
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2016 

A Feasible No-Root Approach on Android A Feasible No-Root Approach on Android 

Yao CHENG 
Singapore Management University, ycheng@smu.edu.sg 

Yingjiu LI 
Singapore Management University, yjli@smu.edu.sg 

Robert H. DENG 
Singapore Management University, robertdeng@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Information Security Commons, and the Systems Architecture Commons 

Citation Citation 
CHENG, Yao; Yingjiu LI; and DENG, Robert H.. A Feasible No-Root Approach on Android. (2016). 
Information Security and Privacy: Proceedings of the 21st Australasian Conference on Information 
Security and Privacy (ACISP): Melbourne, Australia, July 4-6, 2016. 9723, 481-489. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3383 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


A Feasible No-Root Approach on Android

Yao Cheng, Yingjiu Li, and Robert H. Deng

School of Information Systems, Singapore Management University
{ycheng, yjli, robertdeng}@smu.edu.sg

Abstract. Root is the administrative privilege on Android, which is
however inaccessible on stock Android devices. Due to the desire for
privileged functionalities and the reluctance of rooting their devices,
Android users seek for no-root approaches, which provide users with
part of root privileges without rooting their devices. In this paper, we
newly discover a feasible no-root approach based on the ADB loopback.
To ensure such no-root approach is not misused proactively, we examine
its dark side, including privacy leakage via logs and user input inference.
Evaluations on the top-ranked real-world applications show that many
of them are indeed vulnerable to these exploits. Finally, we discuss the
solutions and suggestions from different perspectives.

Keywords: No-root approach, Android Debug Bridge (ADB), privacy
leakage, exploit analysis.

1 Introduction

Android is a Linux based system with discretionary access control enforcement.
Root access, which is part of traditional Linux systems, is blocked on stock
Android devices for security reasons. If users would like to gain complete control
over their Android devices with administrative permissions, they could root their
devices at their own risks, such as device bricking and warranty turning void.

To avoid the risks of rooting their Android devices, users turn to no-root
approaches which enable them to attain their desired permissions but without
rooting their devices. The motivation of using no-root approaches might be
strong since Android do not always provide all easy-to-use but desperately
needed features. Some popular no-root applications [1,2], even paid ones [3],
have achieved millions of downloads and high reputations in Google Play.

The existing no-root applications (“apps”) primarily use Android Debug
Bridge (ADB) [4] to launch a separate privileged executable program as
background service on the target device. The background service is designed to
respond to the user’s requests made from the no-root apps and perform certain
privileged tasks which the no-root apps are not authorized to perform.

In this paper, we newly discover a feasible no-root approach leveraging the
new ADB functionality provided on Android versions 4.x and 5.x which take
up to 95.7% in the distribution of Android devices according to the official
statistics [5]. To our best knowledge, we are the first to discover such no-root



approach. This no-root approach has its advantage compared to the other no-
root approaches in that it creates an ADB loopback instead of introducing a
separate native service. After the ADB loopback is created, a no-root app on
the target device can run as a debugger to execute ADB commands in the TCP
mode to accomplish the privileged operations.

Though, we have not found any wild samples using this no-root approach
yet, they may appear in the market at any time in any form, e.g., malicious
apps pretending to be no-root apps. To ensure that such no-root approach is
not misused in a proactive instead of reactive manner, we examine the dark side
of this approach and reveal that the attacks leveraging this no-root approach
can be launched from an app on a standalone victim device instead of on a
development computer connected to the victim device. We reported the issue to
Android. The latest Android 6.0 takes action to remove ADB client and ADB
server on the latest Android 6.0 to avoid the attacks.

