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The proofs for Propositions 1 and 2 are omitted. §A provides the equivalent formulation to the

stage 1 optimization problem. The optimal processing decision z∗ is relegated to §B. §C illustrates

the proof for Proposition 3. The proofs for technical statements in the general “window contracts”

model and the beef market model (as summarized in Table 3) are provided in §D and §E, respectively.

A Characterization of Stage 1 Optimization Problem

Proposition A.1 The stage 1 optimization problem in (1) can be restated as Π(QC ;PS , �) =

max0≤z≤K Λ(z) where Λ(.) is continuous and strictly concave in z. We have

Λ(z) =

⎧⎨⎩

Λ1,C(z) for 0 ≤ z ≤ min(I(M), QC ,K)

Λ2,C(z) for min(I(M), QC ,K) < z ≤ min(QC ,K)

Λ1,S(z) for min(QC ,K) < z ≤ min
(
max(I(S), QC),K

)
Λ2,S(z) for min

(
max(I(S), QC),K

)
< z ≤ K,

(9)

Λ(z) =

⎧⎨⎩

Λ3,C(z) for 0 ≤ z ≤ min(II,QC ,K)

Λ2,C(z) for min(II,QC ,K) < z ≤ min(QC ,K)

Λ3,S(z) for min(QC ,K) < z ≤ min
(
max(II,QC),K

)
Λ2,S(z) for min

(
max(II,QC),K

)
< z ≤ K,

(10)
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for �1 ≥ �2 and for �1 < �2, respectively, where

Λk,C(z) = −QC
[
max

(
min(u, PS + �), u

)]
+ (1− !)PS [QC − z]− c0z − c1(K − z)2 + �k(aC1 z, a

C
2 z, �),

Λk,S(z) = −QC
[
max

(
min(u, PS + �), u

)]
− (z −QC)(PS + t)− c0z − �(z −QC)− c1(K − z)2

+�k
(
(aC1 − aS1 )QC + aS1 z, (a

C
2 − aS2 )QC + aS2 z, �

)
,

for k ∈ {1, 2, 3} and I(j)
.
=

�1−�2
2 −QC [(b1−e)(aC1 −a

j
1)+(b2−e)(aj2−a

C
2 )]

(b1−e)aj1−(b2−e)aj2
for j ∈ {C, S} and II

.
= �2−�1

2(b2−e)s .

B Characterization of The Optimal Processing Decision z∗

Proposition B.1 For �1 ≥ �2 (�1 < �2), there exist 8 spot price thresholds P
(.)

(P (.)) that charac-

terizes the optimal processing decision z∗. These spot price thresholds are given by

P
0 .

=
�1a

C
1 + �2a

C
2 + 2c1K − c0 − �s�S
1− ! − �s ,

P
1
(min(I(M), QC ,K))

.
=

�1a
C
1 + �2a

C
2 + 2c1K − c0 − �s�S
1− ! − �s

−2
[
b1(aC1 )2 + b2(aC2 )2 + 2eaC1 a

C
2 + c1

]
min(I(M), QC ,K)

1− ! − �s ,

P
2
(min(I(M), QC ,K))

.
=

[�1(b2−e)+�2(b1−e)]s
b1+b2−2e + 2c1K − c0 − �s�S − 2

[
(b1b2−e2)s2

b1+b2−2e + c1

]
min(I(M), QC ,K)

1− ! − �s ,

P
3
(min(QC ,K))

.
=

[�1(b2−e)+�2(b1−e)]s
b1+b2−2e + 2c1K − c0 − �s�S − 2

[
(b1b2−e2)s2

b1+b2−2e + c1

]
min(QC ,K)

1− ! − �s ,

P
4
(min(QC ,K))

.
= (1− �s)−1

[
�1a

S
1 + �2a

S
2 + 2c1K − c0 − t− � − �s�S

−2QC
[
(aC1 − aS1 )(b1a

S
1 + eaS2 ) + (aC2 − aS2 )(b2a

S
2 + eaS1 )

