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Abstract

This paper studies the flexible-versus-dedicated technology choice and capacity invest-

ment decisions of a multi-product firm under demand uncertainty in the presence of

budget constraints. The firm operates under a capital budget for financing the capacity

investment, and an operating budget, which is uncertain in the capacity investment

stage, for financing the production. We investigate how the tightening of the capital

budget and a lower financial flexibility in the production stage (the likelihood of hav-

ing sufficient operating budget) shape the optimal technology choice. We find that the

dominant regime is one where dedicated technology should be adopted for a larger in-

vestment cost range, and thus, is the best response to the tighter capital budget, whereas

flexible technology is the best response to lower financial flexibility. We identify the key

roles that the capacity intensity (the ratio of unit capacity cost to total unit capaci-

ty and production cost) of each technology and the pooling value of operating budget

with dedicated technology, which brings this technology closer to flexible technology in

terms of the resource network’s flexibility, play in a budget-constrained environment.

Managerially, our results underline that in the presence of financial constraints, firms

should manage technology adoption together with plant location, which shapes capacity

intensity, or product portfolio, which shapes financial flexibility.

Key Words: Capacity, Flexibility, Technology, Budget, Multi-product Newsvendor,

Financial Constraints, Capital Market.
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1 Introduction

Multi-product firms often use product-flexible resources (flexible technology) to cope with

demand uncertainty. Compared to product-dedicated resources (dedicated technology),

these flexible resources can manufacture multiple products on the same capacity, and pro-

vide the ability to reallocate this capacity between products in response to demand realiza-

tions. This capacity-pooling benefit of the flexible technology is a hedge against demand

uncertainty. Flexible technology investment is prevalent in many industries, including au-

tomotive, pharmaceutical, shipbuilding, aerospace and defense. Given the capital-intensive

nature of these industries, one of the key determinants of the technology investment is the

availability of financial resources to cover the costs incurred for capacity investment and

production. In the operations management literature, as also highlighted in Van Mieghem

(2003), the majority of papers focusing on technology investment (often implicitly) assume

that firms have abundant financial resources, and study the flexible versus dedicated tech-

nology choice and stochastic capacity investment in the absence of financial constraints.

In theory, as follows from Modigliani and Miller (1958), financial constraints do not exist

when there are no frictions (such as agency costs due to asymmetric information, taxes,

financial distress cost etc.) in the capital markets. In this case, operational decisions can be

made safe in the knowledge that sufficient financial resources to support these investments

can be provided by raising funds from the external capital markets. However, in practice,

there are frictions in the capital markets (Harris and Raviv 1991) and thus, the operational

decisions are made in the presence of financial constraints, as empirically well-documented

(see, for example, Whited and Wu 2006). It is therefore important for operations managers

to understand the impact of financial constraints when choosing the right technology to

adopt and capacity investment to make.

In this paper, we aim to develop that knowledge base by analyzing the flexible-versus-

dedicated technology choice and stochastic capacity investment in the presence of budget

constraints. In practice, the capital expenditure and the operating expenditures are funded

by different budgets. The capacity investment is financed through a capital budget which

covers the procurement cost of the physical assets such as land and machinery. The sub-

sequent production activities are financed through an operating budget, which covers the

factory related costs such as overhead, raw material procurement, machining and labor.

The operating budget remains uncertain at the time of the capacity investment and may

become constraining in the production stage for two main reasons. First, the operating

budget may be lower than anticipated due to tighter external financing conditions. As
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commonly observed in practice, banks frequently limit credit to firms as a response to

changes in economic conditions (Chava and Purnanandam 2011). For example, in the

aftermath of the global financial crisis in 2007, the unavailability of external capital became

an issue for manufacturing firms all around the world (Pimlott 2009); “credit terms have

tightened or available credit has disappeared altogether.” (Matson 2009). The resulting

lower operating budget may become insufficient to finance the production at its full scale.

For example, in the automotive industry, Saab scaled down its production volume, and even

suspended its production on several occasions between 2010 and 2011 owing to problems in

financing the operating costs including the procurement cost (Hamilton 2011) and the wages

for the employees (Kinnader 2011). In the furniture manufacturing industry, Norwalk shut

down its production facility due to not being able to meet its payroll after Comerica, its main

lender, canceled its credit line (Byrnes 2009). In the shipbuilding industry, China Rongsheng

Heavy Industries Group experienced problems in financing their (ship) production, and

laid off as many as 8000 workers due to tighter external financing conditions (Jourdan and

Wallis 2013).1 In all manufacturing industries, the Chinese small and medium enterprises

scaled down their production volume or entirely closed their production facilities because

they were not able to finance their production due to tighter external financing conditions

(Shih-huang 2011). Second, the operating budget may be lower than anticipated due to a

decrease in internal financing. When the focal unit is a business unit which relies on internal

financing from its parent company, the company may fund this unit at a lower level than

anticipated due to a reallocation to a more profitable business unit (Scharfstein and Stein

2000). For example, facing budget constraints, Boeing decided to close down its strategic

airlifter assembly plant in California to reallocate the funds elsewhere (Butler 2013).

In summary, the operating budget may be lower than anticipated due to tighter external

financing conditions or due to lower internal financing, and the resulting operating budget

may become insufficient to finance the production at its full scale. Such production scale-

downs have a lasting and significant impact on production volume when the production lead

time is high such that the cash conversion cycles (the cycle time of sales revenues funneled

back to production) are long, as in the case of the shipbuilding and the aerospace and defense

industries; or, regardless of the production lead time, when these production scale-downs

result in the loss of production resources or expertise (for example, due to laying off workers

1In the shipbuilding industry, the tighter external financing conditions have also decreased the demand

for ships, as the ship-buyers have also experienced financing problems. However, according to a Rongsheng

executive, the main problem has been the operating budget constraints: “We have been getting orders but

can’t seem to get construction loans from banks to build these projects” (Jourdan and Wallis 2013).
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or plant closures). We conclude that it is important for the operations manager to jointly

consider capital- and operating-stage budget constraints in choosing which technology to

adopt. Moreover, which technology should be favored in the face of tighter capital budget

or operating budget conditions are open questions.

To shed light on these questions, we propose a two-stage model that - in a stylized man-

ner - captures the significance of the operating budget in the technology choice decision of a

firm. The firm produces and sells two products under demand uncertainty to maximize its

expected profit. In the first stage, the firm makes the flexible-versus-dedicated technology

choice and the capacity investment decision with respect to a capital budget constraint and

in the face of demand and operating budget uncertainty. In the second stage, it determines

the production quantities after these uncertainties are resolved. We refer to the likelihood

that the firm is able to find an operating budget that is sufficient to fully cover the oper-

ating costs for any capacity level (i.e. the likelihood that it is budget-unconstrained in the

production-stage for any given capacity level) as its “financial flexibility.”

We solve for the optimal capacity level and production quantities with each technology.

Using a reformulation of the sum of unit capacity and production costs as a unit (aggregate)

investment cost with an associated capacity intensity level (the proportion of capacity cost in

the investment cost), we identify the unique unit investment cost threshold that determines

the optimal technology choice. In presenting our insights, to better delineate the intuition,

we first focus on the special case with identical capacity intensities, and then discuss how

our results are impacted as the capacity intensity of flexible technology increases.

Technology Choice. Our first research objective is to study the impact of accounting

for budget constraints on the optimal technology choice. We carry out this analysis by mak-

ing a comparison with the budget-unconstrained benchmark case, which has been the main

focus of the literature to date. To this end, we compare the unit investment cost threshold

we derive with its counterpart in a budget-unconstrained environment. The former captures

the capacity-pooling value of the flexible technology and the relative impact of the capital

budget constraint and the operating budget uncertainty on each technology, while the latter

only captures the capacity-pooling value of the flexible technology. Intuitively, accounting

for budget constraints is important in avoiding technology mis-specification, but what is

the direction of technology mis-specification? What are the main drivers that are unique

to a budget-constrained environment that influence this direction of mis-specification?

We identify that the overall resource network’s flexibility plays an important role. Be-

cause the operating budget can be allocated between the two products in response to the
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demand realizations, the operating budget can be interpreted as a flexible resource that is

used in conjunction with the capacity investment. In a budget-constrained environment,

the technology choice is determined by comparing a flexible system (flexible capacity and a

flexible operating budget) with a partially-flexible system (dedicated capacities and flexible

operating budget). In the absence of budget constraints, because the operating budget is

not constraining, this comparison is between a flexible system (flexible capacity) and a non-

flexible system (dedicated capacities). In other words, the flexibility of the operating budget

brings dedicated technology closer to flexible technology in terms of the overall resource net-

work’s flexibility. We show that to what extent this flexibility is beneficial with dedicated

technology, i.e. the pooling value of the operating budget with dedicated technology, is an

important driver of the technology choice.

With identical capacity intensities, we establish that dedicated technology should be

adopted for a larger unit investment cost range in comparison with the budget unconstrained

benchmark due to the pooling value of the operating budget with this technology. When

flexible technology has larger capacity intensity, the relative total capacity investment and

production costs also matter, and the financial flexibility level plays a key role. In particular,

flexible (dedicated) technology should be adopted for a larger unit investment cost range

in comparison with the budget unconstrained benchmark when the financial flexibility is

low (high). These results demonstrate that the capacity intensity of each technology, the

pooling value of the operating budget with dedicated technology and the financial flexibility

level have a pronounced effect on the direction of technology mis-specification.

Impact of a tighter capital budget. Our second research objective is to study how

the tightening of the capital budget shapes the flexible-versus-dedicated technology choice.

Intuitively, a tighter capital budget has a negative impact on profitability under either

technology; however, it is an open question which technology is less negatively affected. To

answer this question, we conduct sensitivity analysis to investigate how the unit investment

cost threshold we derive changes in the capital budget. With identical capacity intensities,

because dedicated technology has a lower total capacity investment cost, this technology

should be adopted for a larger unit investment cost range, and thus, is the best response

to the tightening of the capital budget. When flexible technology has a larger capacity

intensity, the dominant regime is the same unless the capital budget is severely constraining

and the financial flexibility in the production stage is moderate. In this case, the operating

budget considerations become critical as we explain later in detail. Therefore, flexible

technology should be adopted for a larger unit investment cost range, and thus, is the best
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response to the tightening of the capital budget. Managerially, these results are important

because they imply that the optimal technology adopted should differ depending on the

severity of the capital and operating budget constraints. Thus, indiscriminately adopting

the same technology as financial constraints get tighter can be a detrimental strategy.

Impact of lower financial flexibility in the production stage. Our third research

objective is to study how financial flexibility affects the flexible-versus-dedicated technology

choice. To answer this question, we conduct sensitivity analysis to investigate how the unit

investment cost threshold we derive changes in the financial flexibility level. With identical

capacity intensities, the dominant regime is one where dedicated technology should be

adopted for a larger unit investment cost range, and thus, is the best response to lower

financial flexibility. This finding is reversed when the financial flexibility is sufficiently low.

These results are driven by the impact of financial flexibility on the pooling value of the

operating budget with dedicated technology: We establish that lower financial flexibility

increases this pooling value unless the financial flexibility is sufficiently low. When flexible

technology has a higher capacity intensity, the total production cost is lower with this

technology, and thus, all else equal, this technology is less negatively impacted by lower

financial flexibility. When the capacity intensity of flexible technology is sufficiently large,

this effect outweighs the increasing pooling value of the operating budget with dedicated

technology: The dominant regime is one where flexible technology should be adopted for a

larger unit investment cost range, and thus, is the best response to lower financial flexibility.

