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Abstract 
 

Theories such as Merton (1987) predict a positive relation between idiosyncratic risk and 

expected return when investors do not diversify their portfolio. Ang, Hodrick, Xing, and 

Zhang (2006, Journal of Finance 61, 259-299) however find that monthly stock returns are 

negatively related to the one-month lagged idiosyncratic volatilities. I show that 

idiosyncratic volatilities are time-varying and thus their findings should not be used to 

imply the relation between idiosyncratic risk and expected return. Using the exponential 

GARCH models to estimate expected idiosyncratic volatilities, I find a significantly 

positive relation between the estimated conditional idiosyncratic volatilities and 

expected returns. Further evidence suggests that Ang et al.’s findings are largely 

explained by the return reversal of a subset of small stocks with high idiosyncratic 

volatilities. 
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1. Introduction 

Modern portfolio theory suggests that investors hold a portfolio of stocks to 

diversify idiosyncratic risk. The capital asset pricing model (CAPM) builds on the 

portfolio theory and predicts that all investors hold the market portfolio in equilibrium. 

As a result, only systematic risk is priced in equilibrium and idiosyncratic risk is not. For 

various reasons, investors in reality however may not hold perfectly diversified 

portfolios. For instance, Goetzmann and Kumar (2004) show that, based on a sample of 

more than 62,000 household investors in the period of 1991 to 1996, more than 25 percent 

of the investor portfolios contain only one stock, over a half of the investor portfolios 

contain no more than three stocks and less than ten percent of the investor portfolios 

contain more than ten stocks. After examining the standard deviation of portfolio 

returns, Campbell, Lettau, Malkiel, and Xu (2001, p. 25) however suggest that “the 

number of randomly selected stocks needed to achieve relatively complete portfolio 

diversification” is about 50. 

Various theories assuming under-diversification predict that idiosyncratic risk is 

positively related to the expected stock returns in the cross section. Among them are 

Levy (1978), Merton (1987), and Malkiel and Xu (2002). Under-diversified investors 

demand a return compensation for bearing idiosyncratic risk. But a recent paper by Ang, 

Hodrick, Xing, and Zhang (2006, AHXZ hereafter) finds that, in the cross-section of 

stocks, high idiosyncratic volatility in this month predicts abysmally low average 

returns in the next month, which they call “a substantive puzzle”. Their study poses 

three important questions: (1) Do the findings imply that the relation between 

idiosyncratic risk and expected return is negative? (2) If not necessary, what is the true 

empirical relation? (3) If the true relation is not negative, how to explain their findings? 
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 I attempt to answer these three questions in this paper. The sample of data 

includes stocks traded on the NYSE, the AMEX, and the NASDAQ during the period 

from July 1963 to December 2006. I first identify that idiosyncratic volatilities, unlike 

some firm characteristics, are very volatile over time. For an average individual stock, 

the standard deviation of its monthly idiosyncratic volatilities is 55 percent of the mean. 

In order to explain expected returns, the theoretically correct variable should be the 

expected idiosyncratic volatilities in the same period that the expected returns are 

measured. Since idiosyncratic volatilities are time-varying, the one-month lagged 

idiosyncratic volatility may not be an appropriate proxy for the expected idiosyncratic 

volatility of this month. Indeed, the average first-order autocorrelation of idiosyncratic 

volatility is only 0.33 in my sample. Dickey-Fuller tests further show that, for nine out of 

ten stocks, their idiosyncratic volatility does not follow a random walk process. These 

findings suggest that the negative relation between the lagged idiosyncratic volatility 

and average returns in AHXZ (2006) does not imply that the relation between 

idiosyncratic risk and expected return is negative. The lagged idiosyncratic volatility 

might not be a good estimate of expected idiosyncratic volatility. 

 In order to capture the time-varying property of idiosyncratic risk, I employ the 

Exponential Generalized AutoRegressive Conditional Heteroskedasticity (EGARCH) 

models and out-of-sample data to estimate expected idiosyncratic volatilities. I then run 

Fama-MacBeth regressions of monthly stock returns on the EGARCH estimates and 

other firm characteristics that are known to explain cross-sectional returns. I find that 

returns are positively related to the EGARCH-estimated conditional idiosyncratic 

volatilities. The positive relation is both statistically and economically significant. On 

average, a stock that has a conditional idiosyncratic volatility of one standard deviation 
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higher than the other stock earns a return of about 1 percent higher in a month. The 

coefficient of determination for the cross-sectional regressions also increases 

significantly after including the conditional idiosyncratic volatility. A zero-investment 

portfolio that is long in the 10% of the highest and short in the 10% of the lowest 

conditional idiosyncratic volatilities earns a positive return of 1.75% in a month. These 

findings support the theory prediction that idiosyncratic risk is positively related to 

expected returns.   

 However, AHXZ’s (2006) finding that stocks with high idiosyncratic volatilities 

tend to have abnormally low returns in the subsequent month is still puzzling, 

especially given that the contemporaneous relation between return and volatility is 

significantly positive. I show that their results can largely be explained by the return 

reversal of stocks with high idiosyncratic volatilities. Specifically, stocks with high 

idiosyncratic volatilities are shown to have high contemporaneous returns. The positive 

abnormal returns tend to reverse, resulting in negative abnormal returns in the 

following month.1 Moreover, these stocks are small in size. The 40% stocks with the 

highest idiosyncratic volatilities only contribute to 9% of the total market capitalization. 

Since transaction costs for small firms are notoriously high, and idiosyncratic risk 

                                                 
1 In order to be consistent with AHXZ (2006) for a better comparison, I also use the Fama-French 

three-factor model as the benchmark model for expected returns. AHXZ’s arguments are mainly 

based on the portfolio of the highest idiosyncratic volatility that yields a negative abnormal 

return in the following month.  
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increases holding costs and makes arbitrage more costly (Pontiff, 2006), it is dubious that 

the negative relation would present a true profitable opportunity.2  

 AHXZ’s (2006) findings have attracted much attention recently. Bali and Cakici 

(2008) suggest that AHXZ’s results are sensitive to (i) data frequency used to estimate 

idiosyncratic volatility, (ii) weighting scheme used to compute average portfolio returns, 

(iii) breakpoints utilized to sort stocks into quintile portfolios, and (iv) using a screen for 

size, price, and liquidity, and therefore are not robust. Huang, Liu, Rhee, and Zhang 

(2007) point out that AHXZ’s results are driven by monthly stock return reversals. After 

controlling for the difference in the past-month returns, the negative relation between 

average return and the lagged idiosyncratic volatility disappears. Using a different 

method that more closely focuses on AHXZ’s findings, I point to the same conclusion. 

Boyer, Mitton, and Vorkink (2007) suggest that idiosyncratic volatility is a good 

predictor of expected skewness – an explanatory variable of cross-sectional returns 

(Harvey and Siddique, 2000). The negative relation greatly reduces after controlling for 

expected skewness. Jiang, Xu, and Yao (2006) argue that high idiosyncratic volatility and 

low future returns are both related to a lack of information disclosure among firms with 

poor earnings prospects. Investors underreact to earnings information in idiosyncratic 

volatility.  

In their more recent work, Ang, Hodrick, Xing, and Zhang (2008) find that the 

negative relation between average return and the lagged idiosyncratic volatility also 

                                                 
2 In their more recent work, AHXZ (2008) admit that their documented negative relation implies 

“not necessarily a relation that involves expected volatility” but argue that it suggests a profitable 

trading strategy.  
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exists in other G7 countries. However, Brockman and Schutte (2007) follow my 

EGARCH method to estimate conditional idiosyncratic volatility and confirm that the 

relation between stock return and conditional idiosyncratic volatility is also positive in 

international data. Similarly Spiegel and Wang (2006) and Eiling (2006) adopt the 

EGARCH models to estimate conditional idiosyncratic volatility and both find the 

positive relation in the U.S. data. Spiegel and Wang also show that idiosyncratic 

volatility swamped liquidity in explaining the cross-sectional variation of average 

returns but not vice versa. Eiling shows that the idiosyncratic risk premium is related to 

hedging demand due to investors’ non-tradable human capital. Chua, Goh, and Zhang 

(2007) model idiosyncratic volatility as an AR(2) process and decompose it into an 

expected and an unexpected components. Controlling for the unexpected idiosyncratic 

volatility, they also find the relation between expected return and expected idiosyncratic 

volatility is significantly positive.  