]
−2
[
b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a

S
2 + c1

]
min(QC ,K)

]
,

P
5 (

min
[
max(QC , I(S)),K

]) .
= (1− �s)−1

[
�1a

S
1 + �2a

S
2 + 2c1K − c0 − t− � − �s�S

−2QC
[
(aC1 − aS1 )(b1a

S
1 + eaS2 ) + (aC2 − aS2 )(b2a

S
2 + eaS1 )

]
−2
[
b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a

S
2 + c1

]
min

[
max(QC , I(S)),K

]]
,

P
6 (

min
[
max(QC , I(S)),K

]) .
= (1− �s)−1

[
[�1(b2 − e) + �2(b1 − e)] s

b1 + b2 − 2e
+ 2c1K − c0 − t− � − �s�S

−2

[
(b1b2 − e2)s2

b1 + b2 − 2e
+ c1

]
min

[
max(QC , I(S)),K

]]
,

P
7 .

= (1− �s)−1

[
[�1(b2 − e) + �2(b1 − e)] s

b1 + b2 − 2e
− c0 − t− � − �s�S − 2

[
(b1b2 − e2)s2

b1 + b2 − 2e

]
K

]

34



P 0 .
=

�2s+ 2c1K − c0 − �s�S
1− ! − �s ,

P 1(min(II,QC ,K))
.
=

�2s+ 2c1K − c0 − �s�S − 2
[
b2s

2 + c1
]

min(II,QC ,K)

1− ! − �s ,

P 2(min(II,QC ,K))
.
=

[�1(b2−e)+�2(b1−e)]s
b1+b2−2e + 2c1K − c0 − �s�S − 2

[
(b1b2−e2)s2

b1+b2−2e + c1

]
min(II,QC ,K)

1− ! − �s ,

P 3(min(QC ,K))
.
= P

3
(min(QC ,K)),

P 4(min(QC ,K))
.
= (1− �s)−1

[
�2s+ 2c1K − c0 − t− � − �s�S − 2

[
b2s

2 + c1
]

min(QC ,K)
]
,

P 5(min
[
max(QC , II),K

]
)

.
= (1− �s)−1

[
�2s+ 2c1K − c0 − t− � − �s�S − 2

[
b2s

2 + c1
]

min
[
max(QC , II),K

]]
,

P 6(min
[
max(QC , II),K

]
)

.
= (1− �s)−1

[
[�1(b2 − e) + �2(b1 − e)] s

b1 + b2 − 2e
+ 2c1K − c0 − t− � − �s�S

−2

[
(b1b2 − e2)s2

b1 + b2 − 2e
+ c1

]
min

[
max(QC , II),K

]]
,

P 7 .
= P

7
.

where in P
k
(y) (P k(y)), for k ∈ {1, 2, 3, 4, 5, 6}, the argument y refers to the last term in the

definition of the thresholds on the right-hand side.

For � ∈ Ω1, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗1,C = (1−!−�s)(P 0−PS)

2[b1(aC1 )2+b2(aC2 )2+2eaC1 a
C
2 +c1]

if P
0
> PS ≥ P 1

(min(QC ,K))

min(QC ,K) if P
1
(min(QC ,K)) > PS ≥ P 4

(min(QC ,K))

z∗1,S = min(QC ,K) + (P
4
(min(QC ,K))−PS)(1−�s)

2[b1(aS1 )2+b2(aS2 )2+2eaS1 a
S
2 +c1]

if P
4
(min(QC ,K)) > PS ≥ P 5

(K)

K if P
5
(K) > PS.