2 A Feasible No-Root Approach

2.1 ADB

ADB [4] is a debug system for Android that allows developers to connect
development computers and Android devices/emulators. Developers can debug
Android devices on separate development computers via ADB. ADB includes
three components as shown in Fig.1 (the components not in red), i.e., ADB
client, ADB server1, and ADB daemon. A developer issues an ADB command via
an ADB client on a development computer. An ADB server on the development
computer, passes the command from ADB client to an ADB daemon which runs
on a target Android device. The response to the command is passed back to
the developer along the same route. Before debugging, there is a switch to be
enabled in the Settings→Developer options. Since Android 4.2.2, at the first time
a development commuter connects the target Android device, a confirmation
dialog showing the MD5 hash of an RSA public key of the development computer
is prompted to obtain the explicit confirmation from the device owner.

Fig. 1. ADB architecture.

After the connection established, two categories of commands can be issued
from the developer computer to the connected Android device, i.e., ADB
commands and shell commands. ADB commands fulfil the functionalities for

1 In practice, ADB server is implemented in the same binary as ADB client.



debugging purpose, such as device connection, app (un)installing, data transfer,
and shell starting. Shell commands can be used after the shell starting, when a
shell user, whose UID is 2000 on Android, is born with shell permissions. The
majority of shell permissions [6] have protection levels equal to or higher than
“dangerous.” Note that any permissions higher than “dangerous” level are either
hidden or not for use by third-party apps.

2.2 Existing No-Root Approach

The existing no-root apps adopt ADB to launch a separate service in their
preprocessing, and delegate the privileged tasks to this service during runtime.
The preprocessing usually includes two manual operations. The first is to connect
a mobile device to a development computer and switch on the debug mode. The
second is to run a provisioned enabler on the development computer which has
been downloaded separately from a no-root app’s website. To understand the
purpose of using an enabler, we introduce a typical enabler script as shown in
Listing 1. In Listing 1, “svc” denotes the native service that performs a target
task which requires certain high-level permissions. The executable service is
pushed to the device (Line 1) and started by ADB shell (Line 3) so that it inherits
the shell permissions for exercising some privileged functionalities. After that,
the no-root app which directly interacts with users, is able to work by delegating
some of its tasks to the running service through sockets. The service needs to be
restarted once the Android device is rebooted, i.e., to run the enabler again.

2.3 A Feasible No-Root Approach Based on ADB Loopback

Different from the existing approach, whose privilege resides in a separate service,
we newly discover a feasible no-root approach based on ADB loopback and
requiring no separate service.

An Android device of versions from 4.x to 5.x can debug another Android
device, because these new versions have introduced the ADB components, which
are originally on development computers, to Android systems, i.e., ADB client
and ADB server, shown as the dashed components in Fig.1. In addition, the
connection mode is not limited to USB cable. A new TCP mode allows a
development computer using TCP links to connect to the target Android device.
However, an inconspicuous side consequence is that an Android device gains the
capability of debugging itself by connecting its ADB server to its local ADB
daemon (the TCP loopback in Fig.1). Based on such ADB loopback, we discover
a new feasible no-root approach.

Listing 1. The existing no-root script.

1 adb push ./svc /data/local/svc
2 adb shell chmod 777 /data/local/svc
3 adb shell /data/local/svc &

Listing 2. The core snippet of Looper.

1 adb tcpip 5555
2 adb shell adb kill -server
3 adb shell HOME=/ sdcard adb start -

↪→ server &

It takes a simple preprocessing to establish the ADB loopback. What a user
needs to do in this preprocessing is to run a script which we name as “Looper”



on a development computer connected to the target Android device. Listing 2
shows the core snippet of Looper. Looper turns on the TCP mode at port 5555
on the target Android device (Line 1). Then, it restarts the ADB server setting
“/sdcard” as HOME folder (Line 2 and Line 3). The purpose of changing HOME
folder is to guarantee that Looper could work as well on Android 4.2.2 and higher.
This is because since Android 4.2.2, ADB introduces the RSA authentication
which stores its key pair in the HOME folder. Looper changes the HOME folder
to a shell-user-accessible folder, so that the RSA key pair of the ADB server
can be stored successfully for later authentication. After confirming the dialogs
requiring the explicit confirmation from the device owner, the ADB loopback is
established, and its effect lasts till the Android device is rebooted.

