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Global Financial Risks, CVaR and  
Contagion Management  

 

Kian-Guan Lim* 

 
The September 2008 collapse of Lehman Brothers was the 9/11 on Wall 
Street, and many articles had been written on the changes in the global risk 
landscape that followed. However, there is scarcity of rigorous studies using 
empirical data and advanced econometric methods to verify such a change 
and the nature of such a change. In this paper, we provide rigorous analyses 
of statistically significant changes in global financial risks and sharp 
increases in conditional Value-at-Risk after September 2008. We perform 
statistical analyses using conditional distributions on the tail losses of equity 
portfolios constructed from the stock indexes of six major global financial 
markets. Employing the generalized marginal Pareto distribution and 
multivariate copula method, we provide strong empirical evidence to assert 
the prevalence of heightened global financial risks and its contagion effect 
across the globe. An important implication arising out of these conclusions is 
that banks under BASEL II and BASEL III and financial institutions in the 
near-future should not underestimate its Conditional Value-at-Risk by using 
the normal distribution model since under stressed situations past 
September 2008, the portfolio return distributions have tails that 
simultaneously grow longer and thinner in the direction of the loss region. 
We also provide some thoughts for contagion management. 

 
JEL Codes: C51, G15, G32 
 

1. Introduction 
 
The global financial crisis of 2008 saw a huge decline in the U.S. stock prices by a 
whopping 25% within ten days in the two weeks before the Black Friday of October 
10th 2008 and within two weeks after the collapse of Lehman Brothers on 
September 15 2008. September 29 and October 9 saw the Dow Jones Industrial 
Average fell 6.98% and 7.33% respectively. There was another big fall on October 
15 of 7.87%, although in-between there were some small re-bounces. On October 
10, 2008, the day after the large DJIA fall, markets across the globe fell in contagion. 
FTSE in London was down by 6.6%, DAX in Germany by 8.2%, CAC-40 in France 
by 8.3%, N225 in Japan by 9.6%, and major stock indices in Asia countries ex-Japan 
mostly fell by about 8% with the exception of South Korea that fell a smaller 4.1% 
and the Shanghai Composite Index that fell only 2.8%. Since then till 2011, equity 
markets have become much more dependent and move more closely in tandem 
whenever shocks hit the market. 
 
There are two significant observations in the above development. Firstly, country 
stock markets have since evidenced more frequent sudden sharp losses. Secondly, 
such losses appeared to be global in a contagion effect within a day across countries 
around the globe.  
 
 
* OUB Professor of Finance Kian-Guan Lim, Singapore Management University, Singapore. Email: 
kgl@smu.edu.sg 
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Since the U.S. market is the largest capital market in the world, it is noticed that the 
contagion typically starts with the U.S. market movement as the lead. There is 
scarcity of rigorous studies using empirical data and advanced econometric methods 
to verify such changes and the nature of such changes in global financial risks. In 
this paper, we provide rigorous analyses of statistically significant changes in such 
global financial risks and the sharp increases in conditional Value-at-Risk after 
September 2008. Specifically we investigate if sharp drops are accompanied by 
structural changes in the loss tails of the conditional probability distribution of returns. 
We also study the contagion effect or the strong correlations of market stock return 
movements across countries by using the copula method. The Pareto distribution of 
the second kind (or type II) is used to model the conditional tail loss distribution. The 
tail loss is the area most critical to the risk-taking and risk management decisions 
made by banks and financial institutions.  
 
In section 2, we provide a literature review and discussion of the motivation in using 
the Pareto distribution for modeling the tail loss. In section 3, we provide some 
description statistics of the sample data and an exploration of characteristics of the 
return loss tails. In section 4, we perform Pareto Type II estimation and testing on the 
returns of six major portfolios across the globe. We not only estimate and test the 
parameters using the maximum likelihood method, but also provide a statistic based 
on the tail characteristics, which is essentially the mean of the conditional distribution, 
to test for structural changes in the loss tails. This statistic is also the estimate of the 
conditional Value-at-Risk, subject to u being the VaR. Next we provide the 
econometric model for a multivariate copula method based on the univariate Pareto 
Type II distribution. The association or “correlation” of the various univariate country 
return losses are studied using the Clayton copula, and the parameter of association 
is also estimated and tested based on maximum likelihood theory. In the concluding 
section 5, we report the implications of these results and relate this to the underlying 
macroeconomics as well as provide a discussion on the measures of risk using VaR 
and conditional VaR or shortfalls. 
 