For � ∈ Ω2, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗1,C = (1−!−�s)(P 0−PS)

2[b1(aC1 )2+b2(aC2 )2+2eaC1 a
C
2 +c1]

if P
0
> PS ≥ P 1

(QC)

QC if P
1
(QC) > PS ≥ P 4

(QC)

z∗1,S = QC + (P
4
(QC)−PS)(1−�s)

2[b1(aS1 )2+b2(aS2 )2+2eaS1 a
S
2 +c1]

if P
4
(QC) > PS ≥ P 5

(I(S))

z∗2,S = I(S) + (P
6
(I(S))−PS)(1−�s)

2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P

5
(I(S)) = P

6
(I(S)) > PS ≥ P 7

K if P
7
> PS.

35



For � ∈ Ω3, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗1,C = (1−!−�s)(P 0−PS)

2[b1(aC1 )2+b2(aC2 )2+2eaC1 a
C
2 +c1]

if P
0
> PS ≥ P 1

(I(M))

z∗2,C = I(M) + (1−!−�s)(P 2
(I(M)−PS)

2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P

1
(I(M)) = P

2
(I(M)) > PS ≥ P 3

(min(QC ,K))

min(QC ,K) if P
3
(min(QC ,K)) > PS ≥ P 6

(min(QC ,K))

z∗2,S = min(QC ,K) + (P
6
(min(QC ,K))−PS)(1−�s)

2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P

6
(min(QC ,K)) > PS ≥ P 7

K if P
7
> PS.

For � ∈ Ω4, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗3,C = (1−!−�s)(P 0−PS)
2[b2s2+c1] if P 0 > PS ≥ P 1(II)

z∗2,C = II + (1−!−�s)(P 2(II)−PS)

2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P 1(II) = P 2(II) > PS ≥ P 3(min(QC ,K))

min(QC ,K) if P 3(min(QC ,K)) > PS ≥ P 6(min(QC ,K))

z∗2,S = min(QC ,K) + (P 6(min(QC ,K))−PS)(1−�s)
2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P 6(min(QC ,K)) > PS ≥ P 7

K if P 7 > PS.

For � ∈ Ω5, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗3,C = (1−!−�s)(P 0−PS)
2[b2s2+c1] if P 0 > PS ≥ P 1(QC)

QC if P 1(QC) > PS ≥ P 4(QC)

z∗3,S = QC + (P 4(QC)−PS)(1−�s)
2[b2s2+c1] if P 4(QC) > PS ≥ P 5(II)

z∗2,S = II + (P 6(II)−PS)(1−�s)
2
[

(b1b2−e2)s2

b1+b2−2e +c1
] if P 5(II) = P 6(II) > PS ≥ P 7

K if P 7 > PS.

For � ∈ Ω6, the unique optimal processing decision z∗ is characterized by

z∗ =

⎧⎨⎩

0 if PS ≥ P 0

z∗3,C = (1−!−�s)(P 0−PS)
2[b2s2+c1] if P 0 > PS ≥ P 1(min(QC ,K))

min(QC ,K) if P 1(min(QC ,K)) > PS ≥ P 4(min(QC ,K))

z∗3,S = min(QC ,K) + (P 4(min(QC ,K))−PS)(1−�s)
2[b2s2+c1] if P 4(min(QC ,K)) > PS ≥ P 5(K)

K if P 5(K) > PS.

C Characterization of the First-Order Condition at Stage 0

Proof of Proposition 3: Using Proposition B.1, we can characterize the expected profit E[Π(QC)]

for QC ≤ K and QC > K. Let f(�̃1, �̃2) denote the density function of �̃
′

= (�̃1, �̃2). We define

Πk(QC , �̃) for k = 1, .., 6 such that E[Π(QC)] =
∑6
k=1 E[Πk(QC , �̃)∣�̃ ∈ Ωk]Pr{�̃ ∈ Ωk}. For
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example, for QC ≤ K, we have Π1(QC , �̃) =
∫∞
P

0 Λ1,C(0) dF (P̃S) +
∫ P 0

P
1
(QC)

Λ1,C(z∗1,C) dF (P̃S) +∫ P 1
(QC)

P
4
(QC)

Λ1,C(QC) dF (P̃S) +
∫ P 4

(QC)

P
5
(K)