 The reminder of the paper proceeds as follows. In Section 2, I measure monthly 

idiosyncratic volatility, examine its time-series properties, and estimate the one-month-

ahead conditional idiosyncratic volatilities using EGARCH models. In Section 3, I 

examine the cross-sectional relation between conditional idiosyncratic volatilities and 

expected returns. I replicate and explain AHXZ’s findings in Section 4. Section 5 

concludes.  

 

2. Idiosyncratic volatility and its time-series property 

The goal of the paper is to examine whether under-diversified investors are 

compensated for bearing idiosyncratic risk. From the theory perspective, the risk and 

return tradeoff should be contemporaneous. Investors earn returns for bearing the risk 
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in the same period. Therefore if idiosyncratic volatility, as a natural proxy for 

idiosyncratic risk, is priced, we expect to observe a positive empirical relation between 

expected return and expected idiosyncratic volatility. However, neither expected return 

nor expected idiosyncratic risk is observable. A conventional practice is to use the 

realized return as the dependent variable in cross-sectional regressions where the 

realized return is assumed to be the sum of the expected return and a random error.3 

The expected idiosyncratic volatility and other control variables are put on the right-

hand-side of the regressions.  

∑
=

−− +Χ++=
K

k
itkittktittttit EIVOLER

2
1110 ][][ εγγγ     TtNi t ,,2,1,,,2,1 LL ==       (1) 

The dependent variable is the realized returns for stock i in period t. ][1 ⋅−tE  stands for 

the function of expectation conditional on the information set at t-1. itIVOL  represents 

the idiosyncratic volatility of stock i during period t. ][1 itt IVOLE −  is the expected 

idiosyncratic volatility for stock i at time t conditional on the information set at time t-1. 

kitΧ  represents other explanatory variables of cross-sectional returns. tN  is the total 

number of stocks at t and T is the total number of time periods. The null hypothesis is 

01 =tγ , that is, idiosyncratic risk is not priced. Existing theories assuming under-

diversification such as Merton (1987) predicts that 01 >tγ . 

It is crucial to have a quality estimate of [ ]itt IVOLE 1−  -- the expected idiosyncratic 

volatility. If idiosyncratic risk is highly persistent as following a random walk process, 

we can simply use the lagged value as an estimate of the expected value. In this case, 
                                                 
3 See, for example, Fama and French (1992), Chordia, Subrahmanyam and Anshuman (2001), 

Easley, Hvidkjaer, and O’Hara (2002) among others. 
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idiosyncratic risk resembles some firm characteristics such as size and the market-to-

book ratio of equity. Fama and French (1992), for example, use market capitalizations 

and book-to-market equity ratios of the current year to explain the cross-sectional 

variation of monthly returns in the next year. However, we have no prior reasons to 

presume high persistence in idiosyncratic risk. Idiosyncratic risk reflects firm-specific 

information that is volatile in its nature. Many factors could contribute to the time-

varying nature of firm-specific information. For instance, disclosure of earnings 

information is periodical and infrequent; the supply and demand of certain firms are 

subject to seasonal variations; competitors’ moves may also bring impact on the firm’s 

profitability. I examine the time-series property of idiosyncratic volatility in this section. 

The results indeed suggest that idiosyncratic volatility varies over time substantially. 

Therefore, a quality estimate of conditional idiosyncratic volatility is demanded to draw 

an appropriate inference on the relation between idiosyncratic risk and expected return.  

 

2.1. Estimation of idiosyncratic volatility  

Idiosyncratic risk is defined as the risk that is unique to a specific firm, so it is 

also called firm-specific risk. By definition, idiosyncratic risk is independent of the 

common movement of the market. Following AHXZ (2006), I measure the idiosyncratic 

risk of an individual stock as follows. In every month, daily excess returns of individual 

stocks are regressed on the daily Fama-French three factors (Fama and French, 1993, 

1996): (i) the excess return on a broad market portfolio )( fm rR − , (ii) the difference 

between the return on a portfolio of small stocks and the return on a portfolio of large 

stocks (SMB, small minus big), and (iii) the difference between the return on a portfolio 



 8 

of high book-to-market stocks and the return on a portfolio of low book-to-market stocks 

(HML, high minus low),  

τττττττ εα iititmititi HMLhSMBsrRbrR +++−+=− )( .  (2) 

τ is the subscript for the day and t  is the subscript for the month, t∈τ , and ,, ii sb and 

ih  are factor sensitivities or loadings. Daily stock returns are obtained from the CRSP. I 

include stocks traded on the NYSE, the AMEX or the Nasdaq during the period of July 

1963 to December 2006. The daily factor data are downloaded from Kenneth R. French’s 

website. 4  I perform a time-series regression for each stock in each month. The 

idiosyncratic volatility of a stock is computed as the standard deviation of the regression 

residuals. To reduce the impact of infrequent trading on idiosyncratic volatility 

estimates, I require a minimum of 15 trading days in a month for which the CRSP 

reports both a daily return and non-zero trading volume.5 Moreover, I transform the 

standard deviation of daily return residuals to a monthly return residual by multiplying 

the daily standard deviation by the square root of the number of trading days in that 

month.6 In the pooled sample of 2,946,521 firm-month observations, the mean monthly 

idiosyncratic volatility (IVOL) is 14.17% with a standard deviation of 13.91%.  

 

2.2. Time-series property of idiosyncratic volatility 

                                                 
4  The website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. I 

thank Kenneth French for making these data available. 

5 The trading days per month in my sample ranges from 15 to 23 days with a mean and median of 

21 days. Only about 1% of firm-month observations have fewer than 19 trading days.  

6 A similar procedure is used by French, Schwert, and Stambaugh (1987) and Schwert (1989).  
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 Table 1 presents the time-series property of individual stock idiosyncratic 

volatilities. I first compute the time-series statistics of idiosyncratic volatility for each 

firm and then summarize the mean statistics across about 26,000 firms in the sample. 

The time-series mean IVOL is on average 16.87% across stocks and the mean standard 

deviation is 9.94%. The mean coefficient of variation is 0.55, indicating that the standard 

deviation of IVOL for an average stock is 55% of its time-series mean. This suggests that 

individual stock idiosyncratic volatilities vary substantially over time. The last columns 

report the autocorrelations of IVOLs. The mean autocorrelation is 0.33 at the first lag and 

decays slowly. I also report the statistics of the changes in the logarithm of the 

idiosyncratic volatility ( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−1t

t

IVOL

IVOL
Ln ). The autocorrelation of this new variable is -0.42 at 

the first lag and close to zero at lags of higher orders. This evidence suggests that the 

first differences of )( tIVOLLn  for quite a few firms might follow a first-order moving 

average process.  

 AHXZ (2006) draw expected return implications on the basis of the observed 

relation between monthly stock returns and the one-month lagged IVOL. Their empirical 

methods implicitly assume that the time-series idiosyncratic volatility can be 

approximated by a random walk process. The first-order autocorrelation for a random 

walk process should be one, and the first differences of a random walk are a white noise 

and therefore the autocorrelation should be zero at all lags. The autocorrelation evidence 

in Table 1
 
suggests that the random walk hypothesis is not appropriate for a typical 

stock’s idiosyncratic volatility process. To illustrate this point further, I run the following 

time-series regression for each stock, 

.,,2,1,,2,1,,10,1, NiTtIVOLIVOLIVOL itiiititi LL ==++=−+ ηγγ   (3) 
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The coefficient i1γ should be indistinguishable from zero if the time-series of itIVOL  

follow a random walk. This is a standard unit-root test. For each time series of IVOL, I 

estimate the coefficient i1γ  and then compare its t-statistic with the Dickey-Fuller critical 

values for the unit-root tests. In Table 2, I report the cross-firm mean, median, the lower 

and upper quartiles of the i1γ estimates and the associated t-statistics. The last column 

reports the percentage of firms for which the random walk hypothesis is rejected at the 

1% level. For the purpose of regressions, I require firms to have at least 30 months of 

consecutive observations ( 30≥iT for every stock). 7  This requirement reduces the 

number of firms to 20,979. The mean i1γ  among these firms is -0.61 and the mean t-

statistic of i1γ  is -6.81. According to the Dickey-Fuller critical values of t-statistics (Fuller, 

1996), I reject the null hypothesis of a random walk in 90% of the firms. Examinations on 

Ln(IVOL) yield very similar results, which are also reported in Table 2. The results 

suggest that it is not appropriate to describe a typical stock’s idiosyncratic volatility 

process as a random walk.8 Put differently, using this month’s idiosyncratic volatility to 

approximate the value in the next month could introduce severe measurement errors. As 

                                                 
7 The results are robust to setting T>12 or T>24. 

8 Cross-sectional return studies often use the lagged variables of firm characteristics to explain 

future returns. For example, Fama and French (1992) use market capitalization and the book-to-

market equity ratio of the current year to explain the cross-sectional returns in the next year. The 

underlying justification for this practice is that these firm characteristics are fairly persistent. I 

perform the same unit root test on the process of firm market capitalization and indeed am not 

able to reject the null hypothesis of random walk in 98% of the observations. 
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a result, AHXZ’s findings should not be used to draw inference on the relation between 

idiosyncratic risk and expected return. 