We conclude that financial flexibility and flexible technology are complements when higher

financial flexibility favors adoption of flexible technology, and they are substitutes otherwise.

Because flexible technology has a higher capacity investment cost than dedicated tech-

nology, the comparison between the capacity intensity with either technology is determined

by the relative production costs. The relative production costs depend on technology char-

acteristics (e.g. automation level), the industry setting or the plant location. For example,

Fine and Freund (1990) argue that when the two technologies are highly automated, be-

cause the labor content for either technology is very low, the material procurement cost

will dominate, and thus, the production costs will be very similar for the two technologies.

In this case, flexible technology has a strictly larger capacity intensity. Consider another

example in the pharmaceutical industry. Pisano and Rossi (1994) argue that the production

cost is higher with the flexible technology. This is because dedicated technology uses equip-

ment and facilities optimized for a particular product, whereas flexible technology requires

change-overs between products that impose additional costs. In this case, if the production
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cost with flexible technology is sufficiently high, then both technologies may have the same

capacity intensity. Plant location matters as well: the same technology deployed in plant

locations with different labor costs may incur different production costs and hence exhibit

different capacity intensity levels. Regardless of which technology has a higher produc-

tion cost, our results underline the importance of considering these costs rather than only

capacity costs, which have been the main focus of the extant literature.

The remainder of this paper is organized as follows: §2 surveys the related literature

and discusses the contribution of our work. §3 describes the model and discusses the basis

for our assumptions. §4 derives the optimal strategy for a given technology. §5 analyzes the

optimal technology choice and investigates the impact of budget constraints on this choice.

§6 concludes with a discussion of the main insights and future research directions.

2 Literature Review

Our paper’s contribution is to the literature on stochastic capacity and technology invest-

ment in multi-product firms. Papers in this stream consider investment in flexible and

dedicated capacity, and barring two exceptions (Boyabatlı and Toktay 2011, Chod and

Zhou 2014), they do so in the absence of financial constraints. Yet operations managers

rely on limited budgets to make this capacity investment and subsequent production de-

cisions. This is the first paper that studies how the capital budget constraint and the

operating budget uncertainty jointly shape the flexible-versus-dedicated technology choice

and the optimal capacity investment with each technology.

In the literature on stochastic capacity and technology investment in multi-product

firms, Boyabatlı and Toktay (2011) and Chod and Zhou (2014) are the only papers that

model flexible technology investment in financially-constrained environments. They focus on

a budget constraint that applies to the capacity investment stage only, and unlike our paper,

they assume this budget constraint can be relaxed by borrowing from external sources. They

implicitly assume full financial flexibility in the production stage, i.e. there is no budget

constraint in this stage. In their models, the capacity intensity of the technology does

not matter either. In other words, two of the key drivers that our work highlights are

not captured in these papers. More importantly, these papers focus on different research

questions than ours. We compare our work with these two papers in detail.

Chod and Zhou (2014) examine the relation between a firm’s resource flexibility and

its financial leverage. They analyze the optimal mix of flexible and dedicated capacity

investments in the presence of a capital budget. They assume that the firm can borrow from

external capital markets, and that the cost of borrowing is determined by the agency cost
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of debt. Their model captures very different aspects of capacity investment in the presence

of financial constraints. In particular, they investigate the link between flexible capacity

investment and underinvestment or asset substitution problems raised by the agency cost of

debt. Their main finding is that when the cost of flexible capacity investment is relatively

low, lenders anticipate the benefit of flexible capacity in reducing the default risk, and

provide more favorable credit terms, which in turn, increases the firm’s financial leverage.

Boyabatlı and Toktay (2011) analyze flexible-versus-dedicated technology choice in the

presence of a capital budget. They also assume that this budget can be relaxed by bor-

rowing from external capital markets, and the equilibrium financing cost is endogenously

determined by the operational decisions. They analyze the impact of demand uncertainty

on the equilibrium technology choice. They normalize the production costs to zero, thus,

the operating budget is irrelevant. Therefore, two key drivers of our results, the capacity

intensity of each technology, and the financial flexibility in the production stage, do not

exist in their model. In this paper, as summarized in §1, our results identify the critical

roles that these two drivers play in the relative attractiveness of each technology.

There is a stream of papers that study flexible capacity investment in the absence of

financial constraints. Fine and Freund (1990) model an n-product firm that invests in

n dedicated capacities and a single flexible capacity that can manufacture all products.

They show that when the product demands are perfectly positively correlated, the firm

does not invest in flexible capacity. Van Mieghem (1998), focusing on a similar model

with two products, demonstrates that this argument does not continue to hold in the p-

resence of asymmetric prices in the product markets. Bish and Wang (2004) extend the

analysis and the result in Van Mighem (1998) by endogenizing the pricing decision in each

product market. In a similar modeling framework, Chod and Rudi (2005) consider invest-

ment in a flexible capacity with endogenous pricing decision, and demonstrate that the

optimal capacity investment level increases with a higher demand variability and a lower

demand correlation assuming a bivariate normal demand uncertainty. A number of papers

in this literature investigate the interplay between flexible capacity investment and other

key operational issues. These key issues include supply chain network design (Jordan and

Graves 1995), downward substitution among quality-differentiated products (Netessine et

al. 2002), supply disruptions (Tomlin and Wang 2005), risk-aversion of the decision-maker

(Van Mieghem 2007), competition in the product markets (Goyal and Netessine 2007),

the ability to produce above/below the installed capacity (Goyal and Netessine 2011), and

the productivity loss in the product launches (Gopal et al. 2013). None of these papers
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incorporate financial constraints.

Two other streams of literature are related to our paper due to their incorporation of

financial constraints. Following the seminal work of Modigliani and Miller (1958), there is a

vast amount of research in the Corporate Finance literature that investigates the interaction

between a firm’s operational investments and financing policies in a variety of settings. Since

the focus of these papers is on financial issues, they do not consider separate operational

decisions such as technology, capacity and production as considered in our paper, and the

sequential nature of these decisions under demand uncertainty. In the Operations Manage-

ment literature, Babich and Sobel (2004), Buzacott and Zhang (2004) and, more recently,

Babich (2010) and Yang and Birge (2011) analyze similar issues with a stronger formal-

ization of operational decisions. We refer the reader to Yang et al. (2012) for a review of

papers in this stream. All these papers analyze the impact of an endogenous capital budget

constraint in a single-product firm. The budget constraint is endogenous as it is determined

by the interaction between the capacity investment and the external capital markets. These

papers establish the value of integrating financing and capacity investment decisions. Our

scope is a focal unit that makes the operational decisions based on the exogenously given

capital-budget and an uncertain operating-budget. Therefore, unlike these papers, we do

not study the value of integrating financing and capacity investment decisions. Instead, we

extend the analysis of the impact of budget constraint in two significant ways: First, we

consider an operating budget, which is uncertain in the capacity investment stage, and can

be constraining in the production stage. Second, we consider a multi-product unit where

the technology choice also matters.

3 Model Description and Assumptions

Notation and Preliminaries. The following mathematical representation is used through-

out the text: The random variable ξ̃ has a realization ξ. Bold face letters represent column

vectors of the required size and ′ denotes the transpose operator. E denotes the expectation

operator, ΩC denotes the complement of set Ω and (x)+ .
= max(x, 0). Monotonic relations

(increasing, decreasing) are used in the weak sense unless otherwise stated.

We consider a firm that produces and sells two products in a single period so as to

maximize its expected profit. We model the firm’s decisions as a two-stage problem: The

firm makes its technology choice (dedicated D versus flexible F ) and capacity investment

decision under the demand and operating budget uncertainties; and the production decision

after the resolution of these uncertainties. Each technology T ∈ {D,F} is characterized by

a unit capacity cost cT and a unit production cost yT that is identical for both products.
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The unit (aggregate) investment cost is denoted by ηT and equals cT + yT . The sequence

of events is presented in Figure 1.

Capital budget Operating budget

Demand (ξ1, ξ2) and operating budget uncertainties are resolved

Capacity investment level
Production quantity

t

Technology choice T ∈ {D,F}

Stage 1 Stage 2

B1

Ample with probility β

B2 with probility 1− β

Figure 1: Timeline of Events

The firm is exposed to two budget constraints: a capital budget to finance the capacity

investment, and an operating budget to finance the production volume. In practice, capital

and operating budgets are separate. Therefore, we assume that any leftover budget from the

capacity investment stage cannot be used to finance the production. The capital budget is

denoted by B1. The operating budget, which is common for both products, is uncertain at

the capacity investment stage, and it is realized before the production decisions are made.

For tractability, we choose a two-point characterization: The operating budget is ample

with probability β ∈ [0, 1], and it is B2 > 0 with probability 1 − β.2 By ample, we mean

this budget is sufficient to finance the production at a level that fully utilizes the highest

capacity investment level that can be made with the capital budget B1. B2 is insufficient

to finance this production volume, i.e. B2
yT

< B1
cT

for T ∈ {D,F}.
Ample operating budget represents the case where the firm is financially flexible and is

able to find sufficient resources (internally or from external capital markets) to fully fund

the production activities regardless of the capacity investment level. B2 represents the case

where the firm is financially inflexible, and is not able to find resources beyond B2 due to the

reasons discussed in the Introduction. Depending on the capacity level chosen in stage 1, B2

may or may not be sufficient to fully utilize this capacity level. If B2 is insufficient, then the

production is budget constrained with probability (1− β). As β increases, the firm is more

likely to be financially flexible in the production stage, and it is always financially flexible

2A continuous distribution on the operating budget could be utilized, but is not tractable. This two-point

characterization captures the budget uncertainty and yields closed-form solutions for the optimal capacity

investment.
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when β = 1. Therefore, β captures the expected financial flexibility level in the production

stage. For brevity, hereafter we drop the term “expected,” and denote β as the financial

flexibility level in the production stage. In summary, β < 1 introduces the possibility of an

operating budget constraint, and B2 parameterizes the severity of this budget constraint.

Price-dependent demand for each product i is represented by the same iso-elastic inverse-

demand function pi(qi; ξi) = ξiq
1/b
i .3 Here, b ∈ (−∞,−1) is the constant price elasticity of

demand, pi denotes the price, qi denotes the quantity, and ξi represents the demand risk

in market i. The demand uncertainty ξ̃
′

= (ξ̃1, ξ̃2) has a positive support with probability

density function f(ξ1, ξ2). We assume that ξ̃ follows a symmetric bivariate distribution

with mean E[ξ1] = E[ξ2] = µξ and covariance matrix Σ with Σii = σ2, where σ denotes the

standard deviation, and Σij = ρσ2 for i 6= j where ρ denotes the correlation coefficient.

We assume that the firm adheres to a production clearance strategy, that is, choosing

the production level so as to fully utilize the available production capacity. This is an

assumption that is widely used in the literature for tractability (see for example, Chod

and Rudi (2005), Goyal and Netessine (2007, 2011) and Swinney et al (2011)).4 In our

model, the available production capacity is determined by the two resources required for

production, the capacity invested at stage 1 and the realized operating budget. With the

production clearance strategy, the firm optimally chooses how to allocate the maximum

available production capacity between the two products.

