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A Secure, Usable, and Transparent Middleware
for Permission Managers on Android
Daibin Wang, Haixia Yao, Yingjiu Li, Hai Jin, Deqing Zou, and Robert H. Deng

Abstract—Android’s permission system offers an all-or-nothing choice when installing an app. To make it more flexible and
fine-grained, users may choose a popular app tool, called permission manager, to selectively grant or revoke an app’s permissions at
runtime. A fundamental requirement for such permission manager is that the granted or revoked permissions should be enforced
faithfully. However, we discover that none of existing permission managers meet this requirement due to permission leaks, in which an
unprivileged app can exercise certain permissions which are revoked or not-granted through communicating with a privileged app. To
address this problem, we propose a secure, usable, and transparent OS-level middleware for any permission manager to defend
against the permission leaks. The middleware is provably secure in a sense that it can effectively block all possible permission leaks.
The middleware is designed to have a minimal impact on the usability of running apps. In addition, the middleware is transparent to
users and app developers and it requires minor modifications on permission managers and Android OS. Finally, our evaluation shows
that the middleware incurs relatively low performance overhead and power consumption.

Index Terms—Permission Manager, Permission Leaks, Middleware, Android

F

1 INTRODUCTION

A T present, Android is the most widely used mobile
OS [1] and it plays an important role in daily life [2]. To

protect the sensitive resources on Android device, the per-
mission model and the sandboxing mechanism are enforced
on Android applications (apps for short). Unlike iOS [3],
however, Android’s permission model is an “all-or-nothing”
approach. At install time, it provides users a binary choice
of either accepting all the requested permissions or not
installing an app. Once an app is installed, it is impossible
to change the app’s permissions unless a special app called
permission manager is in use.

Permission managers can be used by users to selectively
grant or revoke app’s permissions at runtime. A variety
of permission managers, such as LBE [4], Advanced Per-
mission Manager [5], and XPrivacy [6], are provided in
Google Play and some third-party Android markets. In
addition, some popular custom ROMs or manufacturers’
devices also include built-in permission managers, such as
CyanogenMod [7], MIUI [8], and Huawei P6 [9]. Google also
includes a hidden built-in permission manager, called App
Ops, in Android from version 4.31 [10].

A fundamental requirement for such permission man-
agers is that the granted or revoked permissions should be
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1. While App Ops is removed from Android 4.4.2, its framework still
stays in the Android source code.

enforced faithfully. However, we discover that none of the
existing permission managers meet this requirement due
to permission leaks. Permission leaks can be considered as
an attack in which an unprivileged app can access certain
sensitive resource without declaring the corresponding per-
missions [11]–[19].

Once vulnerable apps are installed in Android, the ef-
fectiveness of permission managers would be questionable.
In this paper, we firstly explore the ability of existing per-
mission managers to defend against permission leaks. After
studying most of existing permission managers, including
14 real-world permission managers in four categories as
detailed in Section 2.2.1, we discover a common and serious
problem: none of them could effectively defend against the per-
mission leaks attack, leaking permissions such as VIBRATE,
CHANGE WIFI STATE, CALL PHONE, SEND SMS, and
CAMERA, which is analyzed in Section 2.2.2. It means that
an app could still access sensitive resources even though its
user has revoked the corresponding permissions via certain
permission manager. The result is serious because most
users tend to trust permission managers in a sense that they
could effectively enforce user-defined access control.

Motivated to address the above problem, we propose
an OS-level middleware for existing permission managers
to defend against permission leaks. The design goals of
the middleware are: (i) effective defense against permis-
sion leaks, (ii) minimal impact on the usability of apps,
(iii) transparent to app users and developers, (iv) minimal
modification on permission manager and Android OS, and
(v) low performance overhead. To manage a list of blocked
permissions, we introduce the concept of blocked permission
list (BPL for short). We use BPL instead of removing permis-
sions from existing granted permission list since a blocked
permission may not be chosen from the granted permission
list. Also, the use of BPL reduces the impact on Android
framework.
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To detect the permission leaks at runtime and mini-
mize the impact on the usability of apps, we propose a
multiple app instances based approach (MAI). When an inter-
component communication (ICC for short) occurs between
two apps, MAI decides whether a new instance of the
receiver app should be created based on the BPLs of the
sender app and the receiver app. If a new instance is
created, its BPL is the union of the sender app’s and the
receiver app’s BPLs. Instances of single app share the same
permission list while their BPLs may differ from each other.
MAI effectively defeats permission leaks at runtime by
enforcing permission control at app instance level. While
the functionality of a newly created instance of certain app
is restricted as necessary for defending against permission
leaks, the other existing instances of the same app are not
affected in our solution so that the usability of an Android
device is not over restricted due to the upgraded security.

We implement a prototype of MAI-based middleware on
Android Open Source Project [20] (AOSP, branch 4.4.2 r1).
Analyses and experiments show that the middleware
achieves its design goals. A brief summary of our contri-
butions is given below.

• We take the first step to study the security problem
of existing permission managers (Section 2.2). We
discover that none of these permission managers are
secure against permission leaks.

• We propose an OS-level middleware for existing
permission managers to defend against permis-
sion leaks. A multiple app instance-based approach
is used to implement the middleware (Sections 4
and 5). It can be proven that the middleware is
effective in defending permission leaks (Section 6.1);
it also minimizes the impact on the usability of apps
(Section 6.2).

• Our middleware is transparent to app users and
developers. It requires minor modifications to the
permission managers and does not require any mod-
ification of existing apps (Section 6.3).

• Experiment results show that our middleware incurs
low performance overhead and power consumption
(Section 7).

