
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2016

DeepSense: A GPU-based deep convolutional neural network DeepSense: A GPU-based deep convolutional neural network

framework on commodity mobile devices framework on commodity mobile devices

HUYNH NGUYEN LOC
Singapore Management University, nlhuynh.2014@phdis.smu.edu.sg

Rajesh Krishna BALAN
Singapore Management University, rajesh@smu.edu.sg

Youngki LEE
Singapore Management University, YOUNGKILEE@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
HUYNH NGUYEN LOC; BALAN, Rajesh Krishna; and LEE, Youngki. DeepSense: A GPU-based deep
convolutional neural network framework on commodity mobile devices. (2016). WearSys'16: Proceedings
of the 2016 Workshop on Wearable Systems and Applications: June 30, 2016, Singapore. 25-30.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3276

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3276&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

DeepSense: A GPU-based Deep Convolutional Neural
Network Framework on Commodity Mobile Devices

Loc N. Huynh, Rajesh K. Balan, Youngki Lee
School of Information Systems

Singapore Management University
{nlhuynh.2014, rajesh, youngkilee}@smu.edu.sg

ABSTRACT
Recently, a branch of machine learning algorithms called
deep learning gained huge attention to boost up accuracy of
a variety of sensing applications. However, execution of deep
learning algorithm such as convolutional neural network on
mobile processor is non-trivial due to intensive computa-
tional requirements. In this paper, we present our early
design of DeepSense - a mobile GPU-based deep convolu-
tional neural network (CNN) framework. For its design,
we first explored the differences between server-class and
mobile-class GPUs, and studied effectiveness of various op-
timization strategies such as branch divergence elimination
and memory vectorization. Our results show that DeepSense
is able to execute a variety of CNN models for image recogni-
tion, object detection and face recognition in soft real time
with no or marginal accuracy tradeoffs. Experiments also
show that our framework is scalable across multiple devices
with different GPU architectures (e.g. Adreno and Mali).

Keywords
Mobile GPU; Mobile sensing application; Deep learning

1. INTRODUCTION
A variety of smart glasses are continuously emerging, open-

ing up new opportunities for continuous vision sensing appli-
cations. For example, WhoIsThis application reminds user
of names of nearby people in a large conference by recogniz-
ing faces from first-person-view video streams. The conven-
tional processing pipeline in these applications is to continu-
ously capture videos or images, extract a set of distinguish-
ing features, and run inference algorithms. Nowadays, var-
ious deep learning algorithms such as deep neural network
(DNN) or convolutional neural network (CNN) are getting
huge attention, as they are known to achieve higher inference
accuracy for various vision-based applications [4, 9, 8].

Deep learning algorithms, however, incur heavy compu-
tational overhead and power consumption when executing
on wearable or mobile devices. A conventional approach

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WearSys ’16, June 30, 2016, Singapore.
c© 2016 ACM. ISBN 978-1-4503-4326-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2935643.2935650

to overcome these challenges is offloading computation onto
powerful clouds. However, this approach has a few funda-
mental limitations. First, it has potential threats to expose
private data of users. Captured first-person-view images
often contain sensitive information such as where they are
located, who they are with, which activities they are doing.
This may prevent users from offloading data to the clouds,
invalidating the use of cloud resources. Second, continuously
sending video streams to clouds consumes huge bandwidth
which is a big concern when users are connected via cellu-
lar networks. Moreover, offloading is no longer effective in
scenarios where network connectivity is poor or unavailable.

In this paper, we propose and explore an alternative ap-
proach, a DeepSense framework, to execute deep learning
algorithms on mobile devices without cloud offloading. By
leveraging mobile graphical processing unit (GPU) recently
integrated into smartphones, we aim to support developers
for 1) adopting a wide range of existing DNN, CNN models
trained to run on server-class machines with minimal pro-
gramming effort, 2) achieving real-time or soft real-time la-
tency for continuous sensing and intervention, 3) minimizing
energy consumption on the computing mobile devices. Our
DeepSense framework is built up on OpenCL [10], which is
now officially supported by a number of mobile GPUs such
as Adreno and Mali.