 

2.3. Estimation of expected idiosyncratic volatility 

In order to examine the relation between expected return and expected 

idiosyncratic volatility, we need a better model to capture the time-varying property of 

idiosyncratic volatility. I resort to the exponential generalized autoregressive conditional 

heteroskedasticity (EGARCH) models to achieve this goal. 

Engle (1982) proposes the autoregressive conditional heteroskedasticity (ARCH) 

model to represent a series with changing volatility. It proves to be an effective tool in 

modeling time-series behavior of many economic variables, especially financial market 

data. The ARCH model is attractive because the variance and the mean process are 

estimated jointly. Applying to stock market returns, it implicitly assumes that investors 

update their estimates of the mean and variance of returns each period using the newly 

revealed surprises in last period’s returns. Bollerslev (1986) extends the ARCH model to 

GARCH, or the generalized autoregressive conditional heteroskedasticity model. The 

GARCH model provides a more flexible framework to capture the dynamic structure of 

conditional variances (volatilities). A step further, Nelson (1991) proposes an 

exponential GARCH (EGARCH) model to catch the asymmetric property of volatility, 

namely that the return volatility increases after a stock price drop. This phenomenon is 

also called “leverage effects” because the drop of stock price mechanically increases the 

leverage ratio and thus the risk of the firm.  

GARCH models have been widely used to model the conditional volatility of 

returns. For example, French, Schwert, and Stambaugh (1987) model the market 
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volatility by a GARCH (1, 2) process and find that the market risk premium is positively 

related to the conditional market volatility. Bollerslev, Engle, and Wooldridge (1988) use 

a multivariate GARCH model to demonstrate time-varying risk premiums. GARCH 

models are of various types. My objective is to select a GARCH model that well 

describes the time-series idiosyncratic volatility of individual stock returns. Pioneered 

by Pagan and Schwert (1990), studies have suggested a number of approaches to 

compare alternative GARCH (and non-parametric) specifications. Pagan and Schwert fit 

a number of different models to monthly U.S. stock returns and find that Nelson’s 

EGARCH model is the best in overall performance. Engle and Mustafa (1992) assess the 

specification of conditional variance models based on the observed prices for stock 

options. Specifically they use the option prices to compute the implied variances, which 

are then regarded as the benchmark for the estimates from various time-series models. 

They find that simple GARCH and EGARCH models perform the best among their 

selected time-series models. Emphasizing the importance of the asymmetry of the 

volatility response to news, Engle and Ng (1993) test the specifications of various 

volatility models using Lagrange Multiplier tests. They also conclude that Nelson’s 

EGARCH specification does a good job in capturing the asymmetry of conditional 

volatilities. In addition, EGARCH models do not need to restrict parameter values to 

avoid negative variance as other ARCH and GARCH models do. 

Weighing all evidence, I choose to model idiosyncratic volatilities by the 

EGARCH (p, q) model, in which 31,31 ≤≤≤≤ qp . The explicit functional forms are as 

follows: 

),0(~,)( 2
ititittititmtiitit NHMLhSMBsrRrR σεεβα +++−+=−  ,  (4) 
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I describe the monthly return process by the Fama-French three-factor model as in 

equation (4). The conditional (on the information set at time t-1) distribution of residual 

itε is assumed to be normal with the mean of zero and the variance of 2
itσ . My objective 

is to estimate the conditional variance 2
itσ . It is a function of the past p-period of residual 

variance and q-period of return shocks as specified by equation (5). Permutation of these 

orders yields nine different EGARCH models: EGARCH (1, 1), EGARCH (1, 2), 

EGARCH (1, 3), EGARCH (2, 1), EGARCH (2, 2), EGARCH (2, 3), EGARCH (3, 1), 

EGARCH (3, 2), and EGARCH (3, 3). Each model is employed independently for each 

individual stock. Therefore, if a stock’s idiosyncratic volatility process as of month t 

converges under all the nine models, I would have nine estimated conditional 

idiosyncratic volatilities at month t+1. The estimate generated by the model of the lowest 

Akaike Information Criterion (AIC) is chosen.9 I also require firms to have at least 30 

monthly returns to be eligible for estimation.     

 My EGARCH (p, q) model involves p+q+3 parameters. Using the full period data 

to estimate these parameters, though prevalent in early studies, incurs a look-ahead 

                                                 
9 I also use the maximum log likelihood or the Schwartz information criterion to select the model 

of conditional idiosyncratic volatilities. The final results are not sensitive to these alternative 

selection criteria. The choice of the maximum number of lags to be three does not drive the final 

results either. The results also hold for alternative specification such as two or four.  
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bias.10 To avoid this concern, I estimate EGARCH parameters by using an expanding 

window of data with a requirement of 30 minimum observations. In other words, the 

EGARCH parameters used to forecast conditional idiosyncratic volatility at month t are 

estimated on the basis of the data up through month t-1. This also applies to the model 

selection. 

The estimated conditional idiosyncratic volatility, denoted by E(IVOL), will be 

used in the cross-sectional return tests in the next section. The mean E(IVOL) is 12.67% 

with a standard deviation of 10.91% in the pooled sample. The correlation between IVOL 

and E(IVOL) is 0.46 and is statistically significant at the 1% level. Empirical evidence 

confirms the importance to have more than one lag in estimating E(IVOL). Of all the 

estimates, only 26.67% are yielded by the EGARCH(1, q) models while 40% are 

generated by the EGARCH(3, q) models. In particular, EGARCH(1, 1) is the best-fitting 

model for the fewest number of firm-month observations (7.41%) and EGARCH (3, 1) is 

the best-fitting model for the most number of observations (16.58%).  

 

3. Cross-Sectional Return Tests 

3.1.  Data and variables 

In this section, I investigate the cross-sectional relation between average stock 

returns and the estimated conditional idiosyncratic volatilities. I examine stocks traded 

                                                 
10 It is an empirical question how serious the look-ahead bias would be. To estimate conditional 

market volatility, French, Stambaugh, and Schwert (1987) use the full period data to estimate 

their GARCH model parameters. They show that assuming time-varying parameters do not 

change their results. I also find the same results by using the full period data to estimate 

EGARCH model parameters. 
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on the NYSE, the AMEX, and the Nasdaq during the period from July 1963 to December 

2006 - 522 months in total. The data of monthly stock returns are obtained from the 

CRSP. Table 3 presents the variable descriptive statistics of the pooled sample. The mean 

monthly returns (RET) in my sample period are 1.18% and the mean excess return 

(XRET, raw return net of one-month T-bill rate) is 0.71%.11 The mean idiosyncratic 

volatility is 14.17% and the mean expected idiosyncratic volatility is 12.67%.  

The measure of systematic risk, BETA, is constructed as in Fama and French 

(1992). In each month, I use the previous 60 months of returns to estimate firm betas (β ) 

by the market model. Stocks are assigned to 10x10 portfolios on the basis of size and β . 

This procedure rolls every month. I then compute the equal-weighted portfolio returns. 