Λ1,S(z∗1,S) dF (P̃S) +
∫ P 5

(K)

0
Λ1,S(K) dF (P̃S). Πk(QC , �̃) for

the other regions can be established in the same manner, and is omitted. For QC > K, we have

Ω2 = Ω5 = ∅, and we obtain

∂E[Π(QC)]

∂QC
= −E

[
max

(
min(u, P̃S + �), l

)]
+ E[P̃S(1− !)] < 0 (11)

by assumption. For QC ≤ K, we analyze each ∂Πk

∂QC
separately. We only provide the characterization

for �̃ ∈ Ω1, the rest can be established similarly. We obtain ∂Π1

∂QC
=

− E
[
max

(
min(u, P̃S + �), l

)]
+

∫ ∞
P

1
(QC)

[
P̃S(1− !)

]
dF (P̃S)

+

∫ P
1
(QC)

P
4
(QC)

[
�̃1a

S
1 + �̃2a

S
2 + Δ(�̃1 − �̃2) + 2c1K − c0 + �s(P̃S − �S)

−2(QC)[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1 + (Δ)2(b1 + b2 − 2e) + 2Δ[(b1 − e)aS1 − (b2 − e)aS2 ]]

]
dF (P̃S)

+

∫ P
4
(QC)

P
5
(K)

[
P̃S + t+ � + Δ[�̃1 − �̃2]− 2QC(Δ)2[b1 + b2 − 2e]− Δ[(b1 − e)aS1 − (b2 − e)aS2 ]

[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1][

�̃1a
S
1 + �̃2a

S
2 + 2c1K − c0 − �s�S − P̃S(1− �s)− t− � − 2ΔQC [(b1 − e)aS1 − (b2 − e)aS2 ]

]]
dF (P̃S)

+

∫ P
5
(K)

0

[
P̃S + t+ � + Δ[�̃1 − �̃2]− 2QC(Δ)2[b1 + b2 − 2e]− 2ΔK[(b1 − e)aS1 − (b2 − e)aS2 ]

]
dF (P̃S)

To establish the concavity of E[Π(QC)], we obtain ∂2E[Π(QC)]
∂(QC)2 =

∑6
k=1

∫ ∫
Ωk

∂2Πk(QC ,�̃)

∂QC2 f(�̃1, �̃2)d�̃1d�̃2.

From (11), we have ∂2E[Π(QC)]
∂(QC)2 = 0; hence E[Π(QC)] is concave for QC > K. For QC < K, for con-

cavity, it is sufficient to prove that ∂2Πk(QC)

∂(QC)2 < 0 for k = 1, .., 6. For �̃ ∈ Ω1, we obtain ∂2Π1

∂(QC)2 =

∫ P
1
(QC)

P
4
(QC)

−2
[
b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a

S
2 + c1 + (Δ)2(b1 + b2 − 2e) + 2Δ[(b1 − e)aS1 − (b2 − e)aS2 ]

]
dF (P̃S)

+

∫ P
4
(QC)

P
5
(K)

−
[
2(Δ)2 (b1b2 − e2)(aS1 + aS2 )2 + (b1 + b2 − 2e)c1

b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1

]
dF (P̃S)+

∫ P
5
(K)

0

−2(Δ)2(b1+b2−2e)dF (P̃S) < 0.

The other regions can be established in the same manner, and the proof is omitted. Combining all

Ωk, we have ∂2E[Π(QC)]
∂(QC)2 < 0 for QC < K; hence E[Π(QC)] is also concave for QC < K. It is easy to

establish that E[Π(QC)] is kinked at QC = K. Therefore it is not differentiable at QC = K. It is

easy to establish that ∂E[Π(QC)]
∂QC

∣∣∣
K−

> ∂E[Π(QC)]
∂QC

∣∣∣
K+

. Therefore E[Π(QC)] is globally concave.
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By using the definitions of P
(.)