After ADB loopback is established, a no-root app with the permission to
connect to local TCP ports can play the role of a debugger. The permissions of
ADB that are intended for remote development computers are now available on
stand-alone Android devices. As a result, by using ADB loopback, no-root apps
can perform privileged tasks as intended.

3 Exploits on the Dark Side

No-root has always been a double-edged sword2. It is important to explore its
dark side proactively. In this section, we demonstrate two typical exploits on
such no-root approach.

3.1 Adversary Model

The scenario of our investigation is that a user has a device which is not
rooted. (S)he has installed a no-root app that adopts the newly-discovered no-
root approach on his/her Android device for the purpose of enjoying privileged
functions without rooting the device. We investigate the potential threats causing
by a malicious app only with the internet permission which can be the no-root
app itself or other apps on the same device.

3.2 Privacy Leakage via Application Logs

Android provides a logging system for inspecting debugging outputs. The access
to log messages is regulated by callers’ UIDs. Normal users, i.e., third-party apps
without root privilege, can only access the logs related to themselves. However,
an app, leveraging the no-root approach we discover, can get system-wide logs
using “logcat” which is the official tool for dumping log messages.

If there is no sensitive information being logged, there should be no
information leakage via logs. Android documents have suggested that logs should
be managed, e.g., removed in release versions, according to their types [8]. Even

2 The existing no-root approach could lead to privacy leakage due to the insecure
socket communication between the no-root app and its native service [7].



though, it happened that some informative data is logged [9]. We are interested
in whether developers manage sensitive logs properly nowadays, since private
log may become readable to other apps in this scenario.

The sensitive information on mobile devices is classified into four categories.
The device parameters reflect the characteristics of devices, including Android
version, device model, manufacturer, root status, and phone service information
(phone number, IMEI, and IMSI). The app account information is on the
application level, which includes account ID, account credential, and personal
profile. The user interaction indications indicate the operations a user performs,
such as opening an activity and inputting a password. Finally, geographic data,
network information, and others are classified into the last category.

The top-ranked 10 account-sensitive free apps from Google Play and Anzhi
Market are examined, respectively. The observation shows that 11 of the 20
top-ranked apps log some sensitive data in Table 1.

Table 1. The sensitive information collected from log messages.

Applications
Device
params

Account
info

User
interaction

Others

org.mozilla.firefox (G) X X - -
com.tencent.mtt (A) - X - -
com.taobao.taobao (A) X X - -
com.sinovatech.unicom.ui (A) X X X XLocation
com.skype.polaris (G) X - - XUser agent string, country code

com.tencent.mobileqq (A) - - -
XGateway IP, SQL statement,

established connections,
network info and quality test

com.google.android.youtube (G) X - - XCountry code, network info
com.facebook.katana (G) - X - XGateway IP, GPS data
com.cleanmaster.mguard (A) X - X -
com.snapchat.android (G) - - X -
co.vine.android (G) - - X -

One interesting example is due to the improper use of third-party SDK.
Snapchat [10] uses Flurry [11] SDK to help its developers obtain the usage
analytics. Flurry defines log APIs for developers to monitor the runtime
behaviours of apps during developing and debugging. It is observed that some
real-time user operations are logged using Flurry APIs in the release version. One
of such cases, which happens during registration, is demonstrated in Listing 3.
It can be inferred that Snapchat first focuses on the email field (Line 2), and
then the edit on this filed begins (Line 3). After that, it focuses on the password
filed waiting for inputs (Line 4). Once a user starts inputting his/her password,
it immediately outputs the corresponding log (Line 5). Even there is no direct
leakage of email or password, the information about focusing and editing can be
used maliciously to launch other attacks such as keylogger attacks.

Listing 3. FlurryAgent logs in Snapchat showing user interactions during registration.