For each size- β  portfolio, I run the full-period time-series regression of the portfolio 

return on the current and the prior month’s value-weighted market returns. The 

portfolio BETA is estimated as the sum of the slopes of these two market returns. The 

sum is meant to adjust for the effects of nonsynchronous trading (Dimson, 1979). Finally 

I allocate the BETA of a size- β  portfolio to each stock in the portfolio. These are the 

BETAs to be used in the cross-sectional regressions of individual stock returns. The 

mean BETA is 1.22 and the median 1.17.  

                                                 
11 In order to avoid the influence of some extremely high returns and possible data recording 

errors, I exclude 333 observations that have a monthly return greater than 300%. This consists of 

only 0.0001% of the whole sample (which has about 3 million firm-month observations).  
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Earlier studies document that firm size, the ratio of book-to-market equity, 

liquidity and its variance, and past returns have effects on cross-sectional returns.12 I 

control for these variables in the following cross-sectional tests. Their summary statistics 

are also reported in Table 3. Firm size is measured by the market value of equity (ME) -- 

the product of monthly closing price and outstanding share numbers. Following Fama 

and French (1992), I construct book-to-market equity (BE/ME) as the fiscal-yearend book 

value of common equity divided by the calendar-yearend market value of equity. Due to 

the annual frequency of BE, this variable is updated yearly. In order to catch the 

momentum effects, I construct the variable RET(-2, -7), the compound gross return from 

month t-7 to t-2 (inclusive) where t represents the month of expected return. The return 

of t-1 is excluded to avoid any spurious association between subsequent month returns 

caused by thin trading or the bid-ask spread effects. Jegadeesh (1990) shows that thin 

trading causes returns to exhibit first-order negative serial correlations. Following 

Chordia, Subrahmanyam and Anshuman (2001), liquidity is measured by the average 

turnover ratio of the previous 36 months (TURN) and the coefficient of variation of these 

36 monthly turnovers (CVTURN).  

 

3.2. Cross-sectional simple correlations 

                                                 
12 See, for example, Fama and French (1992) for the effects of size and book-to-market equity, 

Jagadeesh and Titman (1993) for the effects of past returns, Amihud and Mendelson (1986), 

Brennan and Subrahmanyam (1996), and Amihud (2002) for the effects of liquidity, and Chordia, 

Subrahmanyam and Anshuman (2001) for the effects of the variance of liquidity on cross-

sectional returns.  
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I investigate the bivariate relations between these variables. The correlation 

between return and idiosyncratic volatility can be regarded as a univariate test. 

Variables of ME, BE/ME, TURN, CVTURN are transformed to their natural logarithm 

because they are significantly skewed. I estimate the simple correlations between these 

variables in each month and then compute their time-series means. Table 4 presents the 

time-series mean correlation coefficients. The coefficients followed by * are significant at 

the 1% level based on their time-series standard error. The correlation between the 

monthly return and the contemporaneous idiosyncratic volatility is 0.135 and 

statistically significant at the 1% level (t-stat = 14.09). The correlation between return and 

the one-month lagged IVOL is however -0.016 with a t-stat of -2.79 (not reported in the 

Table). The contrasting results, in another way, suggest that the lagged IVOL might not 

be a good proxy for the expected value in next month. The correlation between return 

and the conditional idiosyncratic volatility is 0.09 and also statistically significant at the 

1% level (t-stat =13.24). The univariate tests therefore imply a positive relation between 

return and idiosyncratic risk. Consistent with the findings in the literature, the returns 

are negatively related to size and liquidity, and are positively related to BE/ME and past 

returns. As documented in Fama and French (1992), the relation between return and 

BETA is flat. Conditional idiosyncratic volatilities are negatively related to size and the 

book-to-market equity ratio, and are positively related to BETA and the two liquidity 

variables. Small firms tend to have higher idiosyncratic volatilities than large firms; 

growth firms tend to have higher idiosyncratic volatilities than value firms; liquid firms 

tend to have higher idiosyncratic volatilities than illiquid firms. The correlation between 

IVOL and E(IVOL) is a significant 0.46. 
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3.3. Month-by-month cross-sectional regressions of individual stocks 

I start the empirical analysis by replicating the main results documented by 

Fama and French (1992), because their paper is very influential in the literature of cross-

sectional return studies. By regressing monthly stock returns on beta and various firm 

characteristics, Fama and French illustrate that size and BE/ME are two significant 

determinants for cross-sectional returns and that the relation between return and market 

beta is flat. Their sample period is from July 1963 to December 1990. My sample extends 

theirs by 16 years to December 2006. Following them, I use Fama and MacBeth (1973) 

regressions to control the cross-correlation in residuals. Specifically, for each month in 

the sample period, I run the following cross-sectional regression: 

 it
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In other words, the average slope is the time-series mean of the 522 monthly estimates 

from July 1963 to December 2006. The t-statistic is the average slope divided by its time-

series standard error, which is the square root of the variance of kγ̂  divided by T 

(
T

Var k )ˆ(γ ).  

Following Fama and French (1992), I use size (the market capitalization, ME) in 

June to explain the returns of the following 12 months and use BE/ME of fiscal year t to 

explain the returns for the months from July of year t+1 to June of year t+2. The time gap 

between BE/ME and returns ensures that the information of BE/ME is available to the 

public prior to the returns. The estimation and application of BETAs also follow Fama 

and French. Table 5 presents the regression results. The first model replicates Fama and 

French’s three major results. First, the relation between market beta and average stock 

return is flat. The average slope of BETA is not significantly different from zero. Second, 

size is negatively related to average returns in the cross-section. Small firms on average 

have higher returns than large firms. Third, BE/ME is positively related to average 

returns. Value firms tend to have higher returns than growth firms.  

Cross-sectional return studies have evolved much since Fama and French (1992). 

Liquidity and momentum are probably the other two most important variables that 

have impact on cross-sectional returns. Amihud and Mendelson (1986) is among the first 

to propose a role for transaction costs in asset pricing, since rational investors select 

assets to maximize their expected return net of transaction costs. They measure liquidity 

by the bid-ask spread and find stocks with larger spreads are expected to have higher 

returns. The role played by liquidity is further supported by later studies including 

Brennan and Subrahmanyam (1996), Datar, Naik and Radcliffe (1998), Chordia, 
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Subrahmanyam and Anshuman (2001), Amihud (2002), and Pastor and Stambaugh 

(2003). Jegadeesh and Titman (1993) document that over an intermediate horizon of 

three to twelve months, past winners on average continue to outperform past losers, so 

that there is “momentum” in stock prices. In other words, past returns tend to predict 

future returns. The second model in Table 5 includes the liquidity and momentum 

variables and confirms these patterns. TURN is the average share turnover in the past 36 

months, constructed in the same way as in Chordia et al. (2001). Chordia et al. also find 

that both the level and the volatility of trading activity are related to average returns in 

the cross-section. Following them, I compute the coefficient of variation of the previous 

36 months’ turnover (CVTURN). Easley, Hvidkjaer and O’Hara (2002) adopt the same 

measures to control for the effects of liquidity. In order to control for the momentum 

effects, I construct a past return variable, RET(-2, -7), which is the compound gross 

return from month t-7 to month t-2 assuming the current month is t. The return of the 

immediate prior month (t-1) was excluded to avoid any spurious association between 

subsequent monthly returns caused by thin trading or bid-ask spread effects (Jegadeesh, 

1990). Consistent with the previous studies, the coefficient estimates are positive for the 

past return variable and negative for the two liquidity variables.  

Model 3, 4, and 5 in Table 5 yield striking evidence that expected idiosyncratic 

volatility is positively related to average returns in the cross-section. Model 3 is a 

univariate regression of return on E(IVOL). Model 4 controls for size and BE/ME, and 

Model 5 in addition controls for past returns and two liquidity variables. The average 

slopes of E(IVOL) are positive and statistically significant in all the three models. The t-

statistics are around 10. Moreover, the average R-squared increases substantially after 

including E(IVOL) in the regression. The effects of idiosyncratic risk on expected returns 
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are also economically significant. Since the average slope is over 0.10 the average 

standard deviation of IVOL is about 10%, a stock that has an IVOL of one standard 

deviation higher than the other stock would earn an average return of 1% higher in a 

month. Similarly, as E(IVOL) moves from the first quartile to the third quartile, the 

monthly expected return would increase by more than 1%.  