2. Modeling Tail Distribution 
 

Define any end-of-day t return to a country market as rt = ln (Pt/Pt-1) where Pt is the 
index level at day t. For the study of loss tails, we focus our attention on negative 
daily returns below a threshold u that we define to be at the 95% confidence level 
Value-at-Risk (VaR) measure. Thus the conditional negative returns rt < -u, where 
u>0 is 1.645 standard deviations from the mean daily return. Let xt = -rt. Thus we 
study the conditional loss distribution of random variable xt where xt>u>0. The 

decumulative conditional distribution function of xt is 














 


ux
F t1 , where ,  > 

0, and xt > u. The conditional distribution function (conditional cdf) of xt is thus 

F(xt|xt>u) = 1- F . This is a Pareto Type II distribution or is sometimes called the 
Lomax distribution. 
  
To provide a motivation of the use of Pareto distribution in modeling the tail, we 

consider the tail area in the loss region [xt,) that is given by F . As  value 

increases, holding  constant, the conditional loss tail becomes fatter and longer, 
producing higher probabilities of extreme loss events. The same effect is observed 
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when we fix the value of  while decreasing the value of . By varying  and , 
different conditional tail distributions of different country market returns can be 
modeled. It can be shown that the above Pareto distribution is sufficiently flexible to 
model the typical shapes of loss tail distributions, and compares favourably with 
alternative popular models such as the Gumbel distribution and the half-normal 
distribution. 
 
The Pareto distribution was first studied by Pareto (1897) to model income 
distribution. Multivariate pareto distributions (MPD) have also been a subject of 
rigorous studies such as in Yeh (2004) that showed the distributions have many 
mixture properties, and particular classes of multivariate Pareto distributions can be 
obtained as limit distribution under finite sample minima or under repeated geometric 
minimization. However, these classes of MPD have some rigidities with regard to the 
dependence or correlation amongst the univariate marginal Pareto random variables.  
For example, a MPD of the second kind has the restriction that for any pair of the 
univariate PD random variables, their correlation coefficient is a constant. Such  a 
classical form of MPD first introduced by Mardia (1962) does not allow for variations 
across the returns of different countries. 
 
Resnick (1987), Holger, Rootzen, and Nader Tajvidi (2006), and others also showed 
the close connection of slightly different forms of MPD to multivariate extreme 
distributions. The latter showed that modeling exceedances over a threshold, related 
to Peaks over Threshold (POT) methods, led asymptotically to generalizations of 
MPD. They also showed that the multivariate GPD in such a setup is the only one 
that is preserved under change of exceedance levels. The recognition of using MPD 
as a tool to model fat and long tails similar to extreme value distributions led to 
efforts to model the MPD differently, while keeping the marginal univariate 
distributions as Pareto-type. Asimit, Furman, and Vernic (2010) provided a more 
flexible type of MPD that allows for different correlations between different bivariate 
pairs of random variables, but the MPD is still restrictive and does not allow for the 
simultaneous occurrence of similar losses. The resulting correlation function is still 
restricted to a form that produces approximately the same correlation coefficients 

when the exponent 's of the univariate variables are nearly the same. A more 
flexible method would be to employ the copula function on the univariate density 
functions. 
 
In a series of articles, viz. Li (2006), Li (2009), Li and Sun (2009), Joe and Li (2011), 
and Chana and Li (2008), the tail dependence of multivariate distributions using 
copula method has been characterized via methods of regular variations and 
mixtures of scales. Specific examples such as Burr distribution, t-distribution, and 
others in a multivariate setting are studied and some examples yield monotone 
properties of other parameters versus the tail index, which in the case of the Pareto 

Type II distribution, refers to the  parameter. However, there were no empirical 
studies to validate the models or to study situations of structural changes in the 
parameters in a time series setting. 
 