Flexible technology has a single resource with capacity level KF that is capable of pro-

ducing two products. Dedicated technology has two resources that can each produce a single

product. Because we assume symmetric products, the firm optimally invests in identical

capacity levels for each product with dedicated technology. Therefore, a single capacity

level KD is sufficient to characterize the capacity investment decision. For tractability, we

assume cD
cD+yD

> 1 − E[min(ξ̃1,ξ̃2)]
µξ

. This is a reasonable assumption for capacity-intensive

industries, where the capacity cost is larger than the production cost.5

3The iso-elastic function is commonly used in the literature (see, for example, Chod and Rudi 2006).
4Another interpretation of the production clearance is as follows: In practice, the firm may receive regular

price for some capacity units, discounted price for some others, and no revenues for the unused capacity. The

price in our model can be interpreted as average revenue received from one unit of capacity, which satisfies

two important properties: The average revenue increases in demand shock and decreases in capacity.
5For example, when ξ̃ follows a symmetric bivariate normal distribution, this assumption is equivalent

to cD
cD+yD

>
σξ
µξ

√
1−ρ
π

. Even with a correlation coefficient ρ as low as −1, and a coefficient of variation
σξ
µξ

as high as 0.3, this implies cD
cD+yD

> 0.24, which is satisfied in capacity-intensive industries.
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4 The Optimal Strategy for a Given Technology

In this section, we describe the optimal solution for the firm’s capacity investment and

production decisions with each technology. We solve the firm’s problem using backward

induction starting from stage 2. All the proofs are relegated to the Appendix.

4.1 Flexible Technology

In stage 1, the firm invested in capacity level KF . In stage 2, the firm observes the demand

and the operating budget; and determines the production volume in each market QF
′ =

(Q1
F , Q

2
F ) to maximize the profit. When the operating budget realization is B2, the firm’s

stage-2 profit maximization problem is given by

max
QF≥0

ξ1Q
1
F

(1+ 1
b
)

+ ξ2Q
2
F

(1+ 1
b
) − yF (Q1

F +Q2
F ) (1)

s.t. Q1
F +Q2

F ≤ min

(
KF ,

B2

yF

)
.

With the production clearance assumption, the firm chooses the production vector so as

to fully utilize the available production capacity, thus, the constraint in (1) is binding at

the optimal solution: The firm optimally allocates the maximum attainable production

volume given the capacity and the budget constraints between the two products based

on the demand realizations. The unique optimal production vector is given by Q∗F
′ =

min
(
KF ,

B2
yF

)(
ξ1
−b

ξ1
−b+ξ2

−b ,
ξ2
−b

ξ1
−b+ξ2

−b

)
. When there is ample budget, the optimal production

volume is determined by the capacity KF .

In stage 1, the firm has a capital budget B1 and determines the optimal capacity invest-

ment level K∗F with respect to demand and operating budget uncertainties so as to maximize

the expected profit. The firm’s expected profit for a given feasible capacity investment level

KF ∈
[
0, B1

cF

]
can be written as

ΨF (KF ) = −cFKF + β

[
E
[(
ξ̃−b1 + ξ̃−b2

)− 1
b

]
K

(1+ 1
b
)

F − yFKF

]
(2)

+ (1− β)

[
E
[(
ξ̃−b1 + ξ̃−b2

)− 1
b

]
min

(
KF ,

B2

yF

)(1+ 1
b
)

− yF min

(
KF ,

B2

yF

)]
.

For KF ≤ B2
yF

, the production volume in each market is effectively operating-budget un-

constrained
(
QjF
∗

=
ξj
−b

ξ1
−b+ξ2

−bKF

)
. For KF > B2

yF
, it is operating-budget constrained

(
QjF
∗

=
ξj
−b

ξ1
−b+ξ2

−b
B2
yF

)
with probability 1 − β, and it is effectively budget unconstrained

otherwise.
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Proposition 1 Let Ku
F
.
=


(1+ 1

b )E
[
(ξ̃−b1 +ξ̃−b2 )

− 1
b

]
cF+yF



−b

denote the budget-unconstrained ca-

pacity investment level, and Kβ
F
.
=


(1+ 1

b )E
[
(ξ̃−b1 +ξ̃−b2 )

− 1
b

]
cF
β

+yF



−b

denote the β-flexible capacity

investment level. When B2
yF
≥ Kβ

F , K∗F = min
(
Ku
F ,

B2
yF

)
. Otherwise, K∗F = min

(
Kβ
F ,

B1
cF

)

We first discuss the budget-unconstrained capacity level Ku
F , and the β-flexible capacity

level Kβ
F (by definition Kβ

F ≤ Ku
F ). Ku

F is the solution to ∂ΨF (KF )
∂KF

= 0 when min
(
KF ,

B2
yF

)

in (2) is replaced by KF . Kβ
F is the same when min

(
KF ,

B2
yF

)
is replaced by B2

yF
. When

KF > B2
yF

, since an additional unit of capacity is utilized in the production stage with

probability β, for a given unit production cost yF , the marginal capacity investment cost is

cF
β , as appears in the characterization of Kβ

F . Kβ
F strictly increases in the financial flexibility

β and equals Ku
F at full financial flexibility (β = 1).

To delineate the intuition behind the optimal capacity investment strategy in Proposi-

tion 1, we first ignore the impact of the capital budget B1. When B2 is sufficient to finance

the production fully utilizing Ku
F (Case III in Figure 2), K∗F = Ku

F . Otherwise, the firm

considers whether to be conservative and invest in B2
yF

, which is effectively budget uncon-

strained in the production stage, or to take an investment risk and invest in Kβ
F which

will not be fully utilized in the production stage with probability 1 − β due to the budget

constraint B2. When B2 is sufficiently low
(
B2
yF

< Kβ
F

)
, because the upside gain from the

ample operating budget realization is significantly large, the firm chooses to take the invest-

ment risk (Case I), and K∗F = Kβ
F . When B2

yF
≥ Kβ

F , the upside gain is not large enough.

Therefore, the firm chooses to be conservative (Case II), and K∗F = B2
yF

. Now consider the

impact of B1. Since B1
cF

> B2
yF

by assumption, B1 can be constraining only when the firm

chooses an investment level that is not always fully utilized in the production stage (Case

I). In particular, when B1
cF

< Kβ
F , K∗F = B1

cF
. This is illustrated in Figure 2.

Kβ
F

B2

yF
Ku
F

K∗
F = min

(
B1

cF
, Kβ

F

)
K∗

F = B2
yF

K∗
F = Ku

F

0 I II III

Figure 2: The optimal capacity investment K∗F , where Ku
F and Kβ

F are as defined in Propo-

sition 1.

Hereafter, we focus on a budget-constrained environment where B1 and B2 are insuf-

12



ficient to finance the capacity investment and the production volume with the budget-

unconstrained capacity level respectively, i.e. B1
cF

< Ku
F and B2

yF
< Ku

F . In this case,

K∗F = min
(
B1
cF
,max

(
B2
yF
,Kβ

F

))
, and substituting it in (2), the optimal expected profit Ψ∗F

can be obtained, which is omitted for brevity. Corollary 1 characterizes the impact of the

financial flexibility β and the capital budget B1 on K∗F and Ψ∗F :

Corollary 1 There exist unique 0 < β
0
F < β

1
F < 1 such that

i) K∗F = B2
yF

and
∂Ψ∗F
∂β = 0 if β ≤ β

0
F ; K∗F = min

(
Kβ
F ,

B1
cF

)
, where

∂Kβ
F

∂β > 0, and
∂Ψ∗F
∂β > 0

otherwise;

ii) K∗F <
B1
cF

and
∂Ψ∗F
∂B1

= 0 if β ≤ β1
F ; K∗F = B1

cF
and

∂Ψ∗F
∂B1

> 0 otherwise.

In summary, two observations can be made with the flexible technology. First, a lower

financial flexibility β reduces profitability when this flexibility is sufficiently high. Otherwise,

the firm limits its capacity investment so that even B2 is not constraining and β has no

further impact on the profitability. Second, a tighter capital budget B1 reduces profitability

when the financial flexibility is sufficiently high. Otherwise, the optimal capacity investment

remains below this budget, and it does not have any impact. These observations have

important implications for the optimal technology choice as analyzed in §5.

4.2 Dedicated Technology

In stage 1, the firm invested in capacity level KD for each market. In stage 2, the firm

observes the demand realizations ξ
′

= (ξ1, ξ2) and the operating budget and determines

the production volume in each market QD
′ = (Q1

D, Q
2
D) to maximize the profit. Because

the operating budget can be allocated between the two products, it constrains the total

production volume, whereas the capacity KD constrains the production volume separately

in each market. When the operating budget realization is B2, the firm’s stage-2 profit

maximization problem is given by

max
QD≥0

ξ1Q
1
D

(1+ 1
b
)

+ ξ2Q
2
D

(1+ 1
b
) − yD(Q1

D +Q2
D) (3)

s.t. Q1
D +Q2

D ≤
B2

yD
, QjD ≤ KD for j = 1, 2.

With the production clearance assumption, the firm chooses the production vector so as to

fully utilize the available production capacity, which is determined by the capacity and the

operating budget. The set of binding constraints in (3) take three different forms in the

optimal solution.

13



Proposition 2 Under budget realization B2, the unique optimal production vector Q∗D is

characterized by

Q∗D
′ =





(KD,KD) for B2
yD
≥ 2KD

B2
yD

(
ξ1
−b

ξ1
−b+ξ2

−b ,
ξ2
−b

ξ1
−b+ξ2

−b

)
for KD > B2

yD
,

and for 2KD > B2
yD
≥ KD,

Q∗D
′ =





(
KD,

B2
yD
−KD

)
if ξ2 ≤ ξ1

[ B2
yD
−KD
KD

]− 1
b

B2
yD

(
ξ1
−b

ξ1
−b+ξ2

−b ,
ξ2
−b

ξ1
−b+ξ2

−b

)
if ξ ∈ ΩD

.
=



ξ :

[ B2
yD
−KD
KD

]− 1
b

ξ1 ≤ ξ2 ≤ ξ1

[
KD

B2
yD
−KD

]− 1
b





(
B2
yD
−KD,KD

)
if ξ2 ≥ ξ1

[
KD

B2
yD
−KD

]− 1
b

.

Proposition 2 is illustrated in Figure 3. When B2 is sufficient to produce to capacity in both

markets (Panel a), this is the optimal production strategy. When B2 is not even sufficient

to produce to capacity in one market (Panel c), the firm optimally allocates this budget

between the two products based on the demand realizations. Otherwise (Panel b), the

optimal production strategy takes two forms depending on the demand realizations. When

the demands are sufficiently close to each other (region ΩD), the solution is the same as in

Panel c. When the demand in one market is sufficiently larger than the other (regions other

than ΩD), the firm optimally produces up to capacity in the former and uses the remaining

budget in the latter.