In Model 6, I include the one-month lagged IVOL as an explanatory variable. The 

regression results qualitatively confirm AHXZ’s findings. Monthly returns are 

negatively related to the lagged IVOL. However, the average slope is only -0.02, which 

casts doubt on how effective investors can make abnormal returns from the negative 

relation. Shorting stocks whose IVOL are around the third quartile and longing stocks 

whose IVOL are around the first quartile yield a monthly abnormal return of 0.2% 

before accounting for trading costs. Moreover, idiosyncratic volatilities change over time. 

Trading strategies betting on it need frequent rebalancing and thus are costly.  

The last model, Model 7, examines the contemporaneous association between the 

return and the observed idiosyncratic volatility (estimated based on daily returns). The 

coefficient of tIVOL is 0.31 with a t-statistic of 20.56. There is a positive and significant 

association between the realized return and the contemporaneous idiosyncratic risk. 

From the theory perspective, we are not able to make inferences about expected returns 

from this regression because of the potential correlation between the unexpected return 

shock ( )( tt RER − ) and the shock on idiosyncratic volatility ( )( tt IVOLEIVOL − ).13 The 

                                                 
13The covariance between the realized return and the realized idiosyncratic volatility can be 

decomposed into four components as follows: 
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regression results, however, still serve as a reference for comparison. The results of 

Model 5 rather than Model 6 are close to the results of Model 7. This provides us some 

additional confidence on the positive relation between expected return and idiosyncratic 

risk. 

One result is intriguing. The average slope of size changes sign after including 

E(IVOL) (or IVOL) in the regression. Controlling for conditional idiosyncratic volatility, 

large firms have higher average returns than small firms. This finding contrasts to the 

widely documented “size effect” that small firms have higher average returns than large 

firms, but supports one prediction of Merton’s (1987) model that, all else equal, larger 

firms have higher expected returns. Merton explicitly points out that the findings of the 

“size effect” are due to the omitted controls for other factors such as idiosyncratic risk 

and investor base (Merton (1987), the last paragraph of page 496). My evidence lends 

direct support to Merton’s prediction.  

 

3.4. Return analysis of portfolios formed on E(IVOL) 

The evidence from the Fama-MacBeth cross-sectional regressions suggests a 

positive relation between conditional idiosyncratic volatility and average stock returns. 

Next I examine the returns of portfolios formed on the sorting of E(IVOL). This is 

interesting because the portfolio-based approach produces easy-to-interpret returns on a 
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The first component is of our interest. The second and third components are zero by the 

definition of shocks (i.e., unrelated to the information set at t-1). The last component, the 

covariance between these two contemporaneous shocks, is however unknown.  
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feasible investment strategy. If individual stocks with high E(IVOL) have higher returns 

than stocks with low E(IVOL), a zero-investment portfolio that is long in high E(IVOL) 

stocks and short in low E(IVOL) stocks should earn a positive return.  

The procedure of the portfolio-based approach is as follows. In each month, I sort 

E(IVOL) to form ten portfolios with equal number of stocks. The first portfolio contains 

the 10% of stocks that are expected to have the lowest idiosyncratic volatilities in the 

next month and the last portfolio consists of the 10% of stocks that are expected to have 

the highest idiosyncratic volatilities. Table 6 presents the descriptive statistics for these 

ten E(IVOL)-portfolios. The mean E(IVOL) increases from 3.19% for the first portfolio to 

36.35% for the last portfolio. The ex-post measured idiosyncratic volatility (IVOL) also 

increases monotonically across these ten portfolios. The portfolio consisting of stocks 

with high E(IVOL) have higher returns than the portfolio consisting of low-E(IVOL) 

stocks. The value-weighted portfolio returns increase monotonically from 0.90% for the 

lowest-E(IVOL) portfolio to 2.65% for the highest-E(IVOL) portfolio. The average 

monthly return for the zero-investment portfolio is 1.75%. The equal-weighted portfolio 

returns display a similar pattern and the return spread between the highest and lowest 

E(IVOL) portfolios is even larger. This evidence confirms the positive relation between 

E(IVOL) and individual stock returns.  

Next I run the time-series regressions of the value-weighted excess returns on the 

Fama-French three-factors for each portfolio. The last row of Table 6 reports the 

regression intercepts. The alpha is 0.03% for the lowest-E(IVOL) portfolio and 1.45% for 

the highest-E(IVOL) portfolio. A hedging portfolio longing portfolio 10 and shorting 

portfolio 1 yields a statistically significant monthly return of 1.42%. The Gibbons-Ross-

Shanken (GRS, 1989) test statistic has a value of 5.92 and thus strongly rejects the null 
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hypothesis that all the intercepts jointly equal zero. This result contrasts sharply with the 

findings of AHXZ which are based on the lagged realized volatility and further confirms 

that firms with high expected idiosyncratic volatility have higher expected returns. 

 

3.5. Robustness check  

I emphasize the importance to have a quality estimate of E(IVOL) in estimating 

the relation between idiosyncratic risk and return and use EGARCH models to reach the 

goal. But theoretically speaking, this goal can also be reached by examining the 

empirical relation between idiosyncratic volatility and a quality estimate of expected 

returns. So far I use realized returns as a proxy for expected returns. Though realized 

returns are an unbiased estimate of expected returns, the estimate quality is rather poor 

(Elton, 1999). Elton therefore encourages “developing better measures of expected return 

and alternative ways of testing asset pricing theories that do not require using realized 

returns” (p.1200). One alternative measure of expected returns is the implied cost of 

capital (ICC), which is essentially the firm’s internal rate of return that equates the 

present value of future dividends to the current stock price. This measure is increasingly 

used in the accounting and finance literature. For example, Pastor, Sinha, and 

Swaminathan (2007) show that the ICC estimated on the basis of earnings forecasts 

could be a useful proxy for expected stock returns. Based on this estimate, they find a 

positive intertemporal risk and return tradeoff at the market level.  

Following Pastor et al., I estimate the ICC as a proxy for the expected return of 

individual stocks. Table 7 reports the simple correlations between the estimated ICC and 

idiosyncratic volatility (in Panel A) and the estimates from the Fama-MacBeth 

regressions by using ICC as the dependent variable (in Panel B). The results are 
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consistent with my earlier findings. Both the correlation coefficients and the regressions 

slopes of idiosyncratic volatility are positive and statistically significant. In addition, I 

also tried the expected returns estimated from the Value Line forecasts. These estimates 

are downloaded from Alon Brav’s website.14 Brav, Lehavy, and Michaely (2005) use 

them to test asset pricing models. I again find a positive relation between this Value Line 

forecasted expected return and idiosyncratic volatility.  

I check the results robustness in many other ways. First, the dependent variable 

in the Fama-MacBeth regressions is the simple raw return. Simple returns are known to 

be skewed positively. In addition they have the lower bound of -100% but no upper 

bound. This makes the regression results potentially driven by outliers. Besides having 

imposed the upper bound of returns to be 300% for the reported results, I test the 

robustness by replacing simple returns by log returns (replace tR by )1ln( tR+ ), which 

do not have a lower bound and are not skewed, and run the same Fama-MacBeth 

regressions. The cross-sectional relations between log returns and idiosyncratic volatility 

remain positive and statistically significant, though become weaker in magnitude. For 

example, controlling for the variables as in Model 5 of Table 5, the coefficient estimate is 

0.09 with a t-statistic of 9.94 for E(IVOL) and 0.17 with a t-statistic of 13.15 for IVOL.   

Second, I estimate the test-statistics in the month-by-month cross-sectional 

regressions by using the Generalized Least Squares (GLS) method suggested by 

Litzenberger and Ramaswamy (1979). Specifically, the GLS estimator, kγ̂ , is the 

                                                 
14 I thank Alon Brav for making this data available. http://www.duke.edu/~brav/  
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weighted mean of the monthly estimates, where the weights are inversely proportional 

to the variances of the monthly estimates.15  
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The results remain qualitatively intact. 