The rest of this paper is organized as follows. Section 2
introduces the background knowledge and the motivation
of this paper. Section 3 clarifies the threat model and design
goals of our middleware. Section 4 presents the system
design of the middleware. Section 5 gives implementation
details. Section 6 analyzes the middleware from security,
usability, and deployment perspectives. Section 7 shows the
performance evaluation results. Section 8 summarizes the
related work. Finally, Section 9 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we provide the background knowledge
on Android and permission leaks. We also investigate the
issues of existing permission managers that motivate our
research.

2.1 Android and Permission Leaks

App Components and ICC: Each Android app [21] is com-
posed of four types of component: Activity, Service, Broad-
cast Receiver, and Content Provider. An Activity component
provides the user interface for an app. A Service compo-
nent performs long-running operations in the background.
The Broadcast Receiver component responds to system or
application broadcast announcements. A Content Provider
component manages a set of app data, which can be private
or shared with other apps.

Android provides an inter-component communication
(ICC) mechanism for components to make use of other com-
ponent’s functions. An ICC can be intra- or inter-application
communication. In Android framework, Intents are the pri-
mary vehicle for ICC. Intent is an abstract description of
an operation to be performed. For example, an app creates
an Intent containing a URL and sends it to a Browser app
that opens the specified web page. Intent is used with some
ICC-related APIs to start or interact with components [22].
For example, startActivity() API is used to start an
Activity component. To mediate the whole system’s ICCs,
ActivityManagerService (AMS for short) is created in Android
framework. AMS is a system service run in a system process
(named system_server), which is isolated from app pro-
cesses.

Android Security Model: Android is designed with two
basic security mechanisms: application sandbox and permis-
sion model [23]. As Android is built upon Linux kernel, it
takes advantage of Linux user-based protection to enforce
application sandbox. Android system assigns a unique user
ID (UID) to each app and runs it in a separate process. To
access sensitive resources on the device, Android provides
sensitive APIs, which are also called privilege APIs or protected
APIs, for any apps that have been granted with certain
permissions. For example, sendTextMessage() API is
used to send a text via SMS and it requires that an app
should have been granted the SEND SMS permission. To
make use of these protected APIs, an app should declare a
permission list in its manifest file. At install time, Android
provides for the user a binary choice of either accepting
all the requested permissions or not installing the app. The
user can not grant or deny individual permissions. Once
granted, the permissions are applied to the app as long as
it is installed. At runtime, Android would not notify user
again when an app accesses sensitive resources.

By default, all components of the same app run in a
single process, which is also called app instance in the paper.
Nonetheless, app developers may choose to make different
components of the same app run in separate processes. The
permission lists of such separate processes are identical to
the permission list that is claimed in the app’s manifest file.
In AMS, the ProcessRecord class is used to show the
information, e.g., process name, PID, and etc., of a running
process.

Permission Leaks: Permission leaks happen when an
unprivileged app accesses sensitive resources through ICCs
with a vulnerable app which is granted with the required
permissions. For example, app1 without permission p could
not access any sensitive resource protected by permission
p, but app1 may request app2 with permission p to access
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TABLE 1
Five Known Cases of Permission Leaks

Case ID Package Name Exposed Component Leaked Capability
1 com.android.phone [11] PhoneGlobals$PhoneAppBroadcastReceiver VIBRATE
2 com.android.settings [11] widget.SettingsAppWidgetProvider CHANGE WIFI STATE
3 com.android.phone [17] PhoneGlobals$NotificationBroadcastReceiver CALL PHONE
4 com.android.mms [19] transaction.SmsReceiverService SEND SMS
5 com.android.camera2 CameraActivity CAMERA

some sensitive resources. In this example, app2 is a vul-
nerable app which consists of some vulnerable components
that can be potentially exploited by other apps. In general,
vulnerable app can be system app [11], [12], [14]–[17], [19]
and third-party apps [13], [18]. Permission leaks are also
called capability leaks [12], [14], [15] and permission re-
delegation [11] in the literature.

Permission leaks are caused by accidentally or inten-
tionally exposing an app’s internal functionality to other
apps. Since the Android permission model only checks the
permissions of a requesting app, it opens a door for any app
to exploit the permission leaks and bypass the permission
model.

The prevalence of permission leaks on system apps and
third-party apps has been exposed recently [12], [13], [24],
[25]. For instance, IntentFuzzer [24] detects that 161 of 2183
top free apps in Google Play have at least one permission
leak. However, it is not an easy work to discover and fix
these vulnerable apps through static analysis and fuzzing
technology. For example, it takes more than 3 years to
discover and fix the the CVE-2013-6272 vulnerability [17].

2.2 Permission Managers and Its Issues

Since much personal data are stored on smartphones, one
of the most pressing issues of smartphone security is to pro-
tect user privacy. Since Android’s permission model offers
an “all-or-nothing” choice when installing an app, a user
cannot selectively grant or revoke the app’s permissions
at install time or runtime. Therefore, what the user hopes
is that the developer of the app is benign and conforms
to the Principle of Least Privilege (PLP) in designing the
app. Unfortunately, various studies have shown that most
of Android apps abuse their permissions [18], [33]–[35].

To make the Android’s permission model more flexible
and fine-grained, users may choose a popular tool, called
permission manager2, to selectively grant or revoke an app’s
declared permissions at runtime. However, there exist some
common issues with the existing permission managers.

2.2.1 Existing Permission Managers

In general, existing permission managers in Android can be
divided into four categories, including APK modification,
root based, App Ops based, and ROM based permission
managers.

APK Modification. APK modification is to rewrite an
app’s declared permission list on its manifest file and gen-
erate a new APK file accordingly. The new APK is then

2. The tools managing the root privilege, such as SuperSU [36], are
out of the scope of this paper.

installed to replace the old version. Advanced Permission
Manager [5] is one example of such permission managers.

Root Based. Some apps enforce permission management
through process injection. Once a shared library object file is
injected into a target process, it hooks the privilege APIs and
checks against user-defined policies. Due to the sandbox
protection in Android, the root based approach requires that
the Android device be rooted.