As a first step towards this direction, our work is focused
on supporting CNN that is widely adopted by various vision
sensing applications. We first investigated several existing
CNN models (such as AlexNet [4], Vgg-F [1], Vgg-M [1],
Vgg-verydeep-16 [9], Vgg-Face [8], etc.), and found out that
over 90% of computation occurred within convolutional lay-
ers, increasing the processing latency significantly. To re-
duce the latency, DeepSense offloads the convolutional layers
to mobile GPUs considering unique characteristics of mobile
GPUs as well as the data representation within the CNN
structure. Moreover, it adopts various optimization strate-
gies such as branch divergence elimination and memory vec-
torization to further reduce latency. Finally, DeepSense pro-
vides developers the ability to trade off accuracy and latency
with the use of half floating points in computation.

We conducted extensive experiments on 3 commodity smart-
phones (Samsung Galaxy S5, Note 4 and S7) with three 3
CNN models (Vgg-F, Vgg-M and Vgg-16). Our results show
that DeepSense can achieve soft real-time latency (less than
1.5 second) for various CNN models. With the use of half
floating points, DeepSense can further reduce latency; for
instance, running Vgg-F takes 403ms, 259ms and 155.2ms
with only 4.62% accuracy drop on Samsung Galaxy S5, Note

25

4 and S7 respectively. We believe that more carefully de-
vised optimization techniques and adoption of more power-
ful GPUs on smartphones would make it feasible to execute
large-scale models on mobile devices in real time.

The contribution of our paper can be summarized as fol-
lows:

• We proposed DeepSense , an OpenCL-based frame-
work to run various deep learning inference algorithms
on mobile GPUs; it now supports various CNN mod-
els with low latency and power consumption. Note
that OpenCL has highly advantageous in that it sup-
ports a wide range of commodity mobile GPUs (e.g.,
Adreno and Mali) comparing to CUDA-based devices
(e.g., Nvidia Jetson [5]).

• We explored a variety of design choices and optimiza-
tion techniques to efficiently execute CNN on mobile
devices (such as memory vectorization, data represen-
tation, usage of half floating points).

• We conducted experiments using various models (AlexNet,
Vgg-F, Vgg-M, Vgg-16, Vgg-Face, etc.) on variety of
mobile GPU (Adreno 330, 410 and Mali T880). Our
preliminary results show that we are able to execute
Vgg-F in real-time (803ms on S5, 480ms on Note 4 and
361ms on S7) without any accuracy drop. In addition,
with the calculation of half floating point enabled, the
execution time of Vgg-F on S5 is reduced to 450ms by
sacrificing only 4.62% accuracy.

2. BACKGROUND
We begin with a brief introduction of the two underlying

techniques of our system: OpenCL and CNN.

2.1 OpenCL
OpenCL [10] is a framework to support parallel program-

ming across heterogeneous platforms such as central pro-
cessing units (CPUs), graphical processing units (GPUs) or
even digital signal processors (DSPs). Recently, OpenCL
has been widely supported on both popular smartphone pro-
cessors (e.g., Snapdragon and Exynos) and popular mobile
GPUs(e.g., Adreno and Mali).

In order to use OpenCL for parallel programming, de-
velopers first need to divide their problem into a number
of small identical sub-problems, then implement each sub-
problem as OpenCL kernel code. The OpenCL run-time will
spawn multiple parallel processing units (i.e., work-items),
each runs independent compiled kernel program and is sched-
uled to be executed on multi-core CPU, GPU or both de-
pending on the charateristics of application requirements.

Its flexible parallel programming model and applicability
on a wide range of mobile processors serve the goal and
functionality of DeepSense, and thus we adopt OpenCL as
our underlying programming and execution framework.

2.2 Convolutional Neural Network
Convolutional neural network (CNN) is a type of feed-

forward neural network that is widely adopted for image
and video recognition [4, 8].

Figure 1 shows an example of CNN architecture which
consists three fundamental layers: convolutional, pooling and
fully connected. To briefly explain, each convolutional layer
applies multiple filters to convert lower-level features from

Figure 1: Convolutional Neural Network [5]

Figure 2: Processing Flow of Single Layer

the previous layer into higher-level features. A pooling layer
is used to capture invariants that do not change even when
an image output by a convolutional layer is translated, ro-
tated or scaled. Finally, a fully connected layer aggregates
extracted high-level features for further classification task.