Last but not least, my choice of EGARCH models is unlikely to be the exclusive 

factor that drives the results. The whole purpose to use EGARCH models is to improve 

the estimation of conditional idiosyncratic volatility. Any other models that serve this 

purpose would deliver same results of this paper and different results from the naïve 

model that uses the lagged IVOL as a proxy for E(IVOL). In fact, two contemporaneous 

studies that use different methods to estimate conditional idiosyncratic volatilities 

obtain similar results to my study.16  

 

4. The relation between return and the lagged idiosyncratic volatility 

                                                 
15 The Fama-MacBeth regression implicitly assumes equal weights across months. It can be 

regarded as a specific example of GLS in which the variances of monthly estimates are the same.  

16 Chua, Goh, and Zhang (2007) use an AR(2) model, and Diavatopoulos, Doran, and Peterson 

(2007) decompose implied volatility from option prices to estimate conditional idiosyncratic 

volatility. Both studies conclude the positive tradeoff between idiosyncratic risk and expected 

return. 
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 I have shown that idiosyncratic volatilities of individual stocks change over time 

and the lagged IVOL is not an appropriate proxy for the expected IVOL. As a result, the 

negative relation between return and the one-month lagged IVOL documented by 

AHXZ (2006) should not be used to draw inference on the relation between idiosyncratic 

risk and expected return. Employing the EGARCH models to estimate the expected 

IVOL, I find a significantly positive relation between expected IVOL and expected 

return. However, AHXZ’s findings of the negative relation are still puzzling, though Bali 

and Cakici (2008) suggest that their results are sensitive to the research methods. In this 

section I replicate AHXZ’s results by strictly following their methods and then offer an 

empirical explanation. 

 My evidence suggests that AHXZ’s findings are largely driven by the return 

reversal of stocks that have high idiosyncratic volatilities. High idiosyncratic volatilities 

are contemporaneous with high returns, which tend to reverse in the following month. 

As a result, the returns of high-IVOL stocks are abnormally low in the next month. In 

addition, the stocks that drive their results are small in size and even in aggregate have a 

negligible weight relative to the total market capitalization. The evidence casts doubt on 

the effectiveness of trading strategies suggested by AHXZ (2006, 2008), if transaction 

costs are seriously accounted for.  

 I start with replicating the main results in Table VI of AHXZ (2006). Their sample 

period is from July 1963 to December 2000. I extend it by six years to December 2006. My 

results, reported in Table 8, are very similar to theirs. The quintile portfolio of stocks 

with the highest IVOL has a Jensen’s alpha of 1.22% lower than the portfolio of stocks 

with the lowest IVOL (1.19% in AHXZ (2006)). The procedure to get the Jensen’s alphas 

is as follows. In each month, I divide the universe of stocks into quintiles on the basis of 
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their IVOL. Portfolio 1 (5) is the portfolio of the 20% of stocks with the lowest (highest) 

IVOL. I compute the value-weighted excess return (VWXRET) in the next month for 

each portfolio. The weight for each stock is its market capitalization in the previous 

month. As a result, I have a time-series of value-weighted excess returns for each 

portfolio. I then run a time-series regression of the VWXRET on the Fama-French three 

factors. The purpose is to estimate the intercept alpha -- the average excess return not 

explained by these three factors.  

 Three findings are worth mention. First, only two out of the five alphas are 

statistically significant. They are the two alphas for Portfolio 4 and 5 whose stocks have 

relatively high lagged IVOL (Hereafter Portfolio 4 and 5 are also called the high-IVOL 

portfolios). So precisely speaking, the two portfolios of stocks with high lagged 

idiosyncratic volatilities realize negative abnormal returns but the other three portfolios 

of stocks with relatively low idiosyncratic volatilities do not realize significant abnormal 

returns. Second, these 40% of stocks in the high-IVOL portfolios tend to be small firms 

and their total market capitalization is only 9% of the whole market. Third, if we read 

the return numbers literally, the patterns for RET(t), VWXRET(t), and even FF-3F alphas 

– the metric that AHXZ’s conclusion is based on, are not monotonically increasing or 

decreasing across the IVOL portfolios. Therefore, AHXZ’s findings are completely 

driven by these small stocks with high idiosyncratic volatilities. The question then 

becomes why these stocks earn low returns in the subsequent month. 

 In the last three columns of Table 8, I present the mean raw return (RET(t-1)) and 

value-weighted excess return (VWXRET(t-1)) that are contemporaneous to the IVOL. I 

find that these returns are monotonically increasing in the IVOL portfolios. Moreover, 

the alphas from the time-series regressions of VWXRET(t-1) on the Fama-French three 
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factors are significantly positive for Portfolio 4 and 5 and not different from zero for the 

other three portfolios. The positive abnormal returns in month t-1 and the negative 

abnormal returns in month t for the high-IVOL portfolios are not likely coincidental.  

The negative abnormal returns in month t are, at least partly, caused by the reversal of 

the positive abnormal returns in month t-1.  

 Next I focus on the 40% “trouble-making” firms (i.e., stocks in Portfolio 4 and 5) 

and examine the impact of return reversal. I divide these firms into quintiles based on 

RET(t-1). Table 9 shows the return dispersions of these five portfolios. The mean RET(t-1) 

increases from -22.67% for the lowest RET(t-1) portfolio to 33.78% for the highest RET(t-1) 

portfolio. Interestingly, the mean raw return in the next month, RET(t), decreases from 

3.35% to -0.21% monotonically across these five RET(t-1) portfolios. The portfolio excess 

return, both the equal-weighted and the value-weighted, show the same pattern. The 

alphas estimated from the time-series regressions confirm that the negative abnormal 

returns in month t concentrate in firms that have relatively high past returns (RET(t-1)). 

The evidence suggests that some stocks with high IVOL at month t-1 earn positive 

abnormal returns in the same month and due to the return reversal, realize negative 

abnormal returns at month t.  

 The negative correlation of subsequent monthly returns has been documented in 

the literature for long time, e.g., Jegadeesh (1990). A recent study by Huang, Liu, Rhee, 

and Zhang (2007) also suggests that the return reversal in monthly returns explains the 

difference in results between AHXZ (2006) and Bali and Cakici (2008). Controlling for 

the difference in the past-month returns, there is no negative relation between average 

returns and the lagged idiosyncratic volatilities. 
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5. Conclusion 

 For various reasons investors in reality often do not hold perfectly-diversified 

portfolios. Theories assuming under-diversification of investor portfolios, such as Levy 

(1978) and Merton (1987), predict a positive relation between idiosyncratic risk and 

expected return. Ang, Hodrick, Xing, and Zhang (2006, 2008) however find that monthly 

stock returns are negatively related to the one-month lagged idiosyncratic volatilities. I 

show that idiosyncratic volatilities are time-varying and that the one-month lagged 

value is not a good proxy for the expected value. So AHXZ’s findings should not be 

used to imply the relation between expected return and idiosyncratic risk. I use 

EGARCH models to estimate the expected idiosyncratic volatilities and find they are 

positively related to expected returns. The positive relation is both economically and 

statistically significant and also robust to different testing methods. This evidence 

supports the theories assuming under-diversification. Stocks that are expected to have 

high idiosyncratic risk earn high returns in the cross-section. I further show that AHXZ’s 

findings are driven by a subset of small firms with high idiosyncratic volatilities. These 

firms have high returns in the month of high idiosyncratic volatility. The high returns 

reverse in the subsequent month and result in the findings of negative abnormal returns.  
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Table 1 
Time-series properties of idiosyncratic volatility 
 
This table summarizes the time-series statistics of individual stock idiosyncratic volatilities. I compute first the time-series statistics of 
idiosyncratic volatility for each stock and then the mean statistics across all stocks.  Stocks are traded in the NYSE, the AMEX, or the 
Nasdaq during July 1963 to December 2006. The idiosyncratic volatility (IVOL) is estimated as follows. In every month, excess daily returns 
of each individual stock are regressed on the daily Fama-French three factors: RmRf, SMB, and HML. The (monthly) idiosyncratic volatility 
of the stock is the product of the standard deviation of the regression residuals and the square root of the number of observations in the 
month.  
 