App Ops Based. In Android 4.3 and 4.4, Google provides
a hidden permission manager called App Ops. Many third-
party apps (e.g., App Ops Starter [31]) provide the function
of permission management through invoking the interface
of App Ops. Since App Ops is built into the Android ROM,
those apps require no modification on Android framework
or rooted device.

ROM Based. Apart from permission managers as third-
party apps, several ROMs (e.g., CyanogenMod [7], MIUI [8],
Huawei [9]) are equipped with the functions to manage
apps’ permissions. Because these permission managers are
implemented as a part of ROM, there is no need for users to
root their devices.

2.2.2 Issues with Existing Permission Managers
Whatever technique is used by a permission manager, a fun-
damental requirement is that it should effectively prevent
apps from bypassing user-defined access control through
permission leaks. To examine the effectiveness of existing
permission managers, we collect five known cases of per-
mission leaks and fourteen typical permission managers in
our investigation. Table 1 shows the exposed components
and leaked capabilities of these cases3. The name, category,
and version of the tested permission managers are shown in
Table 2.

Five attacker apps are built to exploit the exposed com-
ponent of the corresponding vulnerable app through ICC.
Each attacker app does not declare the corresponding leaked
permission in its manifest file while it attempts to access the
sensitive resources protected by the leaked permission. We
install an attacker app, a vulnerable app (if required), and
a permission manager in a single device. The permission
manager is used to block the leaked permission for the
attacker app. Then, we observe whether the attacker app can
still access the sensitive resources protected by the blocked
permission through the vulnerable app. We repeat the above
procedure for fourteen permission managers.

If an attacker app does not declare any leaked permis-
sion in its manifest file, unfortunately, we discover that
none of the fourteen permission managers allows users

3. While Android allows third-party apps taking photos through the
system camera app without declaring the CAMERA permission, we
still consider sample 5 as a case of permission leaks.
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TABLE 2
Fourteen Tested Permission Managers and Their Results (3: successfully prevent, N/A: not support)

ID Name Category Version Case
1 2 3 4 5

1 SRT AppGuard [26] APK modification 2.2.7 N/A
2 Advanced Permission Manager [5] APK modification 3.2.2
3 Permission Manager [27] APK modification 1.1
4 LBE Security Guard [4] Root based 5.4.7896 N/A 3
5 XPrivacy [6] Root based 3.4.13 3
6 App Settings [28] Root based 1.1
7 DonkeyGuard [29] Root based 0.5.67 N/A
8 Tencent Mobile Manager [30] Root based 5.1.0 N/A
9 App Ops Starter [31] App Ops based 1.1.0 3 3
10 Permission Manager [32] App Ops based 2.0 3 3
11 App Ops on Android 4.3 [10] ROM based – 3 3
12 Privacy Guard on CyanogenMod 10.2.0 [7] ROM based – 3
13 Permission Manager on MIUI v5 [8] ROM based 4.0.1114 N/A 3
14 Permission Manager on Huawei P6 [9] ROM based 6.1.9 N/A

to block any permission beyond the claimed permissions.
Nonetheless, an attacker app can exploit permission leaks
and access sensitive information without having the corre-
sponding permissions in its claimed permission list. This
shows the incompleteness of the permission controls of the
existing permission managers.

Next, consider the case in which an attacker app declares
the leaked permission in its manifest file. The testing results
are shown in Table 2. Note that since some permission
managers only allow users to configure privacy-related per-
missions, case 1 is not applicable to them. Table 2 shows
that while some of the tested permission managers can
block one or two cases of tested permission leaks, none can
effectively block all cases. The results show that the existing
permission managers are vulnerable to the permission leaks.
Once a vulnerable app is installed on a device, other apps
could exploit it and bypass the access control of permission
managers. Consequently, such attacks break the trust of
users to the permission managers.

A ideal solution to solve above problems is to locate and
fix all vulnerable components. At present, however, there
is no effective solution that could locate every vulnerable
component. Once a vulnerable app, especially system app,
is installed, it could be difficult to fix its vulnerable compo-
nents.

3 THREAT MODEL AND DESIGN GOALS

In this paper, we propose an OS-level middleware for
Android permission managers to effectively defend against
permission leaks at runtime. The threat model and design
goals of the middleware are presented in this section.

3.1 Threat Model

It is assumed that users download and install third-party
apps. These third-party apps, as well as system apps, may
have vulnerable components that can be exploited to incur
permission leaks. However, these apps do not collude in
sharing information. In addition, it is assumed that Android
OS, including Android kernel and Android framework, are
trusted.

3.2 Design Goals
The design of the middleware is guided by following goals:

• Effective prevention. The middleware should be
able to effectively defend against permission leaks
at runtime. Any Android permission manager sup-
ported by our middleware can thus faithfully enforce
its granted or revoked permissions in the presence of
vulnerable apps.

• Minimal impact on usability. While the function-
ality of apps is affected as necessary for defending
against permission leaks, our middleware should
minimize the impact on the usability of any running
app.

• Compatible. The middleware is transparent to app
users and developers. It provides public interfaces
for existing permission managers to tap on so as to
be secure against the permission leaks.

• Minimal modification. The design and implemen-
tation of our middleware require minor changes to
existing permission managers and Android OS.

• Low performance overhead. The middleware incurs
reasonably low performance overhead which does
not affect user’s experience significantly.

We will show that our middleware meets the design
goals. In particular, the effective prevention goal is achieved
by attaching a list of blocked permissions to each app
instance which has precedence over the list of permissions
granted to the app instance. When an app instance is called
by another app instance, the blocked permission list of the
callee instance grows to be the union set of the blocked
permission lists of both caller instance and callee instance.
The goal of minimal impact on usability is achieved by
checking blocked permissions at the app instance level,
instead of app level. The compatible goal is achieved by pro-
viding public interfaces for any permission managers to call
and by requesting no changes to app development or user
experience. The minimal modification goal is achieved by
making minimum changes to the Android framework and
permission managers in implementation. Finally, the goal of
low performance overhead is achieved by optimizing the
design and implementation of our middleware, which is
detailed in the following sections.
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4 SYSTEM DESIGN

In this section, we present the design of our middleware,
including blocked permission list, workflow, instance deci-
sion, and privilege API decision.