There have been several recent applications of the multivariate Pareto distribution. 
Vernic (2011) provided an application of the multivariate Pareto distribution to 
computing the tail conditional expectation, or sometimes called conditional Value-at-
Risk in risk measurement literature. They provided formulas for the conditional 
expectation, but there is no study of their statistical properties. Kim and Lee (2009) 
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derived a cusum test of residuals from an autoregressive process to study change in 
the tail index or parameter of extreme value distributions such as the Burr distribution 
which is also called the Type IV MPD in Yeh (2004). The empirical study is restricted 
to test of the individual model parameters. Cazzulani, Meneguzzo, and Vecchiato 
(2001) provided one of the earliest study of country index return correlations using 
the copula method, but used the non-central t-distribution as univariate density 
instead, and it did not provide statistical tests of the parametric estimators nor 
employ the MPD. 
 

3. Descriptive Statistics of Global Returns Risk 
 
The daily stock index returns of U.S., U.K., Germany, France, Japan, and Hong 
Kong, respectively the S&P 500, FTSE, DAX, CDC-40, N225, and H.S.I., are 
collected over the total sampling period of January 2, 1991 till June 17, 2011. 
Assuming or ignoring negligible aggregate dividends, we compute the continuously 
compounded daily index returns as indicated in the introductory section. The log of 
the price relatives provides for theoretically infinite supports. However, we focus our 
attention on conditional distribution based on the condition of return losses 
exceeding the respective country index thresholds fixed at the 5% probability loss 
region, or 1.645 times the standard deviation away from the unconditional total 
sample mean. 
  
Global financial markets have become more integrated and have behaved in relation 
to the macroeconomic development of the respective countries. Using U.S. as the 
lead country in terms of its global impact, we divide the total sampling period into 3 
sub-periods of direct connection to the U.S. macroeconomic situation. The first sub-
period covers January 2 1991 to March 10, 2000 when NASDAQ index peaked 
during intra-day trades, and was immediately followed by the DOT.COM crash of 
2000/2001. During this first sub-period, apart from a small recession during 1991-
1994 due to the Iraq war and rising oil prices, the U.S. economy saw rapid growth 
due to a number of reasons as elaborated in a best seller book, “Irrational 
Exuberance,” by Shiller (2000). The second sub-period covers March 11, 2000 to 
September 14, 2008, the day just before Lehman Brothers called “broke”. During this 
period, there was, by now well understood, an oversupply of cheap U.S. funding as a 
result of over-reaction to the DOT.COM crash and complacency on the part of 
relevant sectors of the U.S. government machinery. It led to a huge boom in housing 
market building excesses and bank mortgage loans as well as financial derivatives 
such as CDO's created to accentuate the get-rich-quick schemes underlying this 
economically unsustainable and mad boom. This of course led to the infamous U.S. 
mortgage lending fiasco and the subsequent global financial crisis (GFC). The third 
sub-period from September 15, 2008 till June 17, 2011 covers the period of the GFC 
and the incomplete and on-going struggles by the major world economies to recover. 
This sub-period saw U.S. Federal Reserve introducing huge liquidity to shore up 
their failing banks, essentially issuing more U.S. Treasuries, in programs called 
“quantitative easing”. Europe, and to some extent, Japan, followed the same. The 
2011 European sovereign debt crisis in EU countries such as Greece, and potentially 
Spain, Portugal, Italy, and so on, due to excessive budget deficits, added to the 
woes confronting an already fragile inter-connected world economy with 
unprecedented financial market volatilities. The descriptive statistics of the returns in 
these sub-periods as well as of the total sampling period are reported in Table 1.  
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Table 1: Descriptive Statistics of Daily Returns of Country Equity Indices        

 
 
From Table 1, several cursory observations can be made. Firstly, the daily volatility 
of about 1% for almost all countries during sub-periods 1 and 2 (except Hong Kong 
that had a higher volatility in sub-period 1) increased to about 2% in sub-period 3 
after the Lehman bankruptcy and during the GFC. Secondly, except for Hong Kong, 
in sub-period 3, all country index portfolio returns showed negative skewness at 
clearly more negative levels. Thirdly, during sub-period 3, the kurtosis of the index 
portfolio returns of all countries also displayed clear escalations. 
 