 

Autocorrelation at lags  N Mean S.D. C.V. Skew 
1 2 3 4 5 6 11 12 13 

               
IVOL  26189 16.87 9.94 0.55 1.65 0.33 0.27 0.24 0.20 0.19 0.18 0.12 0.14 0.11 

               

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−1t

t

IVOL

IVOL
Ln  

26068 -0.004 0.54 366.24 -0.03 -0.42 -0.04 0.01 -0.02 -0.01 0.01 -0.02 0.03 -0.02 
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Table 2 
Do monthly idiosyncratic volatilities follow a random walk process? 
 
This table presents statistics of the estimations from the time-series regressions in which the 
changes in idiosyncratic volatility of an individual stock are regressed on the level of 
idiosyncratic volatility in the past month. The regression is intended to examine whether the 
time-series idiosyncratic volatilities of this individual stock follows a random walk. The reported 
statistics are the cross-sectional mean, median, the lower and the upper quartiles of the coefficient 
estimate 1γ  and its associated t-statistics. The t-statistics are compared with the Dickey-Fuller 
critical values* to examine whether the null hypothesis of a random walk is rejected. The last 
column reports the percentage of firms for which the random walk hypothesis is rejected at the 
1% level. For the regression, I require firms to have at least 30 months of observations 
( 30≥iT i∀ ). The sample period is July 1963 to December 2006. 
 
Variables  N Mean Median Q1 Q3 RW 

rejected 
       

Model: iitiiititi TtNiIVOLIVOLIVOL ,,2,1,,,2,1,,10,1, LL ==++=−+ ηγγ  

1γ  20979 -0.61 -0.60 -0.76 -0.45 

)( 1γt  20979 -6.81 -6.40 -8.43 -4.85 

 
89.97% 

 
Model: iitiiititi TtNiLnIVOLLnIVOLLnIVOL ,,2,1,,,2,1,,10,1, LL ==++=−+ ηγγ  

1γ  20979 -0.56 -0.55 -0.70 -0.41 

)( 1γt  20979 -6.38 -5.99 -7.86 -4.51 

 
87.81% 

 
*Dickey-Fuller critical t-statistics (from Fuller (1996)) 
Sample size Critical t-statistics (1%) 

25 -3.75 
50 -3.59 

100 -3.50 
250 -3.45 
500 -3.44 
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Table 3 
Variable descriptive statistics for the pooled sample: July 1963 to December 2006 
 
This table reports the pooled descriptive statistics of stocks that are traded in the NYSE, AMEX, 
or Nasdaq during July 1963 to December 2006. RET is the monthly raw return reported in 
percentage. XRET stands for the monthly excess return, which is the raw return net of the one-
month T-bill rate. BETA, ME, and BE/ME are estimated as in Fama and French (1992). BETA is the 
portfolio beta estimated from the full period using 100 size and pre-ranking beta portfolios. The 
market value of equity (ME) is the product of monthly closing price and the number of 
outstanding shares in June. Book-to-market equity (BE/ME) is the fiscal-yearend book value of 
common equity divided by the calendar-yearend market value of equity. The idiosyncratic 
volatility (IVOL) is estimated as follows. In every month, excess daily returns of each individual 
stock are regressed on the Fama-French three factors: RmRf, SMB, and HML. The (monthly) 
idiosyncratic volatility of the stock is the product of the standard deviation of the regression 
residuals and the square root of the number of observations in the month. E(IVOL) is the one-
month-ahead expected idiosyncratic volatility estimated by EGARCH models. RET(-2, -7) is the 
compound gross return from month t-7 to t-2. TURN is the average turnover and CVTURN is the 
coefficient of variation of turnovers in the past 36 months. Variables with skewness greater than 
3.00 are reported as the natural logarithm. To avoid giving extreme observations heavy weight in 
the return regressions and potential data recording errors, the smallest and largest 0.5% of the 
observations in each month for ME, BE/ME, IVOL, E(IVOL), Ret(-2, -7), TURN, and CVTURN are 
set equal to the next smallest or largest values. Observations with monthly returns greater than 
300% are deleted.  
 
 
Variables Mean Std Dev Median Q1 Q3 Skew N 

RET (%) 1.18 16.86 0.15 -6.52 6.78 2.35 2,947,826 

XRET(%) 0.71 16.87 -0.27 -6.99 6.34 2.35 2,947,826 

Ln(1+RET) (%) -0.12 16.09 0.15 -6.74 6.56 -0.54 2,947,826 

IVOL 14.17 13.91 10.41 6.33 17.41 6.94 2,946,521 

E(IVOL) 12.67 10.91 10.29 6.46 15.18 2.38 2,867,821 

BETA 1.22 0.36 1.17 0.94 1.46 0.31 1,721,356 

Ln(ME) 4.29 2.03 4.16 2.82 5.64 0.34 2,804,878 

Ln(BE/ME) -0.39 1.09 -0.35 -0.97 0.20 0.27 2,145,253 

RET(-2, -7)  1.07 0.39 1.03 0.85 1.22 2.90 2,758,743 

Ln(TURN) (%) 1.39 1.09 1.39 0.67 2.13 -0.08 2,041,658 

Ln(CVTURN) 4.15 0.44 4.14 3.92 4.48 0.14 2,038,647 
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Table 4 
Cross-sectional simple correlations 
 
This table presents the time series means of the cross-sectional Pearson correlations. The variables relate to a sample of stocks traded in the 
NYSE, the AMEX, or the Nasdaq during July 1963 to December 2006. Variables are defined in Table 3. The correlation coefficients followed 
by * are significant at the 1% level based on their time-series standard error. 
 

 Ln(1+RET) IVOL E(IVOL) BETA Ln(ME) Ln(BE/ME) RET(-2,-7) Ln(TURN) Ln(CVTURN) 
RET 0.98* 0.14* 0.09* -0.01 -0.01* 0.03* 0.02* -0.02* -0.00 
Ln(1+RET)  0.05* 0.03* -0.03* 0.02* 0.04* 0.04* -0.03* -0.02* 
IVOL   0.46* 0.34* -0.39* -0.05* -0.12* 0.16* 0.31* 
E(IVOL)    0.35* -0.34* -0.11* -0.04* 0.20* 0.30* 
BETA     -0.34* -0.04* -0.03* 0.41* 0.23* 
Ln(ME)      -0.21* -0.03* 0.04* -0.57* 
Ln(BE/ME)       0.06* -0.12* 0.16* 
RET(-2, -7)        0.00 0.06* 
Ln(TURN)         0.02* 
Ln(CVTURN)          
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Table 5 
Fama-MacBeth regressions of stock returns on idiosyncratic volatility and firm characteristics 
 
The table presents the time-series averages of the slopes in cross-sectional regressions using the standard Fama and MacBeth (1973) 
methodology. The t-statistic is the average slope divided by its time-series standard error. The sample period is July 1963 to December 2006. 
The dependent variable (

tRET ) is the percentage monthly return. )( tIVOLE  is the one-month-ahead expected idiosyncratic volatility 
estimated by an exponential GARCH model. 

1−tIVOL  is the one-month lagged idiosyncratic volatility. BETA, ME, and BE/ME are estimated 
as in Fama and French (1992). TURN is the average turnover and CVTURN is the coefficient of variation of turnovers in the past 36 months. 
RET(-2, -7) is the compound gross return from month t-7 to t-2. To avoid giving extreme observations heavy weight in the regressions, the 
smallest and largest 0.5% of the explanatory variables (except BETA) are set equal to the next smallest and largest values. This has no effect 
on inferences. The last column reports the average R-squares of the cross-sectional regressions. 
 