ξ1

ξ2

(KD, KD)

a) SD ≥ 2KD

ξ1

ξ2

ξ2 =
[
SD−KD
KD

]−1
b ξ1

(SD −KD, KD)

(KD, SD −KD)

SD

 ξ1

−b
ξ1

−b+ξ2−b
, ξ2

−b
ξ1

−b+ξ2−b




b) 2KD > SD ≥ KD

ξ2 =
[

KD
SD−KD

]−1
b ξ1

ΩD

ξ1

ξ2

SD




ξ1
−b

ξ1
−b+ξ2−b

, ξ2
−b

ξ1
−b+ξ2−b




c) KD > SD

Figure 3: The optimal production decisions with dedicated technology for a given demand

realization (ξ1, ξ2), capacity level KD, and the maximum production volume that can be

financed by the operating budget, SD
.
= B2

yD
.

In the technology choice analysis, the pooling value provided by the common operating

stage budget will emerge as an important driver. Figure 3 delineates when pooling value
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exists. When the realized operating budget B2 is sufficient to produce to capacity in both

markets (Panel a), the same profit can be generated if B2 is equally shared between the

two products. Therefore, flexibility in how to allocate this budget does not have pooling

value. Otherwise (Panels b and c), a higher profit can be generated if B2 is flexibly allocated

between the two products based on the demand realizations. In this case, the operating

budget has pooling value. When the realized operating budget is ample, this budget is

sufficient to produce to capacity in both markets, and again there is no pooling value.

Let ΨD(KD) denote the expected profit for a given KD ∈
[
0, B1

2cD

]
in stage 1. For KD ≤

B2
2yD

, the production volume in each market is effectively budget unconstrained (QjD
∗

= KD),

and ΨD(KD) = 2µξK
(1+ 1

b
)

D − 2(cD + yD)KD. For KD > B2
2yD

, it is effectively budget

unconstrained with probability β, and it is constrained by the operating budget otherwise:

ΨD(KD) = −2cDKD + β
[
2µξK

(1+ 1
b )

D − 2yDKD

]
+ (1− β)

[∫∫

ΩD

(
ξ−b1 + ξ−b2

)− 1
b

(
B2

yD

)(1+ 1
b )

f(ξ1, ξ2) dξ1 dξ2 (4)

+

∫∫

ΩCD

(
max(ξ1, ξ2)K

(1+ 1
b )

D + min(ξ1, ξ2)

(
B2

yD
−KD

)(1+ 1
b )
)
f(ξ1, ξ2) dξ1 dξ2 −B2

]
.

When the realized operating budget is B2, if ξ ∈ ΩD, the firm optimally allocates the budget

between the two products; and if ξ ∈ ΩC
D, the firm optimally produces up to the capacity

level in the more profitable market and uses the remaining budget in the other market. For

KD ≥ B2
yD

, ΩC
D = ∅, and only the former production strategy is relevant.

To better delineate the intuition behind the optimal capacity investment strategy, we

first analyze the benchmark case where the operating budget is product-specific, (and the

realized budget is equally allocated between the two products due to their symmetry). In

this case, for KD > B2
2yD

, the production volume in each market is constrained by the oper-

ating budget (QjD
∗

= B2
2yD

) with probability 1−β, and it is effectively budget unconstrained

otherwise (QjD
∗

= KD).

Proposition 3 (Product-specific Operating Budget) Let Ku
D
.
=

(
(1+ 1

b )µξ
cD+yD

)−b
denote

the budget-unconstrained capacity investment level, and Kβ
D
.
=

(
(1+ 1

b )µξ
cD
β

+yD

)−b
denote the β-

flexible capacity investment level. When B2
2yD
≥ Kβ

D, K∗D = min
(
Ku
D,

B2
2yD

)
. Otherwise,

K∗D = min
(
Kβ
D,

B1
2cD

)
.

The optimal capacity investment strategy parallels the one with the flexible technology

except for one modification: Because the capacity is separate for each product, the budget-

unconstrained capacity level Ku
D and the β-flexible capacity level Kβ

D do not depend on the

demand uncertainty in both markets, but depend on the expected demand in each market.

15



Proposition 4 (Common Operating Budget) When B2
2yD
≥ K̂D

.
=

(
(1+ 1

b )(µξ−(1−β)E[min(ξ̃1,ξ̃2)])
cD+βyD

)−b
,

K∗D = min
(
Ku
D,

B2
2yD

)
, where Ku

D is as given in Proposition 3. Otherwise, K∗D = min
(
KP
D,

B1
2cD

)
,

where the pooling-optimal capacity investment level KP
D > B2

2yD
is the unique solution to

∂ΨD
∂KD

∣∣∣
KP
D

= 0. When B2
2yD

<
Kβ
D

2 , KP
D = Kβ

D, where Kβ
D is as given in Proposition 3.

Figure 4 juxtaposes K∗D from Proposition 4 and Proposition 3. When B2 is sufficiently

high or very constraining, how this budget is allocated makes no difference for the optimal

capacity investment. At the intermediate values

(
Kβ
D

2 < B2
2yD

< K̂D

)
, KP

D is chosen unless

the capital budget B1 is constraining. In this B2 range, we can show KP
D > max

(
B2
2yD

,Kβ
D

)
:

The firm takes a larger investment risk and chooses a higher capacity level than the same

with the product-specific budget due to the pooling value of the operating budget.

Common

B2

2yD

operating budget

Product-specific
operating budgetKu

D

K∗
D = min

(
B1

2cD
, Kβ

D

)
K∗
D = B2

2yD
K∗
D = Ku

D

K̂D

K∗
D = B2

2yD
K∗
D = Ku

D

K
β
D

2

K∗
D = min

(
B1

2cD
, KP

D

)
K∗
D = min

(
B1

2cD
, KP

D = Kβ
D

)

Pooling value of B2

0

Kβ
D

Ku
D

Figure 4: The optimal capacity investment K∗D when the operating budget is common or

product-specific, where K̂D
.
=

(
(1+ 1

b )(µξ−(1−β)E[min(ξ̃1,ξ̃2)])
cD+βyD

)−b
such that ∂ΨD

∂KD

∣∣∣( B2
2yD

)+ ≤ 0

if B2
2yD
≥ K̂D, and Ku

D, Kβ
D are as defined in Proposition 3.

The optimal expected profit Ψ∗D in a budget-constrained environment can be obtained

by using K∗D, and is omitted for brevity. The impact of the financial flexibility β and the

capital budget B1 on K∗D and Ψ∗D are structurally the same as the flexible technology, and

results paralleling Corollary 1 can be obtained:

Corollary 2 There exist unique 0 ≤ β0
D < β̂0

D < 1 and β
1
D ∈ (β

0
D, 1) such that

i) K∗D = B2
2yD

and
∂Ψ∗D
∂β = 0 if β ≤ β

0
D. Otherwise, K∗D = min

(
KP
D,

B1
cF

)
, where

∂KP
D

∂β > 0.
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In this case, KP
D = Kβ

D if β ≥ β̂0
D;

ii) K∗D < B1
2cD

and
∂Ψ∗D
∂B1

= 0 if β ≤ β1
D; K∗D = B1

2cD
and

∂Ψ∗D
∂B1

> 0 otherwise.

Unlike Corollary 1, it is not analytically tractable to prove
∂Ψ∗D
∂β > 0 when β > β

0
D without

introducing additional parametric assumption.6 However, in all our numerical experiments

(that are described in §5), we observe that Ψ∗D strictly increases in β for β > β
0
D.

The pooling value of the (common) operating budget can be explicitly characterized

by considering the difference between Ψ∗D and the optimal expected profit Ψ̂∗D where this

budget is product-specific. As intuition suggests, there is no pooling value if the demands

are perfectly positively correlated. Otherwise, the pooling value crucially depends on the

financial flexibility level β:

Corollary 3 Let 4P .
= Ψ∗D − Ψ̂∗D, and assume ρ < 1. 4P = 0 if β ≤ β

0
D or β = 1, and

4P > 0 otherwise. When β ≥ β̂0
D, 4P .

= (1−β)
(
B2
yD

)(1+ 1
b
)
(
E
[(
ξ̃−b1 + ξ̃−b2

)− 1
b

]
− 2−

1
b µξ

)
.

When β ≤ β0
D, K∗D = B2

2yD
with the common or the product-specific budget, and the budget

is always sufficient to finance the production with full capacity utilization. Therefore, there

is no pooling value. At full financial flexibility, i.e. when β = 1, the operating budget is

always ample, and thus, it does not matter if this budget is common or product-specific, i.e.

4P = 0. The pooling value can be characterized in closed form for β ≥ β̂0
D because K∗D can

be characterized in closed form here. It can be proven that E
[(
ξ̃−b1 + ξ̃−b2

)− 1
b

]
≥ 2−

1
b µξ

with equality holding only for ρ = 1, and thus, 4P > 0 for ρ < 1 in this case.

We close this section with an important remark: 4P first increases then decreases in

β.7 For low β values, 4P increases because the firm benefits from a higher β only with the

common operating budget: K∗D > B2
2yD

only with this budget due to its pooling value. For

larger β values, the firm benefits from a higher β with the product-specific and the common

operating budget. As β increases, because the firm is less likely to be budget constrained in

the production stage, 4P decreases and equals zero when β = 1. These observations have

important implications for the optimal technology choice analyzed in §5.

6One sufficient condition for
∂Ψ∗

D
∂β

> 0 to hold when β > β
0

D is cD−yD
cD+yD

> 1− E[min(ξ̃1,ξ̃2)]
µξ

.
7We can analytically perform the sensitivity analysis for sufficiently low β range, where 4P increases in

β, and for β ≥ β̂0
D, where 4P decreases in β following from Corollary 3. In between, we resort to numerical

experiments (that are described in §5). In all our numerical instances, we consistently observe that 4P first

increases then decreases in β.
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5 The Optimal Technology Choice and The Impact of Bud-

get Constraints

In this section, we provide answers to our three main research questions. In particular, we

analyze the optimal technology choice in a budget-constrained environment in comparison

with the budget-unconstrained environment (§5.1), and how this choice is affected by a

tighter capital budget (§5.2) and a lower financial flexibility in the production stage (§5.3).

To provide analytical results and generate sharper managerial insights, we introduce a

reformulation in our model. To characterize technology T , instead of (cT , yT ), i.e. the unit

capacity and production costs, we use (ηT , αT ) where ηT = cT + yT and αT
.
= cT

cT+yT
. In

this formulation, ηT denotes the unit (aggregate) investment cost of technology T . We call

αT ∈ [0, 1] the capacity intensity and (1 − αT ) the production intensity of the technology

T . Because the former measure uniquely defines the latter, we will focus on the capacity

intensity αT in our analysis.

It is easy to establish that the optimal expected profit strictly decreases in the unit

investment cost with each technology. Therefore, for a given unit investment cost ηD of

dedicated technology, there exists a unique unit investment cost threshold ηF (ηD) for flexible

technology such that it is optimal to invest in flexible technology when ηF ≤ ηF (ηD), and

in dedicated technology otherwise. Let ηuF (ηD) denote this cost threshold in the absence of

budget constraints, and ηF (ηD) denote the same in a budget-constrained environment.