Next we compute the cross-correlations of the country index returns during the sub-
periods and during the total sampling period. It is important that we describe how the 
time series of the different country index returns are paired together in a joint 
distribution for the purpose of measuring their cross-moments. Since the indexes are 
reported based on stock prices in a broad portfolio in each of the respective country's 
major stock exchange, the daily indexes used for index return computations reflect 
the close-of-day broad portfolio price in each exchange. On a trading day t+1, at the 
close of trading in the London, Frankfurt and Paris bourses, the New York stock 
exchanges, where the S&P 500 stocks are traded, are still open. Thus the European 
country index returns at t+1 may reflect some on-going news in U.S. though it is not 
the close of trading day t+1 at U.S., but will reflect all of the news on trading day t, 
the previous day, in New York. However, for the Asian bourses such as Osaka, 
Tokyo, and Hong Kong, at trading day t, when the New York exchanges would have 
closed for trading, the Asian exchanges have not started trading, and would only 
start trading in a few hours at trading day t+1. In the above context, taking the U.S. 
as the lead country where news affecting its stock would be also transmitted to the 
other countries, we then pair the index closing prices at trading day t+1 of all the 
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other bourses with the S&P 500 closing index prices at trading day t. The results are 
reported in Table 2.  
 

Table 2: Pearson’s Correlation Coefficients of Daily Country Equity Index 
Returns 

                               
 
From Table 2, it is significant to note that all correlations are positive. The results are 
basically similar when using alternative correlation measures such as the 
Spearman's rank correlation coefficients and Kendall's rank correlation coefficient. 
Thus our pairing scheme is plausible and there are also a number of previous 
studies that documented the next day impact by U.S. stock movements on financial 
markets in the rest of the world. See for example such a study involving interest rate 
financial instruments in Lim, How and Terry (1998). Moreover, we observe that the 
positive correlations are generally higher in sub-period 3 during the GFC era.  
 

4. Econometric Estimation and Testing 
 
Having motivated the important issue of understanding how sudden and large 
contagion stock price movements can occur, and explaining the usefulness of the 
generalized Pareto Distribution, we perform statistical analyses using conditional 
distributions on the tail losses of equity portfolios constructed from the stock indexes 
of six major global financial markets.  
 
In this section we investigate the properties of the Pareto Type II multivariate 
distribution and derive consistent estimators of the parameters as well as their 
asymptotic test statistics. The estimates will enable us to capture descriptions of the 
fitted tail probabilities and then go on to model joint probabilities using the copula 
method. The latter will in turn enable estimation of the chance of occurrences of 
contagion. 
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Consider the Pareto Type II probability density function (pdf) of each country's 
conditional daily return distribution where returns are negative below thresholds 
denoted by –ui for country or country index i. For convenience, we shall work with xt,i 
=-rt,i>ui or the losses as positive numbers. We first analyze the conditional 
distributions for each country i. The conditional pdf of xt,i is given by: 
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Henceforth, unless otherwise stated, the country index i shall be respectively 
1,2,3,4,5, and 6 for U.S. S&P500, U.K. FTSE, Germany DAX, French CDC-40, 
Japan N225, and Hong Kong H.S.I. The ui's for the various countries are found as 
0.0190, 0.0187, 0.0235, 0.0231, 0.0256, and 0.0277 respectively.  
 
For T daily observations of county i's returns, conditional on xt,i > ui, within a 
particular period or sub-period, the log-likelihood function is obtained from equation 
(1) as: 
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We maximize the log-likelihood function on the LHS,  iti
xL ,ln , in equation (2), and 

obtain the following first order optimality conditions in equations (3) and (4). The 
second order conditions are also satisfied. 
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Equation (3) or (4) can be easily solved for the maximum likelihood estimates (MLE) 

of i and i for i=1,2,…,6 given an auxiliary equation of the mean. The Fisher's 

information matrix can then be computed as i̂ . The covariance matrix of the 

estimators i̂  and i̂ , ,6,,2,1 i  can be approximated via sampling estimates of 

1ˆ  i  for each i. The MLE i̂  and 
i̂ are found for each sub-period and the entire 

period. For each country i, the estimates are tested using the hull hypotheses H0:  = 