4.1 Blocked Permission List (BPL)

In Android, each installed app has a permission list which
represents a set of permissions granted by user. To distin-
guish from such permission list, we define another permis-
sion list named blocked permission list (BPL) for each app,
which represents a set of permissions blocked by user. In-
stead of removing permissions from the existing permission
list, BPL is suitable for permission manager to grant or
revoke any permissions, even beyond those defined in the
existing permission list, at runtime. Our design enables a
user to block any permission that is not declared in the app’s
manifest file but in the BPL that is provided by a permission
manager app. Our middleware enforces the access control
based on both BPLs and declared permission lists.

4.2 Workflow

The workflow of our middleware is shown in Figure 1. It
consists of two major blocks: (i) Blocked Permission Man-
agement; and (ii) MAI.

Blocked Permission Management: The blocked permis-
sion management interacts with permission managers and is
responsible for managing the BPLs provided by permission
managers. There are two sub-blocks within the blocked
permission management, including Blocked Permission DB
and Blocked Permission Service.

The Blocked Permission DB is a database to store the BPLs
provided by permission managers. The database should be
updated when an app’s BPL is changed or when an app is
uninstalled.

The Blocked Permission Service is a system service which
is responsible for managing BPLs in the Blocked Permission
DB. The Blocked Permission Service provides the interfaces
for other system services and permission managers. To

prevent unauthorized entities from exploiting these public
interfaces, only trusted permission managers and system
services are allowed to communicate with the service.

MAI: The Multiple App Instances based approach (MAI)
is designed for defending against the permission leaks at
runtime. There are four sub-blocks within MAI, including
Reference Monitor, Instance Decision Module, Instance Cre-
ation Module, and Privilege API Decision Module.

The Reference Monitor is responsible for intercepting ICC
communications. For example, when app1 sends an ICC
communication request to app2, this request is intercepted
by the Reference Monitor (step 1© in Figure 1). The Ref-
erence Monitor then transmits the request to the Instance
Decision Module (step 2© in Figure 1). If a new instance
is required, the Reference Monitor makes a request to the
Instance Creation Module (step 5© in Figure 1). Note that
when an instance is created, its BPL is stored in the Blocked
Permission DB through the Blocked Permission Service.

The Instance Decision Module is responsible for deciding
whether a new instance should be created based on BPLs
of caller and callee app. At first, the caller’s and callee’s
BPLs are retrieved through the Blocked Permission Service
(step 3© in Figure 1). Then, it makes a decision based on the
BPLs and returns the decision result back to the Reference
Monitor (step 4© in Figure 1). A detailed algorithm of the
module is given in Section 4.3.

The Instance Creation Module is responsible for creating
a new instance and returning the PID of it back to the
Reference Monitor (step 6© in Figure 1). For example, an in-
stance of app2 is created and we establish a communication
between app1 and the instance (step 7© in Figure 1). Note
that the new instance’s privilege may be restricted based on
the result of Instance Decision Module.

When an instance or an app invokes a privilege API,
the privilege API request is intercepted by the Privilege API
Decision Module (step 8© in Figure 1). The Privilege API
Decision Module determines whether the app or instance is
allowed to access the sensitive resources (step 9© in Figure 1).
A detailed algorithm of this module is given in Section 4.4.
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4.3 Instance Decision

Algorithm 1 Instance Decision Procedure
Input:

Caller app caller and Callee app callee;
Output:

Decision result isCreate (and new instance’s BPL
BPLnew);

1: retrieve the BPL BPLcaller of caller
2: retrieve the BPL BPLcallee of callee
3: if BPLcaller ⊂ BPLcallee then
4: return isCreate = false
5: end if
6: BPLunion = BPLcaller ∪BPLcallee

7: retrieve all runtime instances Ins of callee app
8: for all Insi ∈ Ins do
9: retrieve the BPL BPLInsi of instance Insi

10: if BPLInsi = BPLunion then
11: return isCreate = false and the target instance ID
12: end if
13: return isCreate = true and BPLnew = BPLunion

14: end for

In MAI, each app may have several instances at run-
time which share the same permission list. However, each
instance’s BPL is different from each other. Note that a
permission list is a whitelist of granted permissions, while
a BPL is a blacklist of blocked permissions. An instance
decision in MAI occurs when an ICC is invoked and the
decision is based on the caller and callee apps’ BPLs. The
instance decision flow is formulated in Algorithm 1. First of
all, the BPLs of the caller and callee apps are retrieved from
the Blocked Permission DB (Algorithm 1, Line 1-2). If the
caller’s BPL is a subset of the callee app’s BPL, it notifies
the Reference Monitor that no new instance needs to create
(Algorithm 1, Line 3-5). Otherwise, the union set of the
caller and callee BPLs is calculated and the whole running
instances of the callee app are retrieved (Algorithm 1, Line
6-7). To reduce the number of instances, if any instance of
the callee app has the same BPL as the union set, it notifies
the Reference Monitor that no new instance needs to create
and the information (e.g, PID) of the target instance is also
provided (Algorithm 1, Line 8-12). Otherwise, it notifies the
Reference Monitor to create a new instance and the BPL of
new instance is the union set (Algorithm 1, Line 13). Thus,
the privilege of the new instance is more restricted because
its BPL is the union set of the BPL of the caller app and the
BPL of the callee app.