As shown in Figure 2, a CNN layer consists of two main
processing steps: Input Padding and Main Computation.
The input padding step is required to match the output of
previous layer as an input of current layer. For example,
borders of input images can be zero-padded to match the
input size of the current layer. Once padding is done, each
layer conducts the core computational operations; for con-
volutional layers, dot products are the key operations. For
pooling and fully-connected layers, comparison and matrix
multiplications are the core operations, respectively.

3. CNN PERFORMANCE BREAKDOWN
In this section, we breakdown the performance of CNN in

order to identify its bottleneck for optimization. To study
the performance of CNN, we use five existing models includ-
ing AlexNet, VGG models (Vgg-f, Vgg-m, Vgg-verydeep-16,
Vgg-Face). Table 1 shows the important properties (such as
application, accuracy, number of parameters and architec-
ture) of the models. Vgg-Face is trained to recognize hu-
man faces (out of 2,622 candidates) within an image while
the other models are trained to classify images into one of
1,000 categories. It is noticeable that the accuracy is affected
by two factors: (1) the number of convolutional layers, and
(2) the size of model (which implies the size of filters and
the stride to apply the filter on the input).

To understand the bottleneck, we measure the running
time of different CNN layers on Samsung Galaxy Note 4. We
implemented a CPU version of a CNN executor in C/C++
using Android NDK. For best CPU performance, we com-

App Size Top-1 Top-5 Arch.
(M) Acc. Acc.

AlexNet IR 60.8 58.2% 80.8% 5c,3p,3fc
Vgg-f IR 60.8 58.6% 80.9% 5c,3p,3fc
Vgg-m IR 102.9 63.1% 84.5% 5c,3p,3fc
Vgg-16 IR 138.4 71.7% 90.5% 13c,5p,3fc
Vgg-face FR 145 98.95% - 13c,5p,3fc

Application(IR: image recognition, FR: face recognition),
Size: number of parameters

Architecture(c: convolutional layers, p: pooling layers, fc:
fully connected layers)

Table 1: CNN Models

26

Conv.(ms) FC.(ms) Pooling(ms) Total(ms)

Vgg-F 8072 1079 26 9177
Vgg-M 19521 2122 156 21800
Vgg-16 213371 2408 882 216662

Table 2: CNN Latency Breakdown

piled the program with armeabi-v7a ABI(Application Binary
Interface) to enable external floating point processing unit.

Table 2 shows the excution time per types of layers. Most
importantly, computation bottleneck is occurred within con-
volutional layers for all three inspected models. For in-
stances, over 87% of the processing time in Vgg-F is oc-
cupied by the convolutional layer followed by 11% and 0.2%
for fully-connected and pooling layers, respectively. For
a large model such as Vgg-16, over 98% of computation
time is taken in convolutional layers. We also figured out
that the total number of addition-multiplication operations
within convolutional layers is much higher than operations
within fully connected layers (e.g. Vgg-16 requires 15346M
addition-multiplication operations for convolutional layers
comparing to only 123M for fully connected layers).

4. DeepSense SYSTEM OVERVIEW
Figure 3 shows the overall architecture of DeepSense which

consists of four main components including model converter,
model loader, inference scheduler, executor.

Model converter: This module translates existing pre-
trained models from multiple representations into our pre-
defined format due to different model’s representation of dif-
ferent DNN frameworks. At present, DeepSense supports 3
formats of DNN trained by Caffe, MatConvNet and Yolo for
different types of applications.

Model loader: Application triggers this module to load
converted models into memory. It allocates appropriate
host(CPU) and device(GPU) memory for individual layer’s
data structure to store both CNN/DNN’s meta-data and
weights. Our current implementation of DeepSense stores
model’s meta-data in host memory while all weights of con-
volutional and fully connected layers are stored in device
memory. Other configurations such as enabling half floating
point optimization is also processed by this module.

Inference Scheduler: Inference requests are submitted
into this module’s queue to be scheduled for execution. Since
GPU is known to be good at executing single task, submit-
ting multiple requests to mobile GPU might interfere each
other tasks and increase the latency. In order to prevent
interference, this scheduler is built to guarantee that only a
single request is executed at a time.