In the absence of budget constraints, the firm optimally invests in budget-unconstrained

capacity investment level Ku
F with flexible technology and Ku

D with dedicated technology

as defined in Propositions 1 and 3 in §4. Therefore, for a given ηD, the flexible threshold

is characterized by ηuF (ηD)
.
= ηD




E
[
(ξ̃−b1 +ξ̃−b2 )

− 1
b

]
2−

1
b µξ




b
b+1

, where the term E
[(
ξ̃−b1 + ξ̃−b2

)− 1
b

]

captures the capacity-pooling value of the flexible technology.8 In the presence of budget

constraints, ηF (ηD) captures the capacity-pooling value of the flexible technology and the

relative impact of the capital budget and the operating budget uncertainty on each technol-

ogy. To answer our first research question, we compare ηF (ηD) with ηuF (ηD). To answer the

remaining two questions, we conduct sensitivity analysis to investigate how ηF (ηD) changes

in the capital budget B1 and the financial flexibility β.

8This threshold is identical to the capacity cost threshold of Boyabatlı and Toktay (2011) (“the perfect

capital market capacity cost threshold” with their terminology), where they normalize the production costs

to zero. With our reformulation of the technology cost parameters, we are able to capture the non-zero

production cost and obtain the same threshold as a function of the unit cost ηT .
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Throughout this section, we assume that the capacity intensity is (weakly) larger with

the flexible technology, i.e. αF ≥ αD. Because flexible technology has a higher capaci-

ty investment cost than dedicated technology, it has a larger capacity intensity unless its

production cost is significantly higher than dedicated technology. To better delineate the

intuition behind our results, we first focus on the special case with identical capacity inten-

sities, i.e. αF = αD. We then investigate how our results are impacted as αF increases.

Throughout this section, we use the financial flexibility thresholds β
0
D, β̂0

D and β
1
D,

as defined in Corollary 2 in §4.2. To represent the budget-constrained environment, we

assume that both B1 and B2 are insufficient to finance the capacity investment and the

production volume with Ku
D respectively. When analytical results are not attainable, we

resort to numerical experiments. In these experiments, we assume that ξ̃ follows a symmetric

bivariate normal distribution. We use the following baseline parameter values: µξ = 10,

σξ = 4% of µξ, ρ = 0, ηD = 3, αD = 0.7, αF = αD + l, where l = 1−αD
4 , B2 = k ∗

2(1 − αD)ηDK
u
D, where k = 1

10 , and b = −2. We consider a large set of values for the

parameters of interest, β and B1. In particular, we choose 40 β values in [0, 1], and assume

B1 = m ∗ 2αDηDK
u
D, where m takes 40 values between 1.1k and 0.9, which satisfies our

assumption B1
αD

> B2
1−αD . To ensure robustness with respect to demand parameters, capacity

intensity and operating budget, we vary the model parameters as follows: µξ ∈ {10, 20, 30},
σξ ∈ [4%, 8%] of µξ, ρ ∈ {−0.45, 0, 0.45}, αD ∈ {0.7, 0.9}, l ∈ {0, 1−αD

8 , 1−αD
4 , 1−αD

2 } and

k ∈ { 1
1000 ,

1
100 ,

1
10}. In summary, we focus on 691,200 instances to characterize ηF (ηD).

Our parameter choice is representative of the automotive industry along a number of

dimensions. For example, Chod and Zhou (2014) document that the coefficient of variation

of detrended annual sales of General Motors (Ford) in the period of year 1998 to year 2007

(preceding the global financial crisis) is 0.048 (0.046). If we consider the dedicated capacity

investment, and calculate the first-best production volume for each product (in the absence

of capacity or the operating budget constraints), the coefficient of variation of the sales

for each product with our baseline parameters is 0.056. Moreover, the profit margin of

each product is 3.23% of the revenues (net of the production cost) in the production stage.

This is also consistent with the automotive industry. In particular, Chod and Zhou (2014)

document that the average profit margin of General Motors (Ford) from 2005 to 2012 has

been 4.73% (3.05%). Finally, because the automotive industry is capacity-intensive, the

capacity-intensity level of each technology is chosen to be high.
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5.1 Comparison with the Budget Unconstrained Benchmark

The majority of the papers in the literature have studied flexible versus dedicated tech-

nology choice in the absence of budget constraints. We now investigate the impact of

accounting for these constraints on the optimal technology choice by making a compari-

son with the budget-unconstrained benchmark. In a budget-constrained environment, the

technology choice is determined by comparing a flexible system (with flexible capacity and

operating budget) with a partially-flexible system (with dedicated capacities and flexible

operating budget). In the absence of budget constraints, because the operating budget is

not constraining, this comparison is between a flexible system and a non-flexible system.

In other words, the flexibility of the operating budget brings dedicated technology closer

to flexible technology in terms of the overall resource network’s flexibility. Therefore, the

technology choice is impacted by to what extent this flexibility is beneficial with dedicated

technology (the pooling value of the operating budget with dedicated technology). The

technology choice is also impacted by to what extent the capacity investment is constrained

by the capital budget and the production decisions are constrained by the realized operat-

ing budget with each technology. Therefore, the comparison between ηF (ηD) and ηuF (ηD)

crucially depends on the relative total capacity investment cost with each technology, i.e.

αF ηFK
u
F |ηuF (ηD) versus 2αDηDK

u
D|ηD , the relative total production cost with each tech-

nology, i.e. (1− αF )ηFK
u
F |ηuF (ηD) versus 2(1− αD)ηDK

u
D|ηD , and the pooling value of the

operating budget with dedicated technology.

With identical capacity intensities, the total capacity investment and production costs

are the same with each technology9, and thus, only the pooling value of the operating

budget with dedicated technology matters as demonstrated in Proposition 5.

Proposition 5 (αF = αD) ηF (ηD) < ηuF (ηD) if β
0
D < β < 1, and ηF (ηD) = ηuF (ηD)

otherwise.

As follows from Corollary 3 in §4, when the realized budget B2 is always sufficient, i.e.

0 < β ≤ β
0
D, or when the budget is always ample, i.e. β = 1, there is no pooling value of

the operating budget with dedicated technology. Otherwise, there is pooling value. Because

this pooling value brings the dedicated technology closer to the flexible technology in terms

of the overall resource network’s flexibility, flexible technology is adopted for a smaller unit

9In a budget-unconstrained environment, when the firm is indifferent between the two technologies, the

total capacity investment level is lower with flexible technology due to its capacity-pooling benefit, i.e.

Ku
F |ηu

F
(ηD) ≤ 2Ku

D|ηD ; however, the investment cost is larger with flexible technology, i.e. ηuF (ηD) ≥ ηD. It

turns out that the total investment cost is identical with each technology, i.e. ηFK
u
F |ηu

F
(ηD) = 2ηDK

u
D|ηD .
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investment cost range in comparison with the budget-unconstrained benchmark.

When αF > αD, the relative total capacity investment and production costs also matter:

Proposition 6 (αF > αD) ηF (ηD) > ηuF (ηD) if 0 < β ≤ β
0
D. There exists β

2
D ≥

max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)

such that ηF (ηD) < ηuF (ηD) if β
2
D ≤ β ≤ 1.

When the financial flexibility β is sufficiently high, following Corollaries 1 and 2 in §4,

both technologies are constrained by the capital budget. Because αF > αD, the total

capacity investment cost is higher with flexible technology, and thus, this technology is

more negatively affected by a limited capital budget. Moreover, as discussed above, there is

the pooling benefit of the operating budget with dedicated technology. Therefore, flexible

technology is adopted for a smaller unit investment cost range in comparison with the

budget-unconstrained benchmark. When β is sufficiently low, following Corollaries 1, 2 and

3, the capital budget is not constraining with either technology, and there is no pooling

value with dedicated technology. In this case, the optimal capacity investment level equals

the production volume attainable with B2. Because αF > αD, the total production cost

is higher with dedicated technology, and thus, this technology is more negatively affected

by a limited operating budget. Therefore, flexible technology is adopted for a larger unit

investment cost range in comparison with the budget-unconstrained benchmark.

To investigate the β ∈ (β
0
D, β

2
D) range, we conduct numerical experiments. All instances

in our numerical set reinforce the results in Proposition 6: We observe a unique β
u
D such

that ηF (ηD) > ηuF (ηD) if β < β
u
D, and ηF (ηD) < ηuF (ηD) otherwise. We also observe β

u
D

increases in αF due to increasing difference between the total production cost with each

technology, and increases in B2 due to increasing β
0
D. These observations have important

implications for the impact of β on the optimal technology choice as analyzed in §5.3.

In summary, accounting for the budget constraints is important in avoiding technology

mis-specification. More importantly, the capacity intensity of each technology, the pooling

value of the operating budget with dedicated technology and the level of financial flexibility

in the production stage have a pronounced effect on the direction of the mis-specification.

5.2 The Impact of A Tighter Capital Budget

In this section, we investigate the impact of the capital budget B1 on the optimal technology

choice. We first analyze the case with identical capacity intensities:

Proposition 7 (αF = αD) ∂ηF (ηD)
∂B1

= 0 if 0 < β ≤ β
0
D or β = 1. ∂ηF (ηD)

∂B1
> 0 if

max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)
≤ β < 1.
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In other words, we can analytically perform sensitivity analysis for 0 < β ≤ β
0
D and β ≥

max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)

. In between, we resort to numerical experiments. Panel

a of Figure 5 summarizes the generic pattern observed in all our numerical instances.

There is a capital budget threshold Bu
1 (β) such that when B1 > Bu

1 (β), the optimal

capacity investment level with either technology is not constrained by B1, and thus, B1

has no impact. As β increases, because the optimal capacity level with each technology

increases, a higher B1 becomes necessary for an unconstrained budget, and thus, Bu
1 (β)

increases. As proven in Proposition 7, when β is sufficiently low, the B1 > Bu
1 (β) region

subsumes the entire B1 range; and when β is sufficiently high, this region ceases to exist.

When B1 < Bu
1 (β), B1 matters. In this region, in the absence of the capital budget

constraint, the total capacity investment cost is higher with flexible technology.10 Therefore,

as B1 decreases, this technology is more negatively affected, and is adopted for a smaller

unit investment cost range.
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Figure 5: The impact of the capital budget B1 on ηF (ηD) for a given (β,B1): “= 0”, “> 0”,

and “< 0” denote the sign of ∂ηF (ηD)
∂B1

. {N,F,D} document the technology that is adopted

for a larger unit investment cost range, and thus, is less negatively affected by a tighter B1.

N means neither technology is affected.

10To understand this, consider sufficiently high β. In the absence of the B1 constraint, following Corollaries

1 and 2 in §4, the optimal capacity investment is characterized by the β-flexible level with both technologies.

When ηF = ηuF (ηD), with identical capacity intensities, the total capacity investment cost is the same with

each technology. Because ηF (ηD) < ηuF (ηD), as follows from Proposition 5, and the total capacity investment

cost with technology T decreases in ηT , it is higher with flexible technology when ηF = ηF (ηD).
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A parallel result with Proposition 7 can be obtained with minor modifications when

flexible technology has a larger capacity intensity:

Proposition 8 (αF > αD) ∂ηF (ηD)
∂B1

= 0 if 0 < β ≤ β
0
D. There exists β

3
F ∈ [β

2
D, 1) such

that ∂ηF (ηD)
∂B1

> 0 if β
3
D ≤ β ≤ 1.

In other words, we can analytically perform sensitivity analysis for 0 < β ≤ β0
D and β ≥ β3

D.