, P
(.)

and z∗(.), for QC < K, we obtain

∂E[Π(QC)]

∂QC
= −E

[
max

(
min(u, P̃S + �), l

)]
(12)

+ E[(1− !)P̃S + (1− ! − �s)(P 1
(QC)− P̃S)+∣�̃ ∈ Ω12]Pr

{
�̃ ∈ Ω12

}
+ E[(1− !)P̃S + (1− ! − �s)(P 3(QC)− P̃S)+∣�̃ ∈ Ω34]Pr

{
�̃ ∈ Ω34

}
+ E[(1− !)P̃S + (1− ! − �s)(P 1(QC)− P̃S)+∣�̃ ∈ Ω56]Pr

{
�̃ ∈ Ω56

}
− E

[∫ P
4
(QC)

0

[
(P

4
(QC)− P̃S)(1− �s)

]
dF (P̃S)

+

∫ P
4
(QC)

P
5
(K)

2Δℎ(z∗1,S −QC)dF (P̃S) +

∫ P
5
(K)

0

2Δℎ(K −QC)dF (P̃S)

∣∣∣∣∣ �̃ ∈ Ω1

]
Pr
{
�̃ ∈ Ω1

}
− E

[∫ P
4
(QC)

P
5
(I(S))

[
(P

4
(QC)− P̃S)(1− �s)

]
dF (P̃S)

+

∫ P
4
(QC)

P
5
(K)

2Δℎ(z∗1,S −QC)dF (P̃S) +

∫ P
6
(I(S))

0

2Δℎ(I(S)−QC)dF (P̃S)

∣∣∣∣∣ �̃ ∈ Ω2

]
Pr
{
�̃ ∈ Ω2

}
− E

[∫ P 6(QC)

0

[
(P 6(QC)− P̃S)(1− �s)

]
dF (P̃S)

∣∣∣∣∣ �̃ ∈ Ω34

]
Pr
{
�̃ ∈ Ω34

}
− E

[∫ P 4(QC)

0

[
(P 4(QC)− P̃S)(1− �s)

]
dF (P̃S)

∣∣∣∣∣ �̃ ∈ Ω56

]
Pr
{
�̃ ∈ Ω56

}
.

where ℎ = (b1− e)aS1 − (b2− e)aS2 . From (11), we have ∂E[Π(QC)]
∂QC

< 0 for QC > K; hence QC
∗ ≤ K.

Since E[Π(QC)] is concave function, QC
∗

= 0 if ∂E[Π(QC)]
∂QC

∣0+ ≤ 0. QC
∗

= K if ∂E[Π(QC)]
∂QC

∣K− > 0.

Otherwise QC
∗

is the solution to the first order condition as depicted in (12).The equivalence between

(12) and the optimality condition in (4) can be obtained after standardizing P̃S as �S + z�S , and

using the identities of the standard normal distribution.

D Proofs for the “Window Contracts” Model

Proof of Proposition 4: We have V (QC) =
∑6
l=1 E�̃

[
EP̃S

[
Πl(QC , �̃, P̃S)

]∣∣∣ �̃ ∈ Ωl
]
Pr{�̃ ∈ Ωl}.

We define G(l, u)
.
= E

[
max

(
min(u, P̃S + �), l

)]
. For a given QC , we can separate V (QC) as follows:

V (QC) = −G(l, u)QC + �S(1− !)QC +

6∑
l=1

E�̃

[
EP̃S

[
Πl

Θ(QC , �̃, P̃S)
]∣∣∣ �̃ ∈ Ωl

]
Pr{�̃ ∈ Ωl} (13)

where the first term is the expected contract procurement cost, the second term is the expected rev-

enues from spot sales, and the remaining terms denote the additional expected profit from processing
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over spot sale. For QC < K, we have in Ω1 region, EP̃S [Π1
Θ] =

∫∞
P

0

[
−c1K2

]
dF (P̃S)

+

∫ P
0

P
1
(QC)