Executor: Execution of inference request is taken place
in this module. Executor takes allocated model’s mem-
ory from model loader, input data from inference request
and compute the output of CNN/DNN. During execution
pipeline, only parts of operations such as padding, inter-
mediate memory allocation are executed by CPU while the
other heavy computation parts (e.g. convolutional, pooling
and fully connected operations) are done by mobile GPU.

5. DESIGN CONSIDERATIONS
In this section, first, we investigate behaviours of branch

divergence and memory coalescing on mobile GPU. Second,
based on our observations, we propose a memory layout

Figure 3: DeepSense System Overview

Figure 4: Explicit and Implicit padding

to represent input and parameters in effective manner to
achieve low latency on mobile GPU. Finally, we study the
impact of half floating point approximation on both the la-
tency and accuracy for different CNN models.

We perform evaluations on three different devices includ-
ing Samsung Galaxy S5, Note 4 and S7 to make our design
choices. These devices are powered by two different mo-
bile GPU architectures, Adreno and Mali. Our version of
Galaxy S7 integrates Mali T880 GPU while S5 and Note 4
are powered by Adreno 330 and 420 respectively.

5.1 Branch Divergence
One important issue to improve the latency of CNN ex-

ecution on GPU is handling padding operation efficiently.
This operation takes the input and pads data into in order
to get desired size. Most of existing CNN models requires
padding operations in many layers. Conventional CPU ap-
proach to solve this problem is to ignore padded input values
when processing. However, this approach imposes condition
branches which are inefficient to run on GPU (branch di-
vergence problem). Since DeepSense is proposed to execute
existing models, this problem should be studied carefully.

Within GPU program, branch divergence is a common
problem which causes the GPU to process both conditional
blocks of code. This problem increases the execution time
of every work item running openCL kernel. However, be-
haviour of branch divergence when executing CNN on mo-
bile GPU is still not fully evaluated. To address this prob-
lem, we consider two types of padding including implicit
and explicit padding when executing CNN. The former one
processes padding (e.g. ignore padded input using condi-
tional branch) within GPU kernel code and possibly leads
to branch divergence. On the other hand, the latter ap-
proach tries to avoid branch divergence by allocating new
memory block and migrating corresponding input data into
new location before executing GPU kernel. However, over-
head occurred by multiple memory copying operations may
significantly overwhelm the running time of GPU code.

We carefully evaluate both approaches with two differ-

27

Figure 5: Memory Coalescing vs Memory Vector-
ization

Each work item computes a fraction of output values (2, 4,
8, 16 and 32 values)

Figure 6: Memory Coalescing and Memory Vector-
ization.

ent models (Vgg-16 and Vgg-f) on Samsung Galaxy Note 4
with Adreno 420 GPU. For easy comparison, we use speedup
which is defined as a latency fraction between using implicit
and explicit approaches.

speedup =
runtimeimplicit

runtimeexplicit

Figure 4 shows speedup over the first six layers of two
models. In most of cases, running explicit padding is faster
than executing implicit padding within GPU kernel. We ob-
serve that the sixth layer of model Vgg-F has high speedup
due to two reasons. First, the input size of that layer is
small so there is little overhead of padding operations. Sec-
ond, the amount of addition and multiplication operations
that needs to be processed is large so the processing latency
is overwhelming the padding overhead. Finally, as Vgg-16
consists of more layers than Vgg-F, we also notice the similar
characteristic as the processing reaches later layers.

5.2 Memory Coalescing vs Memory Vectoriza-
tion

We observe that correctly reading data into GPU’s work
items can significantly reduce latency. We explore two ap-
proaches including memory coalescing and memory vector-
ization. memory coalescing makes multiple work items ac-
cess memory within single transaction by leveraging under-
lying memory bank. Whenever a work item reads a single
item, memory bank caches consecutive items so that other
work items can access data items faster. In contrast, mem-
ory vectorization utilizes high memory bandwidth by op-
timistically reading a block of contiguous items into work
item’s private memory. Memory access patterns are shown
in Figure 5.

We use vector addition program to evaluate two proposed
techniques. To compute each value within output vector,
it requires only a single addition operation but accesses to
three memory locations (two input and one output loca-
tions). This application is best fit for us to measure the
memory throughput and latency of two approaches. To eval-
uate, we define speedup as a latency fraction between mem-
ory coalescing and memory vectorization for comparison.