In between, we resort to numerical experiments. Panel b of Figure 5 summarizes the generic

pattern observed in all our numerical instances. Unlike Panel a, in the B1 < Bu
1 (β) region,

we observe a sub-region B1 < Bl
1(β) in which ∂ηF (ηD)

∂B1
< 0. The intuition is as follows:

With a sufficiently high β, the total capacity investment cost is higher with flexible

technology. Therefore, dedicated technology is less negatively affected by a tighter B1 (the

D region in Panel b). As β decreases, the optimal capacity investment level decreases with

each technology. Because the optimal capacity level decreases to a larger extent with flexible

technology, the total capacity investment cost is lower with this technology.11 Therefore,

flexible technology is less negatively affected by a tighter B1 (the F region in Panel b). In

our numerical experiments, we observe that β
u
D decreases in B1 in the F region of Panel b,

and thus, Bl
1(β) also decreases in β.

In summary, as depicted in Figure 5, the dominant regime is one where dedicated tech-

nology is adopted for a larger unit investment cost range, and thus, is the best response

to the tightening of the capital budget. The reason is that dedicated technology has low-

er total capacity investment cost. This finding is reversed when flexible technology has a

strictly larger capacity intensity, the capital budget is severely constraining and the financial

flexibility is moderate. In this case, the operating budget considerations become critical:

Because the total capacity investment level is less sensitive to changes in financial flexibil-

ity with dedicated technology, this technology has a higher total capacity investment cost.

Therefore, flexible technology is the best response to the tightening of the capital budget.

Managerially, these results are important because they imply that the optimal technology

adopted should differ depending on the severity of the capital and operating budget con-

straints. Thus, indiscriminately adopting the same technology as financial constraints get

tighter can be a detrimental strategy.

11When the optimal capacity investment is characterized by the β-flexible level with both technologies,

for sufficiently low β, the total capacity investment cost is lower with flexible technology when ηF = ηuF (ηD).

Moreover, as follows from §5.1, ηF (ηD) > ηuF (ηD) for sufficiently low β < β
u

D. Because the total capacity

investment cost with technology T decreases in ηT , it is lower with flexible technology when ηF = ηF (ηD).
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5.3 The Impact of Financial Flexibility in the Production Stage

In this section, we investigate the impact of the financial flexibility β in the production stage

on the optimal technology choice. With identical capacity intensities, this impact depends

on the pooling value of the operating budget with dedicated technology:

Proposition 9 (αF = αD) ∂ηF (ηD)
∂β = 0 if 0 < β ≤ β0

D. ∂ηF (ηD)
∂β > 0 if max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)
≤

β < 1.

In other words, we can analytically perform sensitivity analysis for β ≤ β
0
D and β ≥

max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)

. In between, we resort to numerical experiments. Figure

6 summarizes the generic pattern observed in all our numerical instances. The impact of B2

on our results is also highlighted as it parameterizes the severity of the budget constraint.
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Figure 6: The impact of the financial flexibility β on ηF (ηD) for a given (β,B1) and B2

with αF = αD: “= 0”, “> 0” and “< 0” denote the sign of ∂ηF (ηD)
∂β . {N,F,D} document

the technology that is adopted for a larger unit investment cost range, and thus, is less

negatively affected by a lower β. N means neither technology is affected.

When β is sufficiently low, following Corollaries 1 and 2 in §4, neither technology is

impacted by β. Therefore, as shown in Proposition 9, β has no impact on the optimal

technology choice (the N regions in Figure 6).12 In the remaining β range, β matters.

When β is moderately low, as discussed at the end of §4.2, the pooling value of the operating

budget with dedicated technology increases in β, and thus, flexible technology is adopted

for a smaller unit investment cost range (the F regions in Figure 6). When β is moderately

high, the optimal capacity is given by the β-flexible level with both technologies, and the

total production cost is higher with flexible technology. Therefore, this technology benefits

12Because β
0

D decreases in B2, the N region in Figure 6 shrinks as B2 decreases.
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more from a higher β, and is adopted for a larger unit investment cost range. When β is

sufficiently high, following Corollaries 1 and 2, the capital budget is constraining with both

technologies. With identical capacity intensities, the total production cost is the same with

each technology. As β increases, as discussed at the end of §4.2, because the pooling value

of the operating budget with dedicated technology decreases, flexible technology is adopted

for a larger unit investment cost range, as shown in Proposition 9.

When flexible technology has a larger capacity intensity, the relative production costs

with each technology plays a key role for the impact of β on the optimal technology choice.

Proposition 10 (αF > αD) ∂ηF (ηD)
∂β = 0 if 0 < β ≤ β0

D. For β ∈
[
max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)
, 1

)
,

there exist a unique αF > αD such that ∂ηF (ηD)
∂β > 0 if αF < αF , and ∂ηF (ηD)

∂β < 0 otherwise.

In other words, we can analytically perform sensitivity analysis in the same β range with

Proposition 9. For the remaining β range, we resort to numerical experiments. Figure 7

summarizes the generic pattern observed in all our numerical instances.
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Figure 7: The impact of the financial flexibility β on ηF (ηD) for a given (β,B1) and B2 with

αjF = αD + lj where lj ∈ {1−αD
8 , 1−αD

4 , 1−αD
2 }: “= 0”, “> 0” and “< 0” denote the sign of

∂ηF (ηD)
∂β . {N,F,D} document the technology that is adopted for a larger unit investment

cost range, and thus, is less negatively affected by a lower β.

In comparison with the αF = αD case, the majority of the D regions in Figure 6 are

replaced with the F regions in Figure 7. This pattern can be explained by two observations:

1) When β is sufficiently high such that the capital budget is constraining with both

technologies, the impact of β on the optimal technology choice crucially depends on αF .

In this case, the total production cost with technology T ∈ {D,F} is given by 1−αT
αT

B1.

Because αF > αD, the total production cost is higher with dedicated technology, and thus,
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all else equal, this technology benefits more from a higher β. However, following Corollary 3

in §4.2, a higher β also decreases the pooling value of the operating budget with dedicated

technology. As shown in Proposition 10, when αF is smaller than a threshold αF , the

pooling effect dominates, and as β increases, flexible technology is adopted for a larger unit

investment cost range. Otherwise, the higher total production cost effect dominates, and

dedicated technology is adopted for a larger unit investment cost range. In our numerical

setting, we observe αF > αF , and thus, as β increases, dedicated technology is adopted for

a larger unit investment cost range, as depicted in Figure 7.

2) When β is moderately high such that the capital budget is not constraining, the

impact of β on the optimal technology choice crucially depends on the ordering between

the budget-constrained and budget-unconstrained investment cost thresholds. For low β

values within this range, as follows from §5.1, ηF (ηD) > ηuF (ηD) for β < β
u
D. In this case,

the total production cost is higher with dedicated technology, and thus, this technology

benefits more from a higher β, and is adopted for a larger unit investment cost range.

For larger β values within this range, β > β
u
D, ηF (ηD) < ηuF (ηD). In this case, the total

production cost is higher with flexible technology, and thus, this technology benefits more

from a higher β, and is adopted for a larger unit investment cost range (the D regions in

Figure 7). Because β
u
D increases in B2 and αF (as discussed in §5.1), the D region shrinks

as B2 or αF increases.

In summary, with identical capacity intensities, as depicted in Figure 6, the dominant

regime is one where dedicated technology is the best response to lower financial flexibility.

This finding is reversed when the financial flexibility is sufficiently low. These results are

driven by the impact of financial flexibility on the pooling value of the operating budget

with dedicated technology: Lower financial flexibility increases this pooling value unless

the financial flexibility is sufficiently low. When flexible technology has a larger capacity

intensity, the total production cost is lower with this technology, and thus, all else equal,

this technology is less negatively impacted by lower financial flexibility. When the capacity

intensity of flexible technology is sufficiently large, this effect outweighs the increasing pool-

ing value of the operating budget with dedicated technology: As depicted in Figure 7, the

dominant regime is one where flexible technology is the best response to lower financial flexi-

bility. Our results show that when flexible technology has larger capacity intensity, financial

flexibility and flexible technology are substitutes unless the capital budget is moderately

constraining and the financial flexibility is also moderate; otherwise they are complements.
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6 Conclusion

This paper contributes to the operations management literature on stochastic capacity

and technology investment in multi-product firms by analyzing the impact of financial

constraints on the flexible versus dedicated technology choice. The majority of papers in this

literature (often implicitly) assume that operational investments are made with abundant

financial resources. Yet operations managers often rely on limited budgets both in capacity

investment and production. This is the first paper that studies how the capital budget

constraint and the operating budget uncertainty jointly shape the flexible-versus-dedicated

technology choice and the optimal capacity investment with each technology.

We identify that flexibility in how to allocate the (common) operating budget based on

the demand realizations plays a key role on the optimal technology choice. As explained at

the beginning of §5.1, this operating budget flexibility brings dedicated technology closer

to flexible technology in terms of the overall resource network’s flexibility. Therefore, the

technology choice is impacted by to what extent this flexibility is beneficial with dedicated

technology (the pooling value of the operating budget with dedicated technology). We

uncover that because this pooling value is ignored, not accounting for financial constraints

may result in the more frequent adoption of flexible technology than warranted when both

technologies have the same capacity intensity (the ratio of unit capacity cost to total unit

capacity and production cost). When flexible technology has a higher capacity intensity,

the same technology mis-specification is also observed with high financial flexibility in the

production stage. Otherwise, not accounting for financial constraints results in the more

frequent adoption of dedicated technology than warranted. The reason is that flexible

technology has lower total production cost than that of dedicated technology in this case,

and not accounting for the possibility of an operating budget constraint ignores this benefit.

We observe that one type of technology is not a panacea for tighter financial constraints

- not only the severity but also the stage of these financial constraints are important drivers

of the right technology choice. Consider the case where both technologies have similar

production costs,13 and thus, the capacity intensity is strictly larger with flexible technology.

Our results demonstrate that dedicated technology is the best response to the tightening

of the capital budget and should be adopted for a larger unit investment cost range unless

this budget is severely constraining and the financial flexibility in the production stage

is moderate. Dedicated technology is the best response to lower financial flexibility and

should be adopted for a larger unit investment cost range only when the capital budget

13In practice, this is relevant, for example, with highly automated technologies (Fine and Freund 1990).
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is moderately constraining and the financial flexibility is also moderate. These results

underline the importance of considering the production costs rather than only capacity

costs, which have been the main focus of the extant literature.

Another important implication of our results is on the link between operational flexibil-

ity and operating leverage (the ratio of total capacity cost to the total expected production

cost). In a budget-unconstrained environment, because capacity intensity is higher with

flexible technology, intuitively, operating leverage is higher with this technology in com-

parison with dedicated technology. Is operating leverage higher with flexible technology

in a budget-constrained environment? Interestingly, our results imply that the operating

leverage can be lower with flexible technology in this environment, in particular, this is case

when the financial flexibility is moderately low. This is because other factors such as the

pooling value of the operating budget with dedicated technology and the financial flexibility

level in the production stage become effective in a budget-constrained environment.

The capacity intensity of a technology is affected by its automation level. When the

highly automated technology requires a higher capacity cost but a lower labor cost than

the less automated technology, the former has a higher capacity intensity. Thus, our results

underline the importance of considering financial constraints when deciding the automation

level of the production technology. The capacity intensity of a technology may also be

affected by the location of the production plant. This is because labor costs, which can

constitute a big part of production costs, may vary with respect to the plant location.