[
−c1K2+

[�1a
S
1 + �2a

S
2 + Δ(�1 − �2) + 2c1K − c0 − �s�S − P̃S(1− �− �s)]2

4[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1 + (Δ)

2
(b1 + b2 − 2e) + 2Δ[(b1 − e)aS1 − (b2 − e)aS2 ]]

]
dF (P̃S)

+

∫ P
1
(QC)

P
4
(QC)

[
−P̃S(1− !)QC − c1K2 +QC [�1a

S
1 + �2a

S
2 + Δ(�1 − �2) + 2c1K − c0 + �s(P̃S − �S)]

−(QC)2[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1 + (Δ)2(b1 + b2 − 2e) + 2Δ[(b1 − e)aS1 − (b2 − e)aS2 ]]

]
dF (P̃S)

+

∫ P
4
(QC)

P
5
(K)

[
−P̃S(1− !)QC +QC(P̃S + t+ �)− c1K2 +QCΔ[�1 − �2]− (QC)2(Δ)2[b1 + b2 − 2e]

+
[�1a

S
1 + �2a

S
2 + 2c1K − c0 − �s�S − P̃S(1− �s)− t− � − 2ΔQC [(b1 − e)aS1 − (b2 − e)aS2 ]]2

4[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1]

]
dF (P̃S)

+

∫ P
5
(K)

0

[
−P̃S(1− !)QC +QC(P̃S + t+ �) +QCΔ[�1 − �2]− (QC)2(Δ)2[b1 + b2 − 2e]

+K[�1a
S
1 + �2a

S
2 − c0 − �s�S − P̃S(1− �s)− t− � − 2ΔQC [(b1 − e)aS1 − (b2 − e)aS2 ]]

−K2[b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 ]
]
dF (P̃S).

EP̃S [Π1
Θ] for the other Ωl regions can be characterized in a similar fashion. By using the normal-

ity assumption of P̃S , we obtain G(l, u) =
[
u+ �S

(
L
(
l−�−�S
�S

)
− L

(
u−�−�S

�S

))]
where L(z) =

zΦ(z) + �(z) is the standard normal loss function, and Φ(.) and �(.) is cdf and pdf of standard

normal random variable, respectively. Using the identity �
′
(z) = −z�(z), we obtain ∂G(l,u)

∂�S
=

�
(
l−�−�S
�S

)
− �

(
u−�−�S

�S

)
. It follows that ∂G(l,u)

∂�S
> (<)0 if �S + � < l+u

2 (�S + � > l+u
2 ); and

∂G(l,u)
∂�S

= 0 if �S + � = l+u
2 or l = u or l→ −∞, u→∞.

We now analyze the effect of �S on the expected value from processing over spot sale. We have

6∑
l=1

E�̃

[
EP̃S

[
Πl

Θ(QC , �̃, P̃S)
]∣∣∣ �̃ ∈ Ωl

]
Pr{�̃ ∈ Ωl} = EP̃S

[
6∑
l=1

E�̃

[
Πl

Θ(QC , �̃, P̃S)
∣∣∣ �̃ ∈ Ωl

]
Pr{�̃ ∈ Ωl}

]

Let EP̃S [Ψ(P̃S)] denote the right-hand side term. We use the following result from Müller (2001):

Lemma D.1 Let P̃S (P̃
S

) to have a normal distribution with mean �S (�
S

) and standard deviation

�S (�S). If �S = �
S

and �S ≤ �S, then, P̃S ≤ P̃
S

in the convex order, i.e. E[f(P̃S)] ≤ E[f(P̃
S

)]

for any convex function f .