Mem Repre. # blks to access Max blk size

[c x d x d] c x d blocks of d values 11
[d x d x c] d x d blocks of c values 512

Table 3: Memory Representation and Maximum
Number of Memory Accesses per Work Item

speedup =
runtimecoalescing

runtimevectorization

Figure 6 shows the speedup between two techniques. First,
we observe that memory vectorization outperforms memory
coalescing in all cases. Second, using block size of 4 values
results in speedup around 1.7 on S5 and 2.0 on Note 4.

As the result, we organize our data in a way to be loaded
as a block of contiguous data into each work item using
memory vectorization.

5.3 Memory Representation
Representation of data in memory also affect latency of

executing CNN. Within OpenCL kernel, parameters are rep-
resented as 1D array or 3D image of data. The input and
parameters of convolutional layer is 3D and 4D array re-
spectively which have to be reshaped into 1D array or 3D
image. However, maximum size of 3D image is also limited
by OpenCL framework and the running GPU hardware. To
address arbitrary size of parameters and input, all data is
reshaped into 1D array. The question is how to represent it
in order to achieve best performance.

Suppose we have a convolutional layer with these charac-
teristics:

• Input: size of [h x w] and c channels

• Weight parameters: n filters, each filter has size of [d
x d] and c channels

• Output: size of [h’ x w’] and n channels

To compute single output value, CNN does a dot prod-
uct between a single filter and portion of input data with
identical size to filter. This operation requires to read fil-
ter’s parameters and portion of input into work item. In the
end, each work item will trigger a lot of memory reading op-
erations. Reducing number of memory reading operations
per work item may result in improving latency. Fortunately,
OpenCL provides vloadn/vstoren to allow reading/writing
a block of contiguous memory up to 16 float values at a time.
Reducing total number of memory reading operations is now
corresponding to maximizing the size of contiguous memory
block. We try to organize data in CNN in the way that we
can maximize the size of single block that each work item
has to read into its memory space.

The filter size and input which is used in dot product
operation can be represented in 2 ways: [c x d x d] and
[d x d x c]. However, since the input to this operation is
only a portion of layer’s input, its memory is not contiguous.
In this case, the former approach can access a block size of
maximum d contiguous values while the latter approach can
access to a block size of maximum c contiguous values.

Table 3 shows the total number of accesses to contigu-
ous memory block for each representation. We investigate
several models including AlexNet, Vgg-verydeep-16, Vgg-f,
Vgg-M and observe that the maximum size of d is much
smaller than the maximum size of c. As a result, using [d x

28

Figure 7: Latency of Memory Representations

d x c] as representation of filter, we can maximize the size
of contiguous memory block as well as reduce the number of
memory reading operations that needed to be called.

Figure 7 shows the latency comparison between using two
representation approaches for different CNN models on Sam-
sung Galaxy Note 4. Important observation is that using [d
x d x c] approach is more efficient than other approach. For
instances, Vgg-16 reduces latency 1.96 times when migrating
from using [c x d x d] to [d x d x c] representation.

Finally, input and filters are represented as [h x w x c]
and [n x h x w x c] corresponding to our design choice.

5.4 Half Floating Point
Another optimization technique to improve executing la-

tency on GPU is to minimize transferring data between host
memory and GPU. In this section, we propose an algorithm
to convert parts of CNN into half floating point to reduce
memory bandwidth usage for data transferring in order to
improve executing time.

During CNN inference using GPU, a large amount of mem-
ory bandwidth and latency is consumed for reading/storing
floating point values from/to main memory. To address this
problem, we convert parts of CNN’s parameter into float-
ing point 16 bits instead of 32 bits. Cutting half of data
to load into single work item reduces latency significantly.
However, this approach may suffer accuracy drop. To ad-
dress this problem, we develop a greedy algorithm as shown
in algorithm 1 to choose the most suitable layers to convert
parameters into half floating point as follow:

Algorithm 1: Half floating point approximation
Input: (1)desired accuracy_loss, (2)CNN model, (3)list