Therefore, our results underline the need for firms to take a holistic view of the technology

adoption in their plant network and to manage facility location and technology adoption

together in the presence of financial constraints.

Consider a business unit that relies on funds from its parent company. The financial

flexibility of this unit is closely linked to the product portfolio of its parent company.

For example, business units producing a premium product are more likely to be allocated

sufficient budgets to cover their operating costs, thus, they have a higher financial flexibility

in the production stage. The financial flexibility of the business unit may also vary based

on the diversification level of the product portfolio of its parent company. If the products

are highly diversified, one may argue that their production costs are not strongly positively

correlated. In this case, if the focal business unit requires additional financing due to an

unexpected increase in the operating cost, the headquarters can provide additional financing

by reallocating funds from the other business units. Because the financial flexibility is

critical in the optimal technology choice, there is value in coordinating the technology
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investment and the product portfolio decision.

Our modeling of the operating budget uncertainty captures the resource constraints in

the production environment due to the financial problems of the firm. In practice, such a

constraint can also be a result of the financial problems of the firm’s suppliers. In particular,

a financially troubled supplier may not be able to deliver the required volume of components

for production. For example, as discussed in Nussel and Sherefkin (2008), Chrysler, the auto

manufacturer, temporarily closed four assembly plants and canceled a shift at a fifth plant

as a result of component shortages after Plastech, its supplier of different types of trim (such

as door panels, floor consoles and engine covers), encountered financial problems. Babich

(2010) discusses other examples in the automotive industry. The resource constraint in

the production environment due to a supplier’s financial problem can be captured by re-

interpreting the operating budget as the available volume of a common component for

both products, and the operating cost as the procurement cost. In particular, β represents

the likelihood of sufficient delivery volume from the supplier regardless of the capacity

investment level, B2 denotes the total value of components received, and yT denotes the

procurement cost of each component with technology T ∈ {D,F}. Therefore, B2
yT

denotes

the component volume available for production which captures the severity of the component

shortage. Because the procurement cost is the same for each technology, flexible technology

has a strictly larger capacity intensity. In this setting, our results, as summarized in Figure

7, demonstrate that technology adopted in anticipation of a higher component shortage

possibility crucially depends on the severity of this shortage: Dedicated technology should

be adopted unless the component shortage is expected to be severe. Otherwise, flexible

technology can be the weapon of choice, in particular, this is the case when the shortage

possibility is moderately high.

Relaxing the assumptions made on the modeling of the budget constraints gives rise to

a number of interesting areas for future research. First, there is our simplifying assumption

of a two-point characterization of the operating budget uncertainty. Second, we focus on

budget constraints that are unrelated to demand prospects. When the possibility of an op-

erating budget constraint increases with lower demand prospects (because of tighter credit

terms), the correlation between the operating budget and demand uncertainty should be

considered. Third, we assume exogenous capital budget and operating budget uncertain-

ty. Consider a business unit that relies on budgets allocated by its parent company. The

parent company allocates these budgets by considering its own capital availability and the

investment opportunities from all business units. Studying this allocation decision in an
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equilibrium setting should prove to be an interesting problem for future research.
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A Appendix

Throughout the appendix, we use MF
.
= E

[(
ξ̃−b1 + ξ̃−b2

)− 1
b

]
.

Name Description

cT Unit capacity investment cost of technology T

yT Unit production cost of technology T

αT = cT
cT+yT

Capacity intensity of technology T

ηT = cT + yT Unit (aggregate) investment cost of technology T

B1 Capital budget

B2 Operating budget realization

β Probability of ample operating budget

b ∈ (−∞,−1) Constant price elasticity of demand

µξ = E[ξ1] = E[ξ2] Expected demand

ρ Demand correlation

Qi∗T Optimal production volume for product i ∈ {1, 2} with technology T

K∗T Optimal capacity investment level with technology T

Ku
T Budget-unconstrained capacity investment level with technology T

Kβ
T β-flexible capacity investment level with technology T

KP
D Pooling-optimal capacity investment level with dedicated technology

Ψ∗T Optimal expected profit with technology T when the operating budget is common

Ψ̂∗D Optimal expected profit with dedicated technology when the operating budget is product-specific

∆P = Ψ∗D − Ψ̂∗D Pooling value of the (common) operating budget with dedicated technology

ηuF (ηD) Flexible investment cost threshold in a budget-unconstrained environment

ηF (ηD) Flexible investment cost threshold in a budget-constrained environment

Table 1: Summary of Notation

Proof of Proposition 1: For KF ∈
[
0, B2

yF

]
, ∂ΨF
∂KF

= −(cF + yF ) + MF

(
1 + 1

b

)
K

1
b
F , and

for KF ∈
(
B2
yF
, B1
cF

]
, ∂ΨF
∂KF

= −cF + β

[
MF

(
1 + 1

b

)
K

1
b
F − yF

]
. Because b < −1, ∂2ΨF

∂K2
F
< 0 in

each KF range, and thus, ΨF is piecewise concave in KF with a kink at KF = B2
yF

. More-

over, ∂ΨF
∂KF

∣∣∣
0+
→ ∞. ∂ΨF

∂KF

∣∣∣(B2
yF

)− ≥ ∂ΨF
∂KF

∣∣∣(B2
yF

)+ is equivalent to B2 ≤ yF

(
(1+ 1

b )MF

yF

)−b
,

and ∂ΨF
∂KF

∣∣∣(B2
yF

)+ ≤ 0 is equivalent to B2 ≥ yFK
β
F , where Kβ

F =

(
(1+ 1

b )MF
cF
β

+yF

)−b
. When
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B2 ≥ yFK
β
F , i.e. ∂ΨF

∂KF

∣∣∣(B2
yF

)+ ≤ 0, because B1
cF

> B2
yF

, K∗F = min
(
Ku
F ,

B2
yF

)
where Ku

F =

(
(1+ 1

b )MF

cF+yF

)−b
is the unique solution to ∂ΨF

∂KF

∣∣∣
Ku
F

= 0 for KF ≤ B2
yF

. When B2 < yFK
β
F , i.e.

∂ΨF
∂KF

∣∣∣(B2
yF

)+ > 0, because Kβ
F <

(
(1+ 1

b )MF

yF

)−b
, ∂ΨF
∂KF

∣∣∣(B2
yF

)− > ∂ΨF
∂KF

∣∣∣(B2
yF

)+ , and thus, ΨF is

increasing in KF for KF ≤ B2
yF

. Therefore, K∗F = min
(
Kβ
F ,

B1
cF

)
, where Kβ

F is the unique

solution to ∂ΨF
∂KF

∣∣∣
Kβ
F

= 0 for KF >
B2
yF

.

Proof of Corollary 1: BecauseB1 < cFK
u
F andB2 < yFK

u
F , K∗F = min

(
B1
cF
,max

(
B2
yF
,Kβ

F

))
.

∂Kβ
F

∂β > 0, Kβ
F → ∞ for β = 0, and Kβ

F = Ku
F for β = 1. For part i, Let β

0
F

.
=

(
1 +

(
cF+yF
cF

)((
yFK

u
F

B2

)− 1
b − 1

))−1

∈ (0, 1) denote the unique solution to Kβ
F (β) = B2

yF
.

When β ≤ β
0
F , Ψ∗F = −(cF + yF )K∗F + MFK

∗
F

(1+ 1
b
), where K∗F = B2

yF
, and thus,

∂Ψ∗F
∂β = 0.

When β > β
0
F , K∗F = min

(
Kβ
F ,

B1
cF

)
, and

∂Ψ∗F
∂β = ∂ΨF (KF )

∂β

∣∣∣
K∗F

, where ΨF (KF ) = −cFKF +

β

[
MFK

(1+ 1
b
)

F − yFKD

]
+ (1 − β)

[
MF

(
B2
yF

)(1+ 1
b
)
−B2

]
. We define H(KF )

.
= ∂ΨF (KF )

∂β =

MF

(
K

(1+ 1
b
)

F −
(
B2
yF

)(1+ 1
b
)
)
− yF

(
KF − B2

yF

)
, where H

(
B2
yF

)
= 0. It is easy to establish

that ∂H(KF )
∂KF

> 0 is equivalent to KF <

(
(1+ 1

b )MF

yF

)−b
. Since K∗F < Ku

F <

(
(1+ 1

b )MF

yF

)−b
,

H(K∗F ) > 0. an thus,
∂Ψ∗F
∂β > 0. For part ii, let β

1
F
.
=

(
1 +

(
cF+yF
cF

)((
cFK

u
F

B1

)− 1
b − 1

))−1

denote the unique solution to Kβ
F (β) = B1

cF
such that K∗F = max

(
B2
yF
,Kβ

F

)
< B1

cF
for

β ≤ β
1
F , and K∗F = B1

cF
otherwise. Because B1

cF
> B2

yF
and B1 < cFK

u
F , β

1
F ∈ (β

0
F , 1).

When β ≤ β
1
F ,

∂Ψ∗F
∂B1

= 0. When β > β
1
F , Ψ∗F = ΨF

(
B1
cF

)
, and

∂Ψ∗F
∂B1

> 0 because

B1
cF

< (Ku
F <)

(
(1+ 1

b )MF

yF

)−b
.

Proof of Proposition 2: The proof is omitted.

Proof of Proposition 3: The proof is similar to Proposition 1, and is omitted.

Proof of Proposition 4 : For KD > B2
2yD

, from (4), we obtain ∂2ΨD
∂K2

D
< 0, and thus,

ΨD is piecewise concave in KD. When ∂ΨD
∂KD

∣∣∣( B2
2yD

)+ ≤ 0, which is equivalent to B2 ≥

2yDK̂D, where K̂D =

(
(1+ 1

b )(µξ−(1−β)E[min(ξ̃1,ξ̃2)])
cD+βyD

)−b
, ΨD is unimodal in KD, and K∗D =

min
(
Ku
D,

B2
2yD

)
. Here, Ku

D =

(
(1+ 1

b )µξ
cD+yD

)−b
is the unique solution to ∂ΨD

∂KD

∣∣∣
Ku
D

= 0 for

KD ≤ B2
2yD

. When
∂ΨPD
∂KD

∣∣∣( B2
2yD

)+ > 0, i.e. B2 < 2yDK̂D, because K̂D < Ku
D follow-

ing from the assumption cD
cD+yD

> 1 − E[min(ξ̃1,ξ̃2)]
µξ

, B2 < 2yDK
u
D, i.e. ∂ΨD

∂KD

∣∣∣( B2
2yD

)− > 0.
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Therefore, ΨD is unimodal in KD, and K∗D = min
(
KP
D,

B1
2cD

)
, where KP

D > B2
2yD

is the

unique solution to ∂ΨD
∂KD

∣∣∣
KP
D

= 0 with ∂ΨD
∂KD

= −2cD + β

[(
1 + 1

b

)
2µξK

1
b
D − 2yD

]
+ (1 −

β)
∫∫

ΩCD

(
1 + 1

b

) [
max(ξ1, ξ2)K

1
b
D −min(ξ1, ξ2)

(
B2
yD
−KD

) 1
b

]
f(ξ1, ξ2)dξ1dξ2. When KD >

B2
yD

, ΩC
D = ∅. Therefore, when B2 < yDK

β
D, KP

D = Kβ
D =

(
(1+ 1

b )µξ
cD
β

+yD

)−b
.