4.4 Privilege API Decision
In MAI, the privilege API decision is made based on the

caller’s permission list and BPL. We present the procedure of
privilege API decision in Algorithm 2. At first, the BPL of the
caller instance is retrieved from the Blocked Permission DB
through the Blocked Permission Service (Algorithm 2, Line
1). If any required permission is in the caller’s BPL, it denies
the privilege API request because a BPL has precedence
over the corresponding permission list (Algorithm 2, Line
2-6). Then, it retrieves the app’s permission list of the caller
app from Android framework (Algorithm 2, Line 7). If

Algorithm 2 Privilege API Decision Procedure
Input:

Caller instance caller and required permission list
Permrequired

Output:
Decision result isAllow;

1: retrieve the BPL BPLcaller of caller instance
2: for all Permi ∈ Permrequired do
3: if Permi ∈ BPLcaller then
4: return isAllow = false
5: end if
6: end for
7: retrieve the permission list Permcaller of caller instance
8: if Permcaller ⊃ Permrequired then
9: return isAllow = true

10: end if
11: return isAllow = false

the permission list contains the required permission list of
privilege API, it grants the request (Algorithm 2, Line 8-10).
Otherwise, it denies the request (Algorithm 2, Line 11).

5 IMPLEMENTATION

Our middleware is implemented within the Android frame-
work.

5.1 Blocked Permission Database
A blocked permission database is created in the Android
framework and the database is protected by standard Unix-
like access permissions. It includes two tables: appBPL and
instanceBPL. The BPL of each app provided by a permis-
sion manager is stored in the appBPL table, while the
instanceBPL table stores the BPLs of created instances.
The appBPL table is indexed by app’s UID, while the
instanceBPL is indexed by instance’s PID and UID. When
the system shutdowns, the instanceBPL table is cleared
because all created instances are destroyed. When an app is
uninstalled, its BPLs on the appBPL and instanceBPL tables
are also cleared.

5.2 Blocked Permission Service
The Blocked Permission Service is implemented as a new
system service run in the system_server process and
it manages the blocked permission database through the
SQLite interface provided by Android. To be compatible
for existing permission managers, the service provides
addBPL() and modifyBPL() interfaces for permission
manager apps to manage the BPLs of apps. In addition,
it provides retrieveBPL() API for system services to
retrieve an app’s BPL.

The public interfaces provided by the Blocked Permis-
sion Service are designed to allow only trusted permis-
sion managers and system services to communicate with
them. To defend against unprivileged apps from accessing
these interfaces, the Blocked Permission Service checks the
identity of a caller in two ways. A uid checking is used to
decide whether the caller is a system service. Since our
current prototype requires AMS to retrieve BPLs from the
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Blocked Permission Service, the system_server process,
whose uid is 1000, is allowed to invoke the interfaces. If
the caller is an app, certificate and signature verification is
used to verify the identity of the caller. The trust between
permission manager apps and Blocked Permission Service
can be built via the Public Key Infrastructure (PKI). Any
permission manager that requires to communicate with our
middleware should firstly be issued a certificate signed by a
trusted certificate authority (CA). A parameter of the public
interface is used to deliver the certificate of a permission
manager to the Blocked Permission Service, which verifies
the certificate through certain standard Java APIs. Trusted
CA’s certificates should be stored in the ROM at build
time. X.509 format certificates are supported in the current
prototype.

5.3 Instance Decision Module and Instance Creation
Module
Both Instance Decision Module and Instance Creation Mod-
ule are implemented in the AMS. The Reference Monitor
provided by AMS is instrumented to notify the Instance De-
cision Module when an ICC occurs. The Instance Decision
Module implements the instance decision procedure with
the help of retrieveBPL() API. The Instance Creation
Module uses a system API, i.e., startProcessLocked(),
to create a new instance and it stores the instance’s BPL in
the instanceBPL table.

To distinguish different instances of the same app,
two variables: processAliasName and processBPL, are
added to the ProcessRecord class in the AMS. The
processAliasName is used to distinguish the instances
created by MAI from the instances created by Android;
this variable is assigned with the process name of caller
and callee instances. On the other hand, the processBPL
consists of the BPL of each instance. The purpose of storing
BPL in memory for each instance is to improve the perfor-
mance of our middleware. To reduce the cost of memory, the
processBPL variable is represented as an array of integers
and each integer maps to a permission in Android. Since the
number of permissions on Android is relatively small (e.g.,
145 permissions in Android 4.4.2), the memory overhead
of our middleware is negligible. For example, if there are
1000 app instances on an Android 4.4.2 device , no more
than 1MB memory is used to store the BPLs of these app
instances.

5.4 Privilege API Decision Module
The Privilege API Decision Module is also im-
plemented in the AMS4. A hook is placed for
checking the blocked permissions in the regular
Android permission checking. The public method
checkPermission(permission, pid, uid) inside
AMS is the only public entry point for all permission
checking in Android framework. The three parameters
of the method represent the required permission, the
PID of the caller instance, and the UID of the caller

4. Android’s permission system is enforced in two levels: framework
and kernel. For the current prototype system, we just focus on the
permissions enforced in the Android framework and leave the kernel-
enforcing permissions as our future work.

instance, respectively. The BPL of caller is retrieved through
retrieveBPL() API. Before the Android permission
checking is performed inside checkPermission method,
the logic for checking the blocked permissions is added and
enforced.

6 ANALYSIS ON OUR MIDDLEWARE

In this section, we analyze how our middleware achieves
the first four goals presented in Section 3.2. We firstly
analyze the security of our middleware under the threat
model, which is given in Section 3.1. Then, we analyze
the usability of our middleware as compared with other
possible solutions. Finally, we discuss how to deploy our
middleware in practice.

6.1 Security

We assume that an Android device has been flashed into a
custom ROM with our middleware integrated. A vulnerable
appA that can be exploited to leak permission P is installed
in the device. Thus, the permission list of app A contains
permission P (P ∈ PermA). Consider another app B
installed in the same device for which the user blocks the
permission P through a permission manager supported by
our middleware; that is, the BPL of app B contains permis-
sion P (P ∈ BPLB). We will prove that the permission
manager could effectively block the permission P of app B.