0, HA :  > 0, and also H0:  = 2, HA :  > 2. The test statistic is the simple z-statistic 
based on the asymptotic theory that the MLE are asymptotically normal, consistent, 
and efficient. The null hypothesis asserts that the estimates are not significantly 
different from the minimum values and thus is a rejection of the model in such a case. 
The results are reported in Table 3. 
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Table 3: Maximum Likelihood Estimates and Tests of H0:  = 0, HA :  > 0, and 

H0:  = 2, HA :  > 2. Using one-tail test at 2.5% significance level, rejection of 
H0 is indicated by a * beside the z-statistic. Using one-tail test at 1% 
significance level, rejection of H0 is indicated by a ** beside the z-statistic. 

 

             
 
From Table 3, it is seen that for the entire sampling period, the estimates are 
significantly different from the null, indicating that the conditional Pareto Type II 

distribution produces  and  estimates that are plausible. Similar though weaker 

evidences occur in the sub-periods. However, it is significant to note that the high  

estimates indicate the fatness of the tail at high x values. The  estimates where 

high 's imply thinner tails at large x values, are mostly close to the minimum value 
of 2, which also indicates in this case, that the tail is fat. 
 
4.1 Tests of Mean 
 

Under the Pareto Type II distribution, the conditional distribution mean is 
1


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Its asymptotically consistent and efficient estimate is 
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u , where u is given. The 

asymptotic covariance matrix of this estimator is found as: 
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This estimate is also the conditional Value-at-Risk measure given the Value-at-Risk 
can be interpreted as the threshold value u. Thus, we are able to report in Table 4 
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not only the asymptotic efficient estimates of the CVaR or the conditional mean over 
threshold u, but we can also test if the CVaR is significantly larger than zero. We test  

H0: 0
1





, HA: 0

1





, and also a 1% loss over and above VaR threshold, i.e. H0: 

01.0
1





, HA: 01.0

1





. The results are reported in Table 4. 

 

Table 4: Maximum Likelihood Estimates of CVaR or Mean as 
1


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of H0: 0
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
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
, HA: 0

1





, using z-statistic z1 and also a 1% loss over and 

above VaR threshold, i.e. H0: 01.0
1





, HA: 01.0

1





using z-statistic z2. For 

tests at 2.5% significance level, rejection of H0 is indicated by a * beside the z-
statistic. For tests at 1% significance level, rejection of H0 is indicated by a ** 
beside the z-statistic. (Note: z0.9875=2.224 and z0.995=2.57.) 
 

                    
 
Table 4 shows that all conditional means are significantly larger than the thresholds 
at 1% significance level. In sub-periods 1 and 2, i.e. prior to September 15, 2008, 
there was clearly no empirical evidence of conditional VaR exceeding 1% beyond 
the threshold, except for U.S. during the pre-GFC boom and for Hong Kong in the 
property boom period of the 1990's. However, what is most significant is that during 
sub-period 3, i.e. post September 15, 2008 till June 2011, the conditional VaR 
exceeded 1% significantly in all countries at the 2-tail 1% significance level. This is 
likely the reason why over the entire sampling period there is also significance in the 
number of exceedances. There is thus a clear evidence of significant changes in the 
riskiness of equity investment. 
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The mean formula that incorporates both the  and the  parameters and thus 
capturing the shape of the tail, in this case, provides evidence of a change in the 
conditional tail distribution during the GFC. All the conditional loss tails had 
elongated and contained higher probabilities of larger losses.  
 

To provide a comparison, we also compute the normal distribution CVaR 
 
 

r
v

v


 '
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ˆ


 , 

where  2

, ,~ Nr it  , and v‟ is the negative value on the standard normal distribution 

with a cdf of 5%. Hence v‟=-1.645.  and  are the respective pdf and cdf functions 
of the standard normal distribution. The comparisons are shown in Table 5 below. 
 
