. www.gs1.org/epcglobal.
[5] Impinj, Inc. www.impinj.com/products/readers/

speedway-revolution/.
[6] Q900f-900 rfid antenna.

www.hrtantenna.com/en/products.
[7] F. Adib, Z. Kabelac, and D. Katabi. Multi-person

localization via rf body reflections. In Proc.
Usenix NSDI, pages 279–292, 2015.

[8] F. Adib and D. Katabi. See through walls with
wifi! In Proc. ACM SIGCOMM, volume 43, pages
75–86, 2013.

[9] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty.
Nonlinear programming: theory and algorithms.
John Wiley & Sons.

[10] L. Chang, X. Chen, D. Fang, J. Wang, T. Xing,
C. Liu, and Z. Tang. Fale: Fine-grained device
free localization that can adaptively work in
different areas with little effort. Acm Sigcomm
Computer Communication Review, 45(5):601–602,
2015.

[11] L. Chang, X. Chen, Y. Wang, D. Fang, J. Wang,
T. Xing, and Z. Tang. Fitloc: Fine-grained and
low-cost device-free localization for multiple
targets over various areas. In Proc. IEEE
INFOCOM, pages 151–159, 2016.

[12] B. Chen, V. Yenamandra, and K. Srinivasan.
Tracking keystrokes using wireless signals. In
Proc. ACM Mobisys, pages 31–44, 2015.

[13] B. Chen, Z. Zhou, and H. Yu. Understanding rfid
counting protocols. IEEE/ACM Trans. on
Networking, 24(1):312–327, 2016.

[14] R. Diamant, H. P. Tan, and L. Lampe. Los and
nlos classification for underwater acoustic
localization. IEEE Trans. on Mobile Computing,
13(2):311–323, 2014.

[15] A. EPCglobal Inc. Low level reader protocol,
version 1.0. 1. 2007.

[16] M. Flores, U. Klarman, and A. Kuzmanovic.
Wi-fm: Resolving neighborhood wireless network
affairs by listening to music. In Proc. IEEE ICNP.

[17] J. Gjengset, J. Xiong, G. McPhillips, and
K. Jamieson. Phaser: enabling phased array
signal processing on commodity wifi access points.
In Proc. ACM MobiCom, pages 153–164, 2014.

[18] J. Han, C. Qian, X. Wang, D. Ma, J. Zhao,
P. Zhang, W. Xi, and Z. Jiang. Twins:
Device-free object tracking using passive tags. In
Proc. IEEE INFOCOM, pages 469–476, 2014.

[19] D. Hauschildt and N. Kirchhof. Advances in
thermal infrared localization: Challenges and
solutions. In International Conference on Indoor

Positioning and Indoor Navigation (IPIN), pages
1–8, 2010.

[20] P. Jain, J. Manweiler, and R. Roy Choudhury.
Overlay: Practical mobile augmented reality. In
Proc. ACM Mobisys, pages 331–344, 2015.

[21] J. Kemper and D. Hauschildt. Passive infrared
localization with a probability hypothesis density
filter. In Proc. IEEE workshop on Positioning
Navigation and Communication (WPNC), pages
68–76, 2010.

[22] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti.
Spotfi: Decimeter level localization using wifi. In
Proc. ACM SIGCOMM, pages 269–282, 2015.

[23] S. Kumar, S. Gil, D. Katabi, and D. Rus.
Accurate indoor localization with zero start-up
cost. In Proc. ACM MobiCom, pages 483–494,
2014.

[24] T.-W. Kuo, K.-C. Lee, K. C.-J. Lin, and M.-J.
Tsai. Leader-contention-based user matching for
802.11 multiuser mimo networks. IEEE Trans. on
Wireless Communications, 13(8):4389–4400, 2014.

[25] L. Li, P. Hu, C. Peng, G. Shen, and F. Zhao.
Epsilon: A visible light based positioning system.
In Proc. Usenix NSDI, pages 331–343, 2014.

[26] T. Li, C. An, Z. Tian, A. T. Campbell, and
X. Zhou. Human sensing using visible light
communication. In Proc. ACM MobiCom, pages
331–344, 2015.

[27] X. Li, S. Li, D. Zhang, J. Xiong, Y. Wang, and
H. Mei. Dynamic-music: accurate device-free
indoor localization. In Proc. ACM UbiComp,
pages 196–207, 2016.

[28] H. Ma, C. Zeng, and C. X. Ling. A reliable people
counting system via multiple cameras. ACM
Trans. on Intelligent Systems and Technology,
3(2):67–83, 2012.

[29] T. Mcconaghy, E. Vladislavleva, and R. Riolo.
Genetic programming theory and practice 2010:
An introduction. Gecco Companion Publication
Proceedings of Annual Genetic & Evolutionary
Computation Conference, 78(1):3015–3056, 2010.

[30] R. Mohedano, A. Cavallaro, and N. Garćl la.
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