Under the assumption that the Android framework is
trusted, privilege request would be intercepted by our mid-
dleware. Since the BPL of app B includes the permission P ,
app B cannot directly access the sensitive resource protected
by permission P no matter whether or not the permission
list of app B includes the permission P .

There are two possible ways for app B to bypass the
access control of the permission manager. One is to changes
its BPL if app B has the permission P . In our implementa-
tion, the blocked permission database can only be accessed
by the Blocked Permission Service, i.e., system_server
process. Other processes cannot modify the database due to
the process isolation of Android OS. The certificate and sig-
nature verification performed in our middleware prevents
app B from changing its BPL through the public interfaces
provided by the Blocked Permission Service.

Another possible way for app B to bypass the access
control of the permission manager is to exploit app A.
Because Android framework and Linux kernel are trusted,
the only communication channel between app A and app B
is ICC. When an ICC is invoked by app B, our middleware
decides whether a new instance should be created. The
instance’s BPL is the union of app A and app B’s BPLs
(BPLIns = BPLA ∪ BPLB). Since permission P is in
the BPL of app B, permission P is also in the instance’s
BPL (P ∈ BPLIns). Therefore, the new instance also cannot
access the sensitive resource protected by permission P .

A Use Case Scenario: Alice has an Android 4.4.2 smart-
phone, into which our middleware has been flashed. Due to
the inflexibility of Android permission system, she installs a
permission manager, which is trusted by our middleware, to
control the permissions of apps. Assuming that Alice likes
to listen music using the device, and she installs a music
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app from Google Play on her device. Unfortunately, the
music app is a malicious app and it can exploit the SMS
resend vulnerability [19] on Android 4.4.2. The SMS resend
vulnerability is due to a vulnerable component, named
SmsReceiverService, of the system sms app, and it allows
any app to send SMS messages without the SEND SMS
permission.

As a security-sensitive user, Alice blocks the SEND SMS
permission on the music app through the trusted permission
manager because is is unnecessary for a music app to
send SMS. To defend against permission leaks, the trusted
permission manager passes the BPL of the music app, i.e.,
SEND SMS permission, to our middleware.

Since the SEND SMS permission is included in the BPL
of the malicious music app, the app could not send any
SMS directly. Therefore, the app tries to indirectly send a
SMS through the vulnerable component of the system sms
app. When it sends an ICC request to the sms app, an
instance of the sms app is created to serve the request. The
instance inherits the BPLs of music app and sms app; in
other words, the instance’s BPL contains the SEND SMS
permission. Thus, the instance also can not send any SMS.
This shows that the music app cannot send any SMS after
its SEND SMS permission is blocked by the permission
manager.

6.2 Usability
There exist other techniques such as the call-chain based
method [37] and the graph-based method [38], which can
be potentially used to defend against permission leaks for
permission managers. One common feature of these meth-
ods is that the permission checking of any app is based on
its UID; in other words, all instances of an app are restricted
the same way for defending against permission leaks. For
simplicity, we name the above methods as simple design. In
this section, we demonstrate that the usability of our design
is better than the simple design.

We define the usability of an app A as the available
permission set APA of app A. The larger the available
permission set is, the better the usability. Assuming that app
A has n instances (i.e.,A = {Ins1, Ins2, ..., Insn}), given its
permission list PermA and blocked permission list BPLA.
The available permission set of appA includes the available
permission set of each instance in app A. For any instance
Insi (i ∈ [1, n]) of app A, its initial available permission set
is given below

AP Insi
A = PermA \ (PermA ∩BPLA)

Next, we assume that appA is invoked by app B directly.
A new instance Insm (m /∈ [1, n]) of app A is created in our
design while no instance is created in the simple design.
Thus, in the simple design, the available permission set of
an instance Insi (i ∈ [1, n]) in app A is

AP Insi
A = PermA \ (PermA ∩ (BPLA ∪BPLB))

In our design, the available permission set of an instance
Insi in app A is

AP Insi
A ={
PermA \ (PermA ∩ (BPLA ∪BPLB)) i = m
PermA \ (PermA ∩BPLA) i ∈ [1, n]

For the instances Insi (i ∈ [1, n]) of app A, the available
permission sets in the simple design are smaller than the
initial available permission set. However, the available per-
mission sets of them in our design are the same as the initial
available permission set. In this sense, the usability of our
design is better than the simple design.

Further, we assume that there is a call chain from app
B to app A through some other apps (i.e., CallChain =
{B, D1, ..., Dp,A}) and a new instance Insm (m /∈ [1, n])
of app A is created to serve the request in our design.
Thus, in the simple design, the available permission set of
an instance Insi (i ∈ [1, n]) in app A is

AP Insi
A = PermA\(PermA∩(

p⋃
j=1

BPLDj
∪BPLA∪BPLB))

In our design, the available permission set of an instance
Insi in app A is

AP
Insi
A ={
PermA \ (PermA ∩ (

⋃p
j=1

BPLDj
∪ BPLA ∪ BPLB)) i = m

PermA \ (PermA ∩ BPLA) i ∈ [1, n]

Clearly, for the instances Insi (i ∈ [1, n]) of app A, the
available permission sets of them in our design is larger
than the simple design.

Therefore, we conclude that the usability of our design
is better than the simple design. While achieving better us-
ability, our design may incur certain performance overhead
due to the creation of new app instances. In Section 7, we
evaluate the performance of our middleware and show that
the overhead is acceptable in practice.

6.3 Deployment

In this section, we discuss the deployment of our designed
middleware in the following aspects: Android framework,
third-party apps, permission managers, and Public Key Infras-
tructure.