 

Table 5: Comparison of CVaR using normal versus the Pareto Type II 
distributions 

 
 Sub-period 1 Sub-period 2 Sub-period 3 Overall period 

 Pareto 
CVaR 

Normal 
CVaR 

Pareto 
CVaR 

Normal 
CVaR 

Pareto 
CVaR 

Normal 
CVaR 

Pareto 
CVaR 

Normal 
CVaR 

S&P 500 0.0269 0.0177 0.0265 0.0236 0.0363 0.0419 0.0296 0.0246 

FTSE 0.0265 0.0182 0.0276 0.0236 0.0341 0.0332 0.0287 0.0230 

DAX 0.0337 0.0232 0.0355 0.0309 0.0435 0.0357 0.0361 0.0285 

CDC-40 0.0323 0.0241 0.0337 0.0285 0.0427 0.0372 0.0346 0.0281 

N225 0.0340 0.0286 0.0356 0.0281 0.0476 0.0465 0.0374 0.0314 

HSI 0.0435 0.0352 0.0388 0.0280 0.0445 0.0417 0.0422 0.0334 

 
In Table 5, it is shown that the Pareto Type II CVaR, almost in all cases except one 
during sub-period 3 for S&P 500, provides a higher value and is thus more 
conservative in setting a higher capital requirement. This is consistent with the 
market experiences during the GFC, and is also consistent with criticisms over 
capital under-provisions using BASEL II computations based on an underlying  
normal distribution. 
 
We also test if the change in the estimated mean is significant from one sub-period 
to the next. The standard deviation for the difference in means is estimated 
assuming that the statistics or de facto x values in the different sub-periods are not  
correlated. The results are reported in Table 6. Clearly all changes in CVaR from 
sub-period 2 to sub-period 3 and are significantly positive at 1% significance levels. 
Changes from sub-period 1 to 2 did not provide statistical evidence of significant 
changes except for the case of Hong Kong where there was a significant drop in 
CVaR likely due to the burst of the property bubble. 
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Table 6: Tests of Difference in the Conditional Means from one sub-period to 
the next. Using two-tail test at 2.5% significance level, rejection of H0 is 
indicated by a * beside the z-statistic. Using one-tail test at 1% significance 
level, rejection of H0 is indicated by a ** beside the z-statistic.  
 

                 
 
In the following sub-section we investigate the joint behavior of these tails or the 
conditional multivariate distribution of the global returns using the copula method. 
The copula method will be able to provide an analysis of the multivariate distribution 
of the equity returns. 
 
4.2 Copula 
  
The Type II or generalized Pareto distribution employed so far in the analyses for 
univariate return distributions can be extended to a multivariate setting for joint 
distributions of returns in different domains such as different country index returns or 
returns in different periods of different economic regimes. However the multivariate 
Pareto Type II distribution implies that for any bivariate situations, the correlation in 
the returns is constant. This is quite rigid as clearly the return correlations between 
different pairs of country returns are different, though they may usually be close if the 
countries are within the same geographical and economic grouping. Thus, instead of 
using the Pearson system of multivariate distributions, we employ the copula method 
to model multivariate distributions with univariate or marginal distributions as 
arguments in the copula function. 
 

A copula is a function C(u1,u2,…,uN) of standard uniform random variables Ui = ui   
[0,1], for i=1,2,….,N. It is assumed that: 
 
(1) lower boundary conditions C(u1,u2,…,uN) = 0 for one or more variables uj=0, for 
any j;  

(2) upper boundary conditions C(u1,u2,…,uN | uj=1)  C(u1,u2,…,uN) for at least one 
variable uj attaining its maximum;  

(3) .0 i
u

C

i





 

 
To avoid technical complications that would not alter the key results, we do not need 
to allow for possibly weaker conditions than (1), (2), and (3) above, and we assume 

that C(,) is continuously differentiable in ui for all i. The latter condition applies in 
most of the common copula functions. The above conditions intuitively are conditions 
that satisfy those of a multivariate cumulative distribution function. 
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Sklar's (1959) theorem states that if F(x) and G(y) are given marginal distribution 

functions of random variables X=x and Y=y, and F(), G() are continuously 
differentiable, then a copula function C(F(x),G(y)) exists, that is a joint distribution of 

random variables F(X)  U and G(Y)  V, where U,V are standard uniform [0,1] 
random variables. Moreover, copula function C(F(x),G(y)) equals a joint distribution 
function H(x,y) in x and y. Conversely, any joint cdf H(x,y) in random variables X and 