T of convolutional layers of CNN, (4) validation
set

Output: list L of convolutional layers
Algorithm:
current_accuracy_loss = 0
while current_accuracy_loss < accuracy_loss AND size(L)

!= size(T):
tmp_list = {}
for all layer l in T:

if l is not in L
temporarily convert l to floating point 16 bit
compute tmp_accuracy_loss from validation set
add l, tmp_accuracy_loss> to tmp_list

endif
endfor
pick l from tmp_list with lowest tmp_accuracy_loss
current_accuracy_loss = tmp_accuracy_loss
if tmp_accuracy_loss < accuracy_loss

add l into L
permanently convert l into floating point 16 bit

endif
endwhile

Model CPU- GPU- GPU-
FP32(ms) FP32(ms) FP16(ms)

Vgg-F 9177 480 259
Vgg-M 21800 1166 558
Vgg-16 216662 6315 2922

Table 4: Full and Half Floating Point Latency on
Note 4

Model Top-1 Acc. Drop Top-5 Acc Drop

Vgg-F 5.82% 4.62%
Vgg-M 3.96% 3%
Vgg-16 2.62% 1.66%

Table 5: Half Floating Point Accuracy Drop

We set desired accuracy drop at 5% and run algorithm
1 on three image recognition models (Vgg-f, Vgg-m and
Vgg-16). We use the first 5000 images from ILSVRC2012
validation set [4] to measure accuracy drop since it is also
validation set used to evaluate original models.

First, it is surprising that we can convert all convolutional
layers into using half floating point for less than 5% of top-5
accuracy drop. Table 5 also points out that low accurate
model suffers accuracy drop more than high accurate mod-
els even though the number of layers and parameters to be
converted into half floating point are less than other models.

Second, inference time reduces significantly in our exper-
iments on Samsung Galaxy Note 4 as shown in Table 4.
Converting to half floating point, latency reduces 1.85, 2.08,
2.16 times when executing Vgg-F, Vgg-M, Vgg-16 respec-
tively. That means within convolutional layers, memory
bandwidth is highly utilized and needed to be taken into
consideration for further improvement.

5.5 Performance Overview
We combine several proposed techniques to design DeepSense

framework. As shown in Table 4, DeepSense significantly
reduces inference time up to 74 times comparing to conven-
tional CPU implementation. For small and medium mod-
els such as Vgg-F and Vgg-M, DeepSense executes one in-
ference within 600ms. For a large model such as Vgg-16,
DeepSense is still able to provide reasonable latency within
3 seconds. Furthermore, energy consumption for single in-
ference request is also shown in Table 6. From our calcu-
lation, continuously executing DeepSense for vision sensing
with Vgg-F model can last up to 2.5 hours on commodity
devices with only modest battery capacity at 2000mAh.

6. FUTURE DIRECTIONS
Enabling CNN inference on commodity mobile devices is

just the beginning. There are still plenty of works to opti-
mize our DeepSense framework.

GPU local memory: Latency can be mitigated by re-
ducing memory bandwidth usage. Another technique to
solve memory bandwidth problem is to leverage GPU’s local
memory which is shared across multiple work items. A work
group of multiple work items only needs to load a large input

Model FP-32(mJ) FP-16(mJ)

Vgg-F 1135 665
Vgg-M 2584 1487
Vgg-16 14491 8767

Table 6: Consumed Energy on Galaxy Note 4

29

data once and share between each other. However, capacity
of local memory is different across multiple devices and plat-
forms. Hence, this approach should be considered carefully
to work efficiently on wide range of devices. For example,
Galaxy S5 has 8KB of local memory while S7 has 32KB.

Convolutional layer approximation: Another approach
is to reduce the number of operations we have to process by
re-training large convolutional layer into multiple smaller
ones [3]. However, this approach should be deeply explored
to find out the best manner to trade-off between accuracy
drop and latency reduction.

Number of work items optimization: Finding opti-
mal number of work items for OpenCL program also reduces
latency significantly. Since amount of ALUs (Arithmetic
Logic Unit) is different across devices, optimal number of
work items might be different. Our next step is to focus on
developing heuristic algorithm to estimate how many work
items should be used for each CNN’s layer across multiple
devices with different GPU architectures.