For convexity of Ψ(PS) in PS , it is sufficient to show that each Πl
Θ is a convex function of PS . We

will only provide the proof for Ω1 region, i.e. Π1
Θ. The same result for the other regions can be
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proven in a similar fashion. We obtain

∂Π1
Θ

∂PS
=

⎧⎨⎩

0 if PS ∈ [P
0
,∞)

(�s+ ! − 1) f1(PS)
2ℎ1

if PS ∈ [P
1
(QC), P

0
)

(�s+ ! − 1)QC if PS ∈ [P
4
(QC), P

1
(QC))

!QC − (1− �s) f2(PS)
2ℎ2

if PS ∈ [P
5
(K), P

4
(QC))

!QC − (1− �s)K if PS ∈ [0, P
5
(K))

(14)

where f1, ℎ1, f2, ℎ2 are given by

f1(PS) = �1a
S
1 + �2a

S
2 + Δ(�1 − �2) + 2c1K − c0 − �s�S − PS(1− ! − �s) (15)

ℎ1 = b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1 + Δ2(b1 + b2 − 2e) + 2Δ[(b1 − e)aS1 − (b2 − e)aS2 ]

f2(PS) = �1a
S
1 + �2a

S
2 + 2c1K − c0 − �s�S − PS(1− �s)− t− � − 2ΔQC [(b1 − e)aS1 − (b2 − e)aS2 ]

ℎ2 = b1(aS1 )2 + b2(aS2 )2 + 2eaS1 a
S
2 + c1.

From (14), it can be easily established that Π1
Θ is convexly decreasing in PS by using ∂f1

∂PS
=

(1−!−�s)2

2ℎ1
> 0, ∂f2

∂PS
= (1−�s)2

2ℎ2
> 0 and the fact that Π1

Θ is a smooth function of PS , i.e. left-hand

side and right-hand side derivative at boundaries in (14) are equal. This concludes the proof.

Proof of Proposition 5: The correlation parameter � only affects the expected value of processing

over spot sale in (13). For Ω1 region, we obtain
∂EP̃S [Π1

Θ]

∂� =

∫ P
0

P
1
(QC)

[s(P̃ s − �S)
f1(P̃S)

2ℎ1
] dF (P̃S) +

∫ P
1
(QC)

P
4
(QC)

[s(P̃ s − �S)QC ] dF (P̃S) (16)

+

∫ P
4
(QC)

P
5
(K)

[s(P̃ s − �S)
f2(P̃S)

2ℎ2
] dF (P̃S) +

∫ P
5
(K)

0

[s(P̃ s − �S)K] dF (P̃S)

where f1, ℎ1, f2, ℎ2 are given in (15). Observe that f1(PS)
2ℎ1

= z∗1,C , f2(PS)
2ℎ2

= z∗1,S . Thus, using

Proposition B.1, (16) can be written as EP̃S
[
Z∗(P̃S)s(P̃ s − �S)

]
where Z∗ is the random vari-

able that denotes the optimal processing decision. Since P̃S is normally distributed, we have

EP̃S
[
Z∗(P̃S)s(P̃ s − �S)

]
= s�SE [Z∗(�S + z�S)z] where the second expectation is taken over the

standard normal random variable. As follows from Stein’s Lemma, for a differentiable function g

and a standard normal random variable z, we have E[g(z)z] = E[g
′
(z)] (see for example, Rubinstein

(1976)). By using this identity, we obtain

E [Z∗(�S + z�S)z] =

∫ P
0

P
1
(QC)

−(1− ! − �s)
2ℎ1

dF (P̃S) +

∫ P
4
(QC)

P
5
(K)

−(1− �s)
2ℎ2

dF (P̃S) < 0

as � < 1−!
s . The desired result follows as this argument also holds for the other Ω(.) regions.

Proof of Proposition 6: As can be observed from (13), the comparison of V (QC) with window

contract and forward contract reduces to the comparison of the expected contract procurement cost

G(l, u). We define H(F )
.
= G(F − �, F + �) − F as the cost differential between the window and
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forward contract for � < F . We obtain ∂H
∂F

= Φ
(
F−�−�−�S

�S

)
− �

(
F+�−�−�S

�S

)
< 0. By using

�(z) = �(−z) and Φ(z) = 1 − Φ(−z) for the standard normal distribution, it is easy to establish

that H(�S + �) = 0. Therefore, if F > �S + � (F < �S + �), the expected cost of window contract

is higher (lower) than the forward contract. As follows from (12), the type of the contract only

affects the expected marginal procurement cost G(l, u) of C-input in the optimality condition. Since

V (QC) is a concave function of QC , it follows that QC
∗

is lower (higher) with the window contract

if F > �S + � (F < �S + �). It is easy to establish that the expected spot procurement at the

optimal solution depends on the contract type only through the optimal volume of C-input, and is

decreasing in QC
∗
. This concludes the proof.