Y can be represented by a copula function C(F(x),G(y)) where F() and G() are the 
marginal cdf's of X and Y. The implication is that given a copula function C(u,v) 
satisfying the regularity conditions (1), (2), and (3), if we substitute marginal cdf's F(x) 
for u, and G(y) for v, then we obtain a multivariate cdf H(x,y). The above bivariate 
case can obviously be generalized to the multivariate case of C(F(x1),F(x2),….,F(xN)) 
for multivariate distributions of random variables Xi  for i=1,2,…,N. 
 
This is a simple but very useful result to construct many different forms of 
multivariate cdf's and we use this technique to construct a multivariate Pareto 
distribution using the Clayton (1978) copula that is widely utilized for characterizing 
long tails. We define the Clayton N-Copula as the function: 
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Since this function is de facto a multivariate distribution in xi's where F(xi)=ui , for 
i=1,2,….,N, the multivariate pdf of the copula can be derived as: 
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where fi(xi) is the marginal univariate pdf of random variable Xi. The partial derivative 
term is obtained as 
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From equations (6) and (7), we therefore have an analytical function with which to 
maximize the log-likelihood function of: 
 

  ,,,,ln
1

,2,1,


T

t

Nttt xxxf   

 

given the data sample of N-variates  Nttt xxx ,2,1, ,,,   for sample size T, i.e. for 

t=1,2,…..,T. As this log-likelihood function is separable into the sum of a term 
involving the log of expression (7) and the other involving the cross-sectional sum of 
log-likelihood functions ln Li for i=1,2,….,N in equation (2), we obtain the ML 
estimates by a two-stage optimization. First, the ML estimates of univariate pdf 

parameters i̂  and i̂ for i=1,2,….,N are obtained according to equations (3) and (4) 

that we saw earlier. 
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Then in the second stage we maximize: 
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As the condition of loss exceeding the threshold may not hold for all country index 
returns for every day, only a sub-sample within each sub-period provided for 
simultaneous occurrences of the conditional returns. We considered the associated 
return loss movements of U.S. and European stocks separately from those of U.S. 
versus Asian stocks due to the time difference as discussed earlier, in order to see if 
there is any difference in the results, and also in order to obtain sufficient data points 

for the statistical analyses. The various ML estimates ̂  are thus obtained and are 

reported in Table 7. 
 
In Table 7, we also performed 1000 simulations of each case, i.e. random 
generations of uniform {ut,i}'s, assuming independence across country returns, and 

then obtain 1000 estimates of ̂  for each of the 8 cases, viz. 4 sampling sub-periods 

and whole period times the 2 contexts of US-Europe linkage versus US-Asia linkage. 

The ML covariance matrix containing the variance of ̂  is not used here because of 

the small sample sizes. The simulated small sample distribution allows the 

computation of the p-values for each estimate of ̂  in each of the 8 cases. The 

reported p-values are the probabilities of occurrences exceeding the estimate given 
the null hypothesis that the xi's or correspondingly the ui's are independently 
distributed without any associations. 

 

Table 7: Estimates of Clayton Copula parameter , and a Test using Small 
Sample simulation (1000 simulated estimated values per case) of the null 
hypothesis of independence and zero association across return losses. 
Number of joint daily data points for US S&P500, FTSE, DAX, and CDC-40 are 
3, 7, 8, 18 for sub-periods 1, 2, 3, and the overall period. Number of joint daily 
data points for US S&P500, N225, and H.S.I. are 3, 4, 16, 23 for sub-periods 1, 
2, 3, and the overall period. 

                  
The Clayton copula belongs to the Archimedean family of copulas with the desirable 
property that the copula parameter can be related to “correlation” or association such 

as the Kendall's . See Genest and MacKay (1986) for such a discussion. For the 

Clayton N-copula we employ here, two properties are worth mentioning: (a) as 0 , 
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the joint cdf   0,,, 21 NuuuC  ;(b) as  , the joint cdf   1,,, 21 NuuuC  . In the 

latter, the implication is that as   increases from 0, the probability of observing 

associated higher losses xi, across most if not all i's, increases. Under the 
assumption of cross-sectional independence in the simulated distributions, it also 
implies that a rejection indicates that there exists dependence across return losses 
and thus positive associations of tail losses across the countries.  
 