7. RELATED WORK
Deep learning inference optimization: There has

been a number of prior work to reduce training time of CNN
and DNN [7]. However, little work has focused on optimiz-
ing inference time as most prior works used powerful servers
and desktop machines for inferences. A few works aim at
optimizing inference time. For instance, Vanhoucke et al.
develops a suite of low-level optimization techniques to re-
duce the inference latency (e.g., using fixed point arithmetic
and SSSE3/SSE4 instructions on x86 machines)[11]. Also,
approximation techniques are developed to reduce latency
with trade-offs in accuracy [3]. However, these studies were
focused on powerful desktop or server machines.

Cloud offloading: Ha at el. proposed the Gabriel frame-
work [2] to support cognitive assistance applications using
cloudlet to minimize occurred latency. Different from these
work, we focused on scenarios where cloud offloading is not
feasible, and explored the opportunities to use mobile GPUs
to enable real-time deep learning inferences.

Deep learning on mobile devices: Lane at el. have
taken crucial first steps towards real-time execution of DNN
and CNN on mobile devices [5, 6]. DeepX framework en-
ables the execution of DNN and CNN on mobile devices [5]
by splitting computations across multiple co-processors. In
addition, the authors showed that it is feasible to run en-
tire DNN for audio sensing applications on low-power mo-
bile DSPs [6]. We believe that our work can complement
DeepX in the following ways. First, DeepX is designed with
a ML principal-driven approach where our works takes a
system-driven optimization approach, giving the potential
opprotunities to use both approaches together for further
latency reduction. Second, DeepX is effective in reducing
the latency of fully-connected layers while our framework
focused on reducing latency of convolutional layers. Finally,
we believe DeepSense is the first to run on OpenCL frame-
work, and presents experiments with GPUs on commercially
available mobile devices in the market.

8. CONCLUSION
In this paper, we propose an early design of DeepSense,

a GPU-based deep convolutional neural network framework
based on OpenCL for commodity mobile devices. We in-

vestigate padding and memory representation problems to
make CNN work efficiently on mobile GPU. Our results show
that DeepSense is able to execute several CNN models in
real-time within a second. Furthermore, DeepSense enables
user to leverage half floating point processing to significantly
reduce latency with acceptable accuracy drop (e.g., Vgg-F
inference time takes only 160ms on Samsung Galaxy S7 with
only 4.62% accuracy drop).

9. ACKNOWLEDGMENT
This research is supported by the National Research Foun-

dation, Prime Minister’s Office, Singapore under its IDM
Futures Funding Initiative.

10. REFERENCES
[1] K. Chatfield, K. Simonyan, A. Vedaldi, and

A. Zisserman. Return of the devil in the details:
Delving deep into convolutional nets. arXiv preprint
arXiv:1405.3531, 2014.

[2] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan. Towards wearable cognitive
assistance. In Proceedings of the 12th annual
international conference on Mobile systems,
applications, and services, pages 68–81. ACM, 2014.

[3] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding
up convolutional neural networks with low rank
expansions. arXiv preprint arXiv:1405.3866, 2014.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012.

[5] N. D. Lane, S. Bhattacharya, P. Georgiev,
C. Forlivesi, L. Jiao, L. Qendro, and F. Kawsar.
Deepx: A software accelerator for low-power deep
learning inference on mobile devices.

[6] N. D. Lane, P. Georgiev, and L. Qendro. Deepear:
robust smartphone audio sensing in unconstrained
acoustic environments using deep learning. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
pages 283–294. ACM, 2015.

[7] M. Mathieu, M. Henaff, and Y. LeCun. Fast training
of convolutional networks through ffts. arXiv preprint
arXiv:1312.5851, 2013.

[8] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep
face recognition. Proceedings of the British Machine
Vision, 1(3):6, 2015.

[9] K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[10] J. E. Stone, D. Gohara, and G. Shi. Opencl: A
parallel programming standard for heterogeneous
computing systems. Computing in science &
engineering, 12(1-3):66–73, 2010.

[11] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving
the speed of neural networks on cpus. In Proc. Deep
Learning and Unsupervised Feature Learning NIPS
Workshop, volume 1, 2011.

30

	DeepSense: A GPU-based deep convolutional neural network framework on commodity mobile devices
	Citation

	tmp.1491364477.pdf.4JDPG