Proof of Corollary 2: The proof is similar to the proof of Corollary 1, and is omitted.

For B2 ∈ (2yDK̂D(β)
∣∣∣
β=0

, 2yDK
u
D), β

0
D is the unique solution to B2 = 2yDK̂D(β), whereas

for B2 ≤ 2yDK̂D(β)
∣∣∣
β=0

, β
0
D = 0. β̂0

D is the unique solution to B2 = yDK
β
D.

Proof of Corollary 3: The proof is omitted.

Proof of Proposition 5: We use the following result throughout the proof:

Lemma A.1 2ηDK
u
D = ηFK

u
F |ηuF (ηD) where ηuF (ηD) = ηD

[
MF

2−
1
b µξ

] b
b+1

.

Following Corollary 3, Ψ∗D = Ψ̂∗D+4P , where4P denotes the pooling value of the (common)

operating budget and Ψ̂∗D denotes the optimal expected profit when the budget is product-

specific with the dedicated technology. It is easy to establish that Ψ∗F |ηuF (ηD) = Ψ̂∗D, and

thus, ηF (ηD) = ηuF (ηD) when 4P = 0. Because
∂Ψ∗F
∂ηF

< 0, when 4P > 0, ηF (ηD) < ηuF (ηD).

Following Corollary 3, 4P = 0 if β ≤ β0
D or β = 1, and 4P > 0 otherwise.

Proof of Proposition 6: Let L(β)
.
= Ψ∗F (β)|ηuF (ηD)−Ψ∗D(β), where ηuF (ηD) = ηD

[
MF

2−
1
b µξ

] b
b+1

.

Because
∂Ψ∗F
∂ηF

< 0, for a given β, ηF (ηD) T ηuF (ηD) is equivalent to L(β) T 0. When

0 < β ≤ β
0
D, following Corollary 2 and Proposition 4, K∗D = B2

2(1−αD)ηD
and B2 ≥

2(1− αD)ηDK̂D. Because K̂D > Kβ
D, B2 > 2ηDK

u
D

(1−αD)(
αD
β

+1−αD
)−b . Let G(α)

.
= (1−α)(

α
β

+1−α
)−b .

Because β <
b
b+1
−α

1−α for β ≤ 1, G(α)
α < 0, and G(αF ) ≤ G(αD) for αF ≥ αD. There-

fore, B2 > 2ηDK
u
DG(αF ) = ηFK

u
F |ηuF (ηD)G(αF ), where the equality follows from Lem-

ma A.1, and, from Proposition 1, K∗F |ηuF (ηD) = min
(
Ku
F |ηuF (ηD) ,

B2
(1−αF )ηuF (ηD)

)
. When

K∗F |ηuF (ηD) = B2
(1−αF )ηuF (ηD) , L(β) = 2−

1
bµξ

(
B2
ηD

)(1+ 1
b
) (

(1− αF )−(1+ 1
b
) − (1− αD)−(1+ 1

b
)
)
−

B2

(
1

1−αF −
1

1−αD

)
. It is sufficient to establish L(β) > 0 in this case. Let S(αF ) de-

note L(β) for a given αF . ∂S(αF )
∂αF

= B2
(1−αF )2

((
2(1−αF )ηDK

u
D

B2

)−b
− 1

)
> 0, because B2 <

2(1−αD)ηDK
u
D and αF > αD. Because S(αD) = 0, S(αF ) > 0 for αF > αD, and L(β) > 0.

When β ≥ max
(
β̂0
D, β

1
D

)
, following Corollary 2, B1 ≤ 2ηDK

u
D

αD(
αD
β

+1−αD
)−b , and K∗D =

B1
2αDηD

. Let H(α)
.
= α(

α
β

+1−α
)−b . For β ≥

(
1 + 1

−(b+1)αD

)−1
, H(α)

α ≥ 0, and thus, H(αF ) >

H(αD). Therefore, B1 < 2ηDK
u
DH(αF ) = ηFK

u
F |ηuF (ηD)H(αF ) and, following Proposition
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1, K∗F |ηuF (ηD) = B1
αF η

u
F (ηD) . We obtain L(β) = β41 + (1− β)42, where

41
.
= −B1

(
1

αF
− 1

αD

)
+ 2−

1
bµξ

(
B1

ηD

)(1+ 1
b
)(
α
−(1+ 1

b
)

F − α−(1+ 1
b
)

D

)
,

42
.
=

(
B2

ηD

)(1+ 1
b
) (

2−
1
bµξ(1− αF )−(1+ 1

b
) −MF (1− αD)−(1+ 1

b
)
)
.

Let S1(αF ) denote 41 for a given αF . Because B1 < 2αDηDK
u
D by assumption, B1 <

2αF ηDK
u
D, and thus, ∂S1(αF )

∂αF
< 0. Because S1(αD) = 0, 41 < 0 for αF > αD. Let

S2(αF ) denote 42 for a given αF . ∂S2(αF )
∂αF

> 0, and S2(αD) < 0 because MF > 2−
1
b µξ

for ρ < 1. Therefore, there exists a unique α̂F > αD, which is the solution to S2(α̂F ) = 0

such that when αF < α̂F , 42 < 0, and 42 > 0 otherwise. The sign of L(β) is given by

the sign of 41 + ( 1
β − 1)42. For αF ≤ α̂F , 41 < 0 and 42 ≤ 0. Therefore, L(β) < 0 for

β ≥ β
2
D
.
= max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)

. For αF > α̂F , 41 < 0 and 42 > 0. Because

L(1) < 0 and 42 is finite, there exists β
2
D ∈

[
max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)
, 1

)
such

that L(β) < 0 for β ≥ β2
D.

Proof of Proposition 7: When 0 < β ≤ β0
D or β = 1, following Proposition 5, ηF (ηD) =

ηuF (ηD), and thus, ∂ηF (ηD)
∂B1

= 0. For the rest of the proof, we use the following result:

Lemma A.2 Consider αF ≥ αD. When β ≥ max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)

, for a

given ηD, the flexible threshold is given by ηF (ηD) = ηuF (ηD) Z( b
b+1), where

Z
.
=

(
B1
αF

)(1+ 1
b )

+
(

1
β − 1

)(
B2

1−αF

)(1+ 1
b )

(
B1
αD

)(1+ 1
b )

+ MF

2−
1
b µξ

(
1
β − 1

)(
B2

1−αD

)(1+ 1
b )

+B1

(
1
αF
− 1

αD

)
η
(1+ 1

b )
D

2−
1
b µξ

. (5)

From Lemma A.2, sgn
(
∂ηF (ηD)
∂B1

)
= sgn

(
∂Z
∂B1

)
, which, for αF = αD = α, is given by the

sign of

(
MF−2−

1
b µξ

)
2−

1
b µξ

(
1
β − 1

)(
B2

1−α

)(1+ 1
b )
> 0 (because MF > 2−

1
b µξ for ρ < 1).

Proof of Proposition 8: When β ≤ β
0
D, as we established in the proof of Propo-

sition 5, K∗D = B2
2(1−αD)ηD

and K∗F |ηuF (ηD) = min
(
Ku
F |ηuF (ηD) ,

B2
(1−αF )ηuF (ηD)

)
. Because

ηF (ηD) > ηuF (ηD) (as follows from Proposition 6) and
∂ηFK

u
F

∂ηF
< 0, B1 > αF ηFK

∗
F |ηuF (ηD) >

αF ηFK
∗
F |ηF (ηD). Therefore, following Corollaries 1 and 2, neither technology is B1 con-

strained at the technology cost pair (ηD, ηF (ηD)), and thus, ∂ηF (ηD)
∂B1

= 0. When β ≥ β
2
D,

following Proposition 6, β > max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)

. Therefore, ηF (ηD) is as

given in Lemma A.2. It follows that sgn
(
∂ηF (ηD)
∂B1

)
= sgn

(
∂Z
∂B1

)
, where Z is as defined in
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(5). This sign is given by the sign of N(β) =
(

1
β − 1

)
41 +42, where

41
.
=

MF

2−
1
b µξ

(
B2

αF (1− αD)

)(1+ 1
b )

−
(

B2

αD(1− αF )

)(1+ 1
b )
[

1−
(

1− αD
αF

)(
B1

2αDηDKu
D

)− 1
b

]
,

42
.
=

B1

−(b+ 1)2−
1
b µξ

(
ηD
αF

)(1+ 1
b )(

1

αD
− 1

αF

)
.

Because αF > αD, 42 > 0. If 41 ≥ 0 then N(β) > 0 for β ≥ β2
D, and thus, ∂ηF (ηD)

∂B1
> 0. If

41 < 0, because N(1) > 0 and 41 is finite, there exists β
3
D ∈

[
β

2
D, 1

)
such that N(β) > 0

for β
3
D ≤ β ≤ 1, and thus, ∂ηF (ηD)

∂B1
> 0.

Proof of Proposition 9: When 0 < β ≤ β0
D, following Proposition 5, ηF (ηD) = ηuF (ηD),

and thus, ∂ηF (ηD)
∂β = 0. When β ≥ max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)

, ηF (ηD) is as given in

Lemma A.2, and sgn
(
∂ηF (ηD)

∂β

)
= sgn

(
∂Z
∂β

)
, where Z is as defined in (5). For αF = αD =

α, sgn
(
∂Z
∂β

)
is given by MF

2−
1
b µξ

(
B1
α

)(1+ 1
b
)
> 0.

Proof of Proposition 10: When β ≤ β
0
D, as we established in the proof of Proposition

5, K∗D = B2
2(1−αD)ηD

and K∗F |ηuF (ηD) = min
(
Ku
F |ηuF (ηD) ,

B2
(1−αF )ηuF (ηD)

)
. Because ηF (ηD) >

ηuF (ηD) (as follows from Proposition 6) and
∂ηFK

u
F

∂ηF
< 0, K∗F |ηF (ηD) = min

(
Ku
F |ηF (ηD) ,

B2
(1−αF )ηF (ηD)

)
.

Therefore, ∂ηF (ηD)
∂β = 0. When β ≥ max

(
β̂0
D, β

1
D,
(

1 + 1
−(b+1)αD

)−1
)

, ηF (ηD) is as given

in Lemma A.2, and sgn
(
∂ηF (ηD)

∂β

)
= sgn

(
∂Z
∂β

)
, where Z is as defined in (5). After some

algebra, we obtain that the sign of ∂Z
∂β is given by

41
.
=

MF

2−
1
b µξ



B1

(
1
αF
− 1
)

(1− αD)




(1+ 1
b )

−
(
B1

αD

)(1+ 1
b )

+ η
(1+ 1

b )

D

(
B1

2−
1
b µξ

)(
1

αD
− 1

αF

)
.

Let S(αF ) denote 41 for a given αF . Using MF ≥ 2−
1
bµξ, we obtain ∂S(αF )

∂αF
< 0 because

B1 < 2αDηDK
u
D by assumption, αF > αD, αD < 1 and b < −1. It is easy to establish

S(αD) > 0 and S(1) < 0. Because ∂S(αF )
∂αF

< 0, there exists a unique αF ∈ (αD, 1), which is

the solution to S(αF ) = 0, such that S(αF ) > 0 if αF < αF and S(αF ) < 0 otherwise.
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