From Table 7, it is seen that we cannot reject the null of independence for US and 
Europe in sub-period 1 and for US and Asia in sub-period 2 at significance levels of 
10%. There appears to be some associations of US and Asia during the 1990's at 
significance level (p-value) 7% likely due to common trending in US and Japan 
during the early part of the Japanese recession that coincides with the US recession 
in 1991 to 1994. There also appears to be some associations of US and Europe 
during the 2000's till 2008 at significance level (p-value) 9% likely due to similar 
booms in property markets and similar excesses in deficit funding that shaped the 
movements of their stock markets. However, the most interesting finding is in sub-
period 3 during the GFC post September 15, 2011, when strong positive 
associations of losses cannot be rejected at a significance level of 0.1%. The latter is 

a very strong empirical result indeed. It is also seen that the copula parameter ̂  

increased to a high 4.687 in US-Europe and 1.783 in US-Asia during the GFC till 
June 2011. 
 

5. Management Implications and Conclusion 
 

Unlike most portfolio studies that consider the entire unconditional distributions, our 
study focuses investigation at the loss tails and thus conditional return distributions 
of major country indexes across the globe covering the leading U.S. financial 
markets, and including the European economies of U.K., Germany, France, and the 
Asian economies of Japan and Hong Kong. Employing the generalized marginal 
Pareto distribution and the multivariate Clayton copula, we provide rigorous tests of 
the changes in the shapes of the conditional tail losses over time, and also tests of 
the changes in the conditional Value-at-Risk or conditional expected losses. The 
Clayton copula indicates that whenever equity portfolio losses occurred after 
September 2008 till June 2011, a significant increase in associations of high losses 
across the major countries occurred in conjunction with significant higher loss in 
each country. Thus there is now strong empirical evidence supported by rigorous 
methodology to assert the prevalence of heightened global financial risks and its 
contagion effect across the globe. This is the period after the Lehman Brothers 
collapse and the beginning of the GFC of 2008.  
 
Increase in the copula parameter coupled at the same time with structural changes 
of longer and fatter tails in the negative or return loss tail distributions of the major 
country financial stock markets have a very strong message of unprecedented risk 
peaking if and when the markets experience huge losses. The frequency of such 
occurrences has increased in recent years. An important implication arising out of 
these conclusions is that banks under BASEL II and BASEL III and financial 
institutions in the near future should not underestimate its Conditional Value-at-Risk 
by using the normal distribution model since under stressed situations past 
September 2008, the portfolio return distributions have tails that simultaneously grow 
longer and thinner in the direction of the loss region. 
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Our findings provide a better understanding of the dynamics of current global finance 
and the multivariate global markets return loss distributions, and indeed suggest the 
sheer importance of modeling and forecasting sudden losses, and not 
underestimating them. This is critical for effective risk management in banks or 
financial institutions in the new and less understood risk landscapes we are now 
treading. Moreover, in terms of managing and containing contagion risks, investment 
managers could do well to monitor closely the end-of-market price movements in the 
lead U.S. stock markets, and to execute contingent plans accordingly. We saw in 
Table 2 how the European markets move more in tandem with U.S. market 
movements than the Japanese market. Contingent measures could include hedging 
programs selling index futures and buying index put options on European equities 
when a major drop occurs in the U.S. market. There could also be some portfolio 
rebalancing tilting toward a heavier Asian and Japan market weightage when the 
global market becomes jittery with contagion fears. 
 
Finally, we provide a couple of remarks on possible limitations in this study and how 
future study could proceed. Firstly, the time horizon could certainly be extended to 
allow for a larger sample. Some of the conditional samples used in this study could 
be improved with smaller sampling errors when the sampling period is lengthened. 
This is particularly an interesting proposition as the later part of 2011 and the 
beginning of 2012 saw the rapid development of the Eurozone debt crisis. Secondly, 
perhaps a more extensive study could include explorations of other extreme value 
copulas. 
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