MODEL BETA Ln(ME) Ln(BE/ME) Ret(-2, -7) Ln(TURN) Ln(CVTURN) )( tIVOLE  1−tIVOL  tIVOL  2R (%) 

1 0.02 
(0.08) 

-0.12 
(-3.11) 

0.23 
(4.97) 

      3.82 

2 0.14 
(0.93) 

-0.17 
(-4.52) 

0.19 
(4.38) 

0.64 
(3.09) 

-0.12 
(-2.05) 

-0.44 
(-6.79) 

   5.73 

3       0.11 
(9.05) 

  3.02 

4  0.25 
(7.28) 

0.60 
(12.58) 

   0.13 
(11.41) 

  4.98 

5  0.19 
(5.01) 

0.48 
(10.70) 

0.93 
(4.74) 

-0.48 
(-7.34) 

-0.73 
(-11.82) 

0.15 
(13.65) 

  6.89 

6  -0.21 
(-5.76) 

0.18 
(4.04) 

0.67 
(3.36) 

-0.09 
(-1.24) 

-0.39 
(-6.48) 

 -0.02 
(-3.73) 

 5.56 

7  0.41 
(14.53) 

0.44 
(10.57) 

1.61 
(8.55) 

-0.55 
(-8.54) 

-0.83 
(-13.59) 

  0.31 
(20.56) 

10.42 
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Table 6 
Summary statistics for portfolios formed on conditional idiosyncratic volatility 
 
Each month five portfolios are formed on E(IVOL), the one-month-ahead expected idiosyncratic volatilities of individual stocks. E(IVOL) is 
estimated by an exponential GARCH model. The first portfolio (Low) consists of the 10% of stocks with the lowest E(IVOL) and the last 
portfolio (High) consists of the 10% of stocks with the highest E(IVOL). Portfolios are updated monthly. The first two rows present, 
respectively, the time-series means of the value-weighted and the equal-weighted portfolio returns. Other rows show the pooled 
means/medians of variables within the particular portfolio. The medians instead of the means of ME and BE/ME are reported due to their 
substantial skewness. The last row reports the alphas (intercepts) from the time-series regressions of the value-weighted portfolio excess 
returns on the Fama-French three factors. The sample period is from July 1963 to December 2006. 
 
 

 Portfolios formed on E(IVOL) 

Variables Low 2 3 4 5 6 7 8 9 High 

Port. VWRET 0.90 0.96 0.97 0.98 1.00 1.02 1.17 1.18 1.28 2.65 

Port. EWRET 0.54 0.77 0.79 0.80 0.78 0.82 0.85 0.91 1.41 5.33 

E(IVOL) 3.19 5.17 6.52 7.80 9.19 10.78 12.73 15.34 19.58 36.35 

IVOL 6.74 7.80 8.98 10.29 11.80 13.50 15.46 17.72 20.81 27.29 

BETA 0.90 1.00 1.08 1.16 1.23 1.29 1.36 1.40 1.44 1.46 

ME ($mil, med) 113.03 177.16 161.38 119.04 85.80 63.04 45.68 33.83 23.72 14.19 

BE/ME (med) 0.90 0.78 0.75 0.74 0.73 0.71 0.68 0.64 0.59 0.52 

FF Alphas 0.03 0.01 -0.02 -0.02 -0.05 -0.06 0.04 0.01 0.13 1.45 
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Table 7 
Cross-sectional relations between the implied cost of capital and idiosyncratic volatility 
 
Panel A of the table presents the simple correlations between the realized return, the estimated implied cost of capital (ICC), the realized 
idiosyncratic volatility, and the EGARCH-estimated expected idiosyncratic volatility. The correlation coefficients followed by * are 
significant at the 1% level based on their time-series standard error. Panel B reports the coefficient estimates and t-statistics (in parentheses) 
from the Fama-MacBeth regressions where the dependent variables are the estimated ICC. The estimation of ICC follows Pastor, Sinha, and 
Swaminathan (2007) and is based on analyst earnings forecasts. Due to the availability of analyst earnings forecasts, the sample period is 
from January 1980 to December 2006.  
 

Panel A: Simple correlations  
 

 ICC IVOL E(IVOL) 
RET 0.06* 0.14* 0.07* 
ICC  0.20* 0.17* 
IVOL   0.54* 
E(IVOL)    

 
 

Panel B: Fama-MacBeth regressions (Dependent variable: ICC) 
 

MODEL Ln(ME) Ln(BE/ME) Ret(-2, -7) Ln(TURN) Ln(CVTURN) )( tIVOLE  tIVOL  2R (%) 
1 -0.05 

(-31.94) 
0.03 

(6.52) 
-0.18 

(-24.62) 
-0.01 

(-1.60) 
-0.05 

(-7.81) 
0.08 

(10.26) 
 10.09 

2 -0.06 
(-31.42) 

0.03 
(6.14) 

-0.17 
(-23.94) 

-0.02 
(-3.92) 

-0.06 
(-7.52) 

 0.09 
(11.45) 

11.18 
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Table 8 
Return dispersion of portfolios sorted by idiosyncratic volatility 
 
This table illustrates differences in monthly percentage returns of portfolios sorted by idiosyncratic volatilities. In each month, I divide the 
universe of stocks into quintiles on the basis of their idiosyncratic volatility (IVOL). Portfolio 1 (5) is the portfolio of stocks with the lowest 
(highest) IVOL. The idiosyncratic volatility is estimated as follows. In every month, excess daily returns of each individual stock are 
regressed on the Fama-French three factors: RmRf, SMB, and HML. The (monthly) idiosyncratic volatility of the stock is the product of the 
standard deviation of the regression residuals and the square root of the number of observations in the month. The month that I form 
portfolios is indicated as t-1 and the subsequent month t.  N is the number of firm-month observations for the pooled sample. The numbers 
presented in other columns are means with t-statistics in brackets, if any. ME stands for market capitalization. RET is the raw return. 
VWXRET are the value-weighted excess returns for the portfolio, which are used to compute the FF-3F alphas in the time-series regressions. 
The sample period is July 1963 to December 2006. 
 
IVOL 
Portfolio 

N IVOL 
(t-1) 

ME(t-1) 
($ mil) 

MKT 
Share (%) 

RET 
(t) 

VWXRET 
(t) 

FF-3F 
Alpha (t)  

RET 
(t-1) 

VWXRET 
(t-1) 

FF-3F  
Alpha (t-1) 

1 (Low) 574915 4.30 1885.04 43.00 1.10 0.52 0.074 
(1.75) 

0.44 0.39 -0.04 
(-0.94) 

2 574293 7.58 1451.81 33.08 1.34 0.57 0.034 
(0.76) 

0.55 0.63 0.05 
(1.07) 

3 574694 11.06 653.93 14.91 1.37 0.64 0.058 
(0.83) 

0.61 0.76 -0.02 
(-0.13) 

4 574707 16.17 294.70 6.72 1.19 0.29 -0.353 
(-3.60) 

0.77 0.79 0.26 
(2.65) 

5 (High) 574915 32.32 100.44 2.29 1.08 -0.40 -1.146 
(-7.00) 

4.11 1.66 0.85 
(3.14) 

5-1       -1.220 
(-6.45) 

  0.89 
(3.26) 
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Table 9 
Return dispersion of high-IVOL stocks sorted by the one-month lagged return 
 
This table examines the impact of return reversal on the high-IVOL stocks. At month t-1, I identify 40% of stocks that have the highest 
idiosyncratic volatilities and divide them into quintiles on the basis of their contemporaneous returns. Portfolio 1 (5) is the portfolio of 
stocks with the lowest (highest) RET(t-1). RET is the raw monthly percentage return. VWXRET (EWXRET) are the time-series mean value-
weighted (equal-weighted) excess returns ( ftpt rR − ) for the portfolio, which are used to compute the FF-3F alphas in the time-series 
regressions. The sample period is July 1963 to December 2006. 

  
Portfolio 
Sorted by 
RET(t-1) 

N RET(t-1) RET(t) EWXRET(t) VWXRET(t) IVOL(t) ME(t-1) 
($ mil) 

FF-3F Alpha 
(EWXRET(t)) 

FF-3 Alpha  
(VWXRET(t)) 

1 (Low) 232405 -22.67 3.35 2.84 0.56 28.10 155.23 1.77 
(6.55) 

-0.33 
(-1.52) 

2 223492 -8.39 1.17 0.93 0.35 21.63 193.63 -0.07 
(-0.46) 

-0.41 
(-2.67) 

3 228808 0.00 0.90 0.67 0.09 20.32 193.69 -0.48 
(-3.62) 

-0.57 
(-4.54) 

4 233511 9.15 0.45 0.02 -0.06 19.35 228.15 -0.83 
(-7.23) 

-0.70 
(-6.02) 

5 (High) 231406 33.78 -0.21 -0.62 -0.10 21.15 216.79 -1.40 
(-9.49) 

-0.69 
(-5.66) 
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