1 W/FlurryAgent (20495): Event count started: R01_BEGIN_REGISTRATION
2 W/FlurryAgent (20495): Event count started: R01_FOCUS_ON_EMAIL
3 W/FlurryAgent (20495): Event count started: R01_EDITED_EMAIL
4 W/FlurryAgent (20495): Event count started: R01_FOCUS_ON_PASSWORD
5 W/FlurryAgent (20495): Event count started: R01_EDITED_PASSWORD



3.3 User Input Inference

User input inference is a way to obtain users’ private information such as account
credential by capturing their input. An attacker can apply the input inference to
surmise the credential at the time of user inputting. Unfortunately, if the no-root
approach is misused, both input timing and input characters are available.

Good Timing of Credential Input. Normally, when a login activity is
shown on screen, if the keyboard is invoked at the same time, there is a higher
chance that a user is going to input account credential to this activity.

Login activities usually share a common pattern which can be used to detect
them. A login activity normally consists of at least two EditText fields for
inputting the username and password, respectively. Among the two, the second
EditText field conceals the password by representing each input character in a
black dot or asterisk. This pattern is reflected in the activity layout which can
be obtained in XML format using the shell command “uiautomator.” And the
keyboard appearance can be captured using the shell command “dumpsys.”

We test the good timing detection algorithm with the top 20 finance apps
in Google Play. Experiments show that the algorithm can capture all the login
activities in 15 apps. The other 5 apps are verified to have no login activities.

Inference of Input Characters. The characters that a user inputs on a
touch-screen can be inferred from knowing both of the touch position on screen
and the software keyboard layout.

First, let us consider the touch positions. The dispatch destination of each
click position is supposed to be the app running on screen only. However, with
the dark side of the no-root approach, a malicious app on the same device can
access directly the touch coordinates using the shell command “getevent” [12]
no matter it is running on screen or not. In this way, the accurate touch position
is known by parsing these raw events returned by this command straightly.

Second, let us consider the keyboard layout. The position of each key varies
according to different layouts, e.g., “QWERTY” layout. Even for the same
layout, the position might be different due to the adjustment by vendors. The
information about the input method, e.g., its vendor name and whether it is
invoked, is available using “dumpsys”. As a result, the combination of touch
positions and the keyboard layout can further surmise the input characters.

4 Discussion

After we verify that the no-root approach can work on Android versions from
4.x to 5.x, we reported it to Android in August 2015. Android admitted soon
that the no-root approach can work as intended, and so do the exploits on its
dark side. Later in October 2015, Android adopted a straightforward solution
by removing the ADB client and ADB server, i.e., the ADB binary from the
newly released Android 6.0. These two components are responsible for accepting
debug commands and communicating with the ADB daemon, respectively. As
a consequence, an Android device can no long be used to debug other Android



devices. While it is a simple solution to remove the debug functionality, it is not
ideal due to sacrificing much benefit/convenience provided by ADB debugging
and no-root apps. A preferred solution should mitigate the ADB loopback
exploits while still make it work for benign no-root apps, such as extending
the existing permission-based mechanism, which is left for the future work.

On the other hand, the ignorance of developers and markets is another
important cause of the exploits. On the app developers’ side, proper coding and
configuration would help to protect apps against some malicious exploits. It is
important for app developers to clean up sensitive logs when producing release
versions. On the app markets’ side, it is suggested that app markets enforce
effective and specific vetting processes. Google Play has set up an example
of using its bouncer [13], which checks for malicious operations and certain
vulnerabilities in each app submitted to Google Play and suggests whether or
not accept the app in the market. We suggest that Android markets, both official
and third-party ones, should check for the usage of logging code, e.g., debug or
verbose level log, so as to avoid leaking sensitive information in logs.