E Proofs for the Analytical Statements in Table 3

We only provide the proof for the impact of �� and �� on the expected profit by using the assumption

that all the probability mass of �̃ is located in Ω1 region. The proof for the impact of �S follows

from Proposition 4, and the proof for �S and �i can be obtained using a similar technique. In

each of the proofs, we will demonstrate the impact on V (QC) for QC < K. This also implies

the same effect on the expected optimal profit V ∗(QC
∗
). For notational convenience, we define

Υ(�)
.
= EP̃S

[
Πl

Θ(QC , �, P̃S)
]

so that V (QC)
.
= E�̃

[
Υ(�̃)

]
.

Proof of �� effect on V (QC) : We use the following result result from Müller (2001):

Lemma E.1 Let �̃ (�̃) to have a bivariate normal distribution with mean � (�) and covariance

matrix Σ (Σ). If � = �, �̃ and �̃ have the same marginal distributions, Σij ≤ Σij, then �̃ ≤ �̃ in

the supermodular order, i.e. E[f(�̃)] ≤ E[f(�̃)] for any supermodular function f .

Since we have symmetric ��, it follows from Lemma E.1 that increasing �� leads to another bivariate

normal distribution that is preferred over �̃ in the supermodular order. It is sufficient to show that

Υ(�) is supermodular in �. To prove supermodularity, it is sufficient to show ∂2Υ(�)
∂�1∂�2

≥ 0. We obtain

∂2Υ(�)

∂�1∂�2
=

∫ P
0

P
1
(QC)

aC1 a
C
2

2ℎ1
dF (P̃S) +

∫ P
4
(QC)

P
5
(K)

aS1 a
S
2

2ℎ2
dF (P̃S) > 0

where ℎ1 and ℎ2 are as defined in (15). This concludes the proof.

Proof of �� effect on V (QC) : We use the following result result from Müller (2001):

Lemma E.2 Let �̃ (�̃) to have a bivariate normal distribution with mean � (�) and covariance

matrix Σ (Σ) with ��1 = ��2 = �� (��
1

= ��
2

= ��). If � = �, and �� ≤ �� then �̃ ≤ �̃ in the

convex order, i.e. E[f(�̃)] ≤ E[f(�̃)] for any convex function f .

To prove the result, as defined in V (QC) = E�̃

[
Υ(�̃)

]
, it is sufficiently show that Υ(�) is jointly
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convex in �. We obtain

∂2Υ(�)

∂�2
1

=

∫ P
0

P
1
(QC)

aC1 a
C
1

2ℎ1
dF (P̃S) +

∫ P
4
(QC)

P
5
(K)

aS1 a
S
1

2ℎ2
dF (P̃S) > 0,

∂2Υ(�)

∂�2
2

=

∫ P
0

P
1
(QC)

aC2 a
C
2

2ℎ1
dF (P̃S) +

∫ P
4
(QC)

P
5
(K)

aS2 a
S
2

2ℎ2
dF (P̃S) > 0

where ℎ1 and ℎ2 are as defined in (15) and

∂2Υ(�)

∂�2
1

∂2Υ(�)

∂�2
2

−
(
∂2Υ(�)

∂�i�j

)2

= (sΔ)2

(∫ P
0

P
1
(QC)

dF (P̃S)

)(∫ P
4
(QC)

P
5
(K)

dF (P̃S)

)
≥ 0.

Hence, Υ(�) is jointly convex in �. This concludes the proof.
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