Android framework. Our middleware requires to de-
ploy a custom ROM on devices. About 1,200 lines of source
codes on Android framework should be added or modified
for our middleware. Since it requires to deploy a custom
ROM, the adoption of our middleware would suffer from
the same drawbacks of any ROM based approaches. Never-
theless, most parts of these source codes are new modules
or services decoupled from the Android’s core modules.
Therefore, it is relatively easy for manufacturers and Google
to integrate our middleware.

Third-party apps. Because our middleware does not
change any existing API provided for apps, it is transparent
to third-party app developers. Therefore, no modification on
third-party apps is required.

Permission managers. Permission managers should be
modified so that they can make use of our middleware.
Because our middleware provides public interfaces, minor
changes are required for permission managers. For example,
only about 20 lines of source codes in App Ops are modified
for using our middleware. It is easy to modify permission
managers to allow to block any permission of apps even
they are not in the claimed permission lists. Developers
of permission managers are also required to register PKI
certificates in order to communicate with our middleware.
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Public Key Infrastructure (PKI). To prevent unautho-
rized entities from exploiting the public interfaces provided
for permission managers, we suggest that any incoming BPL
to the middleware should come with a signature and a cer-
tificate of permission manager. The certificates of permission
managers should be issued by trusted certification author-
ities (CAs) in the PKI infrastructure. The CA’s certificate
should be stored in the ROM at build time.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance overhead of
our middleware on Android device and show how our
middleware achieves the last goal presented in Section 3.2.
A prototype system of our middleware is implemented on
Android 4.4.2 r1 (KitKat) and it is flashed into a Google
Nexus 5 phone (Qualcomm SnapdragonTM 800 2.26GHz
CPU, Adreno 330 450 MHz GPU, 2GB RAM, 16GB Internal
Storage, 2300 mAh battery). All experiments are conducted
on the same phone. App Ops is used as the tested permis-
sion manager.

7.1 Overall Performance
We use a comprehensive benchmark tool, AnTuTu 5.1 [39],
to evaluate the overall performance of our system. AnTuTu
is a popular tool that has more than 10 million downloads
in the Google Play [40]. The benchmark tool runs a series of
performance tests, including memory access, CPU integer &
float point operation, graphics, SD card performance, and
database I/O. The higher the score is, the better. We execute
the benchmark 10 times and average the scores, which are
shown in Table 3. The “baseline” means that the scores
obtained from the device with stock Android on which our
middleware is not installed.

TABLE 3
AnTuTu Benchmark Results

AnTuTu Baseline Our System Overhead
Total Score 37510.10 36595.73 2.44%

RAM 1521.00 1419.91 6.65%
CPU int 1939.50 1933.36 0.32%
CPU fp 2323.90 2317.91 0.26%

2D 1639.10 1638.91 0.01%
3D 12483.20 12275.55 1.66%

Database 650.50 646.36 0.64%

From the table, we can observe that our system imposes
a small impact on all but the memory operation (6.65%). Our
system imposes the memory overhead because new app
instances are created in memory in order to defend against
permission leaks.

7.2 ICC and Permission Checking Overhead
Time overhead is introduced by our middleware when an
ICC API or privilege API is invoked.

ICC overhead: When an app is run on the device with
our middleware, the ICC procedure involves the process of
checking the sender and receiver apps’ BPLs and starting
a new app instance if needed. We measure a single ICC
overhead introduced by our middleware in three different
settings: (1) “Stock”, which means the results obtained from

the stock Android without our middleware; (2) “MAI-no”,
which means that the results are obtained from a device
with our middleware installed but no instance is created
when an ICC is invoked; (3) “MAI-instance”, which means
that the results are obtained from a device with our middle-
ware and a new instance is created when an ICC is invoked.
Four ICCs (i.e., startActivity(), startService(), bindService(),
and sendBroadcast()) are tested 50 times in each of the three
settings.

We expect that our system incurs certain time overhead
when a new instance is created. This is confirmed by our
results in Figure 2. If no instance is created, our system
imposes no significant overhead (8.39% on average). If a
new instance is created, our system’s ICC procedure takes
on average sixfold as long as Android’s own ICC procedure.
Most part of the time overhead is caused by spawning a
new process. While the time overhead of our middleware is
comparatively high, the overall time taken is less than 0.1
seconds; therefore, the user’s experience is not significantly
affected.

The ICC overhead of an app introduced by our system
depends greatly on a variety of factors, including caller and
callee apps’ BPLs, the frequency of ICC, and total RAM of
device. In the best case, i.e., no extra instance is created, the
overhead is close to the overhead in the “MAI-no” setting.
In the worst case, each ICC to the app would create a new
instance. However, the worst case rarely happens in practice
due to the following reasons: 1) Our middleware is designed
to reduce the number of processes at runtime. For example,
the instances with the same BPL are hosted in the same
process of an app. 2) By counting the number of ICCs on
the device, we discover that inter-app ICCs take only about
18.5% of total ICCs while the rest of ICCs do not generate
any new instance.
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Fig. 2. Execution Time of Four ICCs under Three Settings

Permission checking overhead: We measure the per-
mission checking overhead in the following settings: (1)
“Stock”, which means the results obtained from the stock
Android without our middleware; (2) “BPL-no”, which
means that the results are obtained from a device with our
middleware and that the checked permissions are not in
the corresponding BPL; (3) “BPL”, which means that the
results are obtained from a device with our middleware and
that the checked permissions are in the corresponding BPL.
Eight permissions are randomly selected and tested 50 times
in each of there settings.
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Fig. 3. Checking Time of Eight Permissions under Three Settings

Figure 3 shows that the time overhead in the “BPL-no”
setting is negligible (about 5.45 µs increase per call). From
Table 3, we note that the time decreases in the “BPL” setting.
This is due to the logic of our permission checking: once the
checked permission is in the app’s BPL, our middleware will
not check the app’s permission list any more.