5 Related Works

Several ADB based attacks have been identified before. Vidas et al. [14]
mentioned in their survey that an untrusted ADB connection via USB could
result in security breaches when an attacker is physically close to the target
device. Recently, Symantec detected a Windows malware which may infect
Android devices with ADB [15] via USB connections. Hwang et al. [16] presented
some feasible stealthy attacks which can be performed with ADB capabilities.
In this paper, we firstly discover a feasible no-root approach that based on ADB
loopback to achieve extra privilege in Android system without root. The dark-
side exploits of this no-root approach and the evaluation on real-world apps are
complementary to the ADB based attacks identified before in terms of providing
a better understanding on how ADB can be misused.

Previous research has shown that some existing no-root applications can be
misused. Lin et al. [7] attacked some existing no-root screenshot apps and abused
their screenshot functionalities. It was shown that user input can be inferred by
analysing the screenshots taken by these apps. In order to prevent the newly-
discovered no-root approach from being misused or attacked, we proactively
explore its dark side.

Developers’ negligence in code regulation was pointed out that a malicious
app can read SMS, obtain contacts and access location by selectively reading
the system logs in earlier versions of Android [9]. However, since Android 4.1,
an app is restricted to read its own logs only. Nonetheless, it is still not a secure
way to log sensitive information. Because like one of the dark-side exploits in
this paper, the system-wide logs may become available to an installed malicious
app. The evaluation on the top-ranked real-world apps shows that many of them
still log informative data which leads to severe privacy leakage.



6 Conclusions

In this paper, we discover a feasible no-root approach leveraging ADB loopback
working on Android devices of versions 4.x and 5.x for the first time. To ensure
that this no-root approach is not misused in a proactive manner, we investigate
its typical dark-side exploits and evaluate them with real-world apps. Finally,
we discuss the mitigation that could be adopted by different parties.

7 Acknowledgement

This material is based on research work supported by the Singapore National
Research Foundation under NCR Award Number NRF2014NCR-NCR001-012.

References

1. Helium - app sync and backup. https://play.google.com/store/apps/details?
id=com.koushikdutta.backup.

2. Clockworkmod tether (no root). https://play.google.com/store/apps/

details?id=com.koushikdutta.tether.
3. No root screenshot it. https://play.google.com/store/apps/details?id=com.

edwardkim.android.screenshotitfullnoroot.
4. Android debug bridge. http://developer.android.com/tools/help/adb.html.
5. Platform versions distrubution. http://developer.android.com/about/

dashboards/index.html.
6. Shell permissions on android. https://android.googlesource.com/platform/

frameworks/base/+/android-5.1.0_r5/packages/Shell/AndroidManifest.xml.
7. Chia-Chi Lin, Hongyang Li, Xiaoyong Zhou, and XiaoFeng Wang. Screenmilker:

How to milk your android screen for secrets. In NDSS, 2014.
8. Log. http://developer.android.com/reference/android/util/Log.html.
9. Anthony Lineberry, David Luke Richardson, and Tim Wyatt. These aren’t the

permissions you’re looking for. https://www.defcon.org/images/defcon-18/dc-18-
presentations/Lineberry/DEFCON-18-Lineberry-Not-The-Permissions-You-Are-
Looking-For.pdf, 2010.

10. Snapchat. https://play.google.com/store/apps/details?id=com.snapchat.

android.
11. Flurry. http://www.flurry.com/.
12. Getevent. https://source.android.com/devices/input/getevent.html.
13. Android and security. http://googlemobile.blogspot.sg/2012/02/

android-and-security.html.
14. Timothy Vidas, Daniel Votipka, and Nicolas Christin. All your droid are belong

to us: A survey of current android attacks. In WOOT, pages 81–90, 2011.
15. Windows malware attempts to infect android devices. http://www.symantec.com/

connect/blogs/windows-malware-attempts-infect-android-devices.
16. Sungjae Hwang, Sungho Lee, Yongdae Kim, and Sukyoung Ryu. Bittersweet adb:

Attacks and defenses. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, pages 579–584, 2015.


	A Feasible No-Root Approach on Android
	Citation

	tmp.1483949827.pdf.BGZi1