7.3 Energy Consumption and Memory Usage

To measure the energy and memory usage introduced by
our middleware, we conduct the following tests. Every 10
minutes we sequentially run three apps: Messaging, Word-
Press, and Facebook, on a full-charged Nexus 5 phone via a
monkeyrunner [41] script. All apps perform the following
operations: taking a picture and sending a message. The
experiment lasts for a period of 120 minutes. We execute
this experiment under three environments: stock Android,
our middleware with same BPLs for three apps, and our
middleware with different BPLs for three apps. We then
check the battery level and memory usage (by reading
/proc/meminfo file).

Experimental results show that the battery usages of the
stock Android and our middleware with the same BPLs are
equal, while our middleware with the same BPLs increases
the memory usage from 50.8% to 51.6%. In addition, our
middleware with different BPLs uses 1% more battery and
introduces 2.6% additional memory usage than the stock
Android. The additional battery consumption and memory
usage is mainly due to managing the multiple instances of
frequently used camera apps.

8 RELATED WORK

In this section, we categorize the related works and compare
our work with them.

8.1 Solutions against Permission Leaks

Permission leaks are common problems on Android which
have been addressed in the previous works from different
perspectives. Quire [37] annotates each inter-process com-
munication (IPC) with the entire call chain to defend against
the permission leaks. However, Quire is not transparent to
app developers because it requires apps to be revised for
annotating the IPC. Without requiring app modifications,
XManDroid [38] addresses the issues by performing run-
time monitoring and control on the communication links
in Android’s middleware and Linux kernel according to
pre-defined security policies. Compared to XManDroid, our
middleware is specifically designed for Android permission
managers and it incurs a minimal impact on the usability
of apps. Our work is similar to the IPC Inspection [11].
The main idea of IPC Inspection is to create a new app
instance and reduce the permission list of receiver app when
an ICC is invoked. Different from the IPC Inspection, our
middleware creates and manages app instances according
to the blocked permission lists of the involving apps.

8.2 Privilege Restriction

While Android permission managers provide a means to
restrict the privileges of Android apps at runtime, there
exists other privilege restriction techniques on Android. One
example is Apex [42], which allows a user to selectively
grant permissions at install time as well as define run-time
constraints. Saint [43] is another solution which governs
the install-time permission assignment and run-time usage
according to certain app policies. Along this line, CRePE [44]
enforces context-related policies on Android. CBAC [45] is a
context based access control mechanism for Android users
to set policies regulating the access of app to system re-
sources and services under different contexts. DR BACA [46]
leverages the context information and NFC technology to
provide a dynamic role based access control for Android
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in a multi-user environment. MOSES [47] is a policy-based
Android framework which enforces multiple isolated secu-
rity profiles on a single device and dynamically switches
from one profile to another under certain context. While
these solutions improve the security of current Android’s
permission model, they rely on specific security policies and
they are not specifically designed for Android permission
managers.

Since Android allows apps to include third-party codes,
such as advertising services and native code, another line of
works focus on privilege restriction on such codes. Process-
based privilege restriction is often used to separate third-
party codes into different processes with different permis-
sions. For example, AdSplit [48] and AFrame [49] separate
the advertisements from apps and host them in processes
to restrict their privileges. NativeGuard [50] is another solu-
tion leveraging the process-based protection in Android to
isolate the native libraries in a permission limited process.
Compared to them, our middleware addresses the generic
problem of permission leaks which is not restricted to any
third-party code.

8.3 Privacy Protection

Another line of research on Android security focuses on pro-
tecting user’s privacy. AppFence [51], MockDroid [52] and
TISSA [53] are three examples which enforce fine-grained
access control on Android to protect user’s privacy. Instead
of blocking the access to privacy data, they provide shadow
data or mock data to untrusted apps and explore the trade-
off between functionality and privacy. TaintDroid [54] is
another example, which uses a dynamic taint analysis to
prevent runtime attacks and data leakage. These works are
complementary to our work and they can work side by side
to enhance user privacy.

Recently, Shebaro et al. proposed IdentiDroid [55], which
is a comprehensive solution for mobile users to guarantee
its anonymity under anonymous network. In IdentiDroid,
a data shadowing technique is used to hide the identifying
information from apps, and a sensitive permission manager
controls the sensitive permissions of apps at runtime. Our
middleware can help address the permission leakage prob-
lem, which is not the focus of IdentiDroid.

8.4 Static Analysis on Application Codes

Permission leaks are mainly due to the existence of vul-
nerable app components. Much effort has been made to
discover and address the vulnerability of Android apps
or app components. CHEX [18] proposes to statically vet
Android apps for detecting component hijacking vulner-
abilities by tracking taints between externally accessible
interfaces and sensitive sources or sinks. AppSealer [56]
presents a technique to automatically generate patches for
Android applications, which are subject to component hi-
jacking vulnerability. RetroSkeleton [57] and SIF [58] are two
rewriting frameworks that allow users to enforce high-level
policies on Android apps. However, due to dynamic code
loading techniques [59], it is not always possible for these
solutions to detect all vulnerable components of apps.

9 CONCLUSION

It has been a major challenge to provide flexible and fine-
grained permission control on Android apps. While various
Android permission managers have been developed for
this purpose, we discover that none of existing permission
managers which we investigated enforce user-defined ac-
cess control faithfully due to permission leaks. To address
this problem, we propose a middleware which can be used
by any existing permission manager. The middleware is
designed to be (i) secure against any permission leaks; (ii)
highly usable with minimum impact on the usability of any
running app; (iii) transparent to app users and developers,
and (iv) low in overall performance overhead (about 2.44%)
and power consumption (about 1%). In the future, we plan
to investigate how to help users configure appropriate BPLs
for different types of apps in different contexts so as to
enhance mobile security and user privacy in a user-friendly
manner.
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