
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

4-2015 

Understanding the Test Automation Culture of App Developers Understanding the Test Automation Culture of App Developers 

Pavneet Singh KOCHHAR 

Ferdian. THUNG 

Nachiappan NAGAPPAN 

Thomas ZIMMERMANN 

David LO 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons 

Citation Citation 
KOCHHAR, Pavneet Singh; THUNG, Ferdian.; NAGAPPAN, Nachiappan; ZIMMERMANN, Thomas; and LO, 
David. Understanding the Test Automation Culture of App Developers. (2015). ICST 2015 IEEE 
International Conference on Software Testing, Verification and Validation: 13-17 April 2015, Graz: 
Proceedings. 1-10. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2847 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2847&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2847&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Understanding the Test Automation Culture
of App Developers

Pavneet Singh Kochhar1, Ferdian Thung1, Nachiappan Nagappan2, Thomas Zimmermann2, and David Lo1
1Singapore Management University

2Microsoft Research
{kochharps.2012,ferdiant.2013,davidlo}@smu.edu.sg,{nachin,tzimmer}@microsoft.com

Abstract—Smartphone applications (apps) have gained pop-
ularity recently. Millions of smartphone applications (apps) are
available on different app stores which gives users plethora of
options to choose from, however, it also raises concern if these
apps are adequately tested before they are released for public
use. In this study, we want to understand the test automation
culture prevalent among app developers. Specifically, we want
to examine the current state of testing of apps, the tools that
are commonly used by app developers, and the problems faced
by them. To get an insight on the test automation culture, we
conduct two different studies. In the first study, we analyse over
600 Android apps collected from F-Droid, one of the largest
repositories containing information about open-source Android
apps. We check for the presence of test cases and calculate code
coverage to measure the adequacy of testing in these apps. We
also survey developers who have hosted their applications on
GitHub to understand the testing practices followed by them. We
ask developers about the tools that they use and “pain points”
that they face while testing Android apps. For the second study,
based on the responses from Android developers, we improve our
survey questions and resend it to Windows app developers within
Microsoft. We conclude that many Android apps are poorly tested
- only about 14% of the apps contain test cases and only about
9% of the apps that have executable test cases have coverage
above 40%. Also, we find that Android app developers use
automated testing tools such as JUnit, Monkeyrunner, Robotium,
and Robolectric, however, they often prefer to test their apps
manually, whereas Windows app developers prefer to use in-
house tools such as Visual Studio and Microsoft Test Manager.
Both Android and Windows app developers face many challenges
such as time constraints, compatibility issues, lack of exposure,
cumbersome tools, etc. We give suggestions to improve the test
automation culture in the growing app community.

Keywords—Test Automation Culture, App Developers, Android,
Microsoft

I. INTRODUCTION

Smartphones have become pervasive and platforms such as
Android and iOS have gained tremendous popularity recently.
According to a Gartner study, worldwide sales of smartphones
to end users increased by 42.3% in 2013 as compared to
the previous year and Android had 78.4% of the market
share of the smartphone sales in 2013 [1]. Furthermore, easy
availability of app construction frameworks and dissemination
through online app stores such as Google Play1 and Apple
App store2 have attracted a large number of developers and

1https://play.google.com/store?hl=en
2https://itunes.apple.com/us/genre/ios/id36?mt=8

organizations to develop and market their apps. However,
low barriers to development does not ensure that apps are
error free. These error-prone apps can significantly impact
user experience and may cause harm to the reputation of the
developers or the organizations. Therefore, it is important to
adequately test these apps before releasing them to the market.
A reliable app with few or no bugs is likely to have a higher
chance of being well-received by the large user base of these
smartphones than the unreliable ones.

Although mobile apps use common technologies such as
Java, they significantly differ from web-based and desktop-
based applications. An app receives a variety of inputs from
users and its environment which makes it difficult to write
effective test cases. Thus, many recent studies propose new
testing tools that are specifically designed for mobile applica-
tions [2], [3], [4]. Despite the growing interest in the software
testing and reliability research community to build tools that
can automate and improve testing of mobile apps, there has
been no study that investigates how developers test these
applications in practice. This study is needed to understand
the “pain points” that these developers face which can be used
to motivate future research that addresses concerns that matters
to mobile app developers.

To address this need, we conduct an empirical study which
is divided into two parts. In the first one, we analyze over
600 open-source Android apps to examine the current state of
testing in the Android development community. Our dataset
includes small apps to large and popular apps such as K-
9 Mail3, FrostWire - Downloader/Player4, OsmAnd Maps &
Navigation5 and OI File Manager6, which have more than
1,000,000 installs. We use a heuristic to automatically identify
the presence of test files in these applications. For applications
with test files, we try to build them and run the test cases.
We also measure the number of lines and blocks covered
by these test cases to investigate the adequacy of testing.
Furthermore, we want to understand the common testing tools
used by Android developers as well as the challenges faced
by them when they test their apps. To do so, we survey over
3,900 Android developers who have hosted their applications
on GitHub and collate their responses We received a total of
83 responses.

For the second part, we replicate the above survey study
3https://play.google.com/store/apps/details?id=com.fsck.k9
4https://play.google.com/store/apps/details?id=com.frostwire.android
5https://play.google.com/store/apps/details?id=net.osmand
6https://play.google.com/store/apps/details?id=org.openintents.filemanager



with app developers from Microsoft. We improve our survey
based on the responses of the first study and ask Microsoft
developers about the type of testing they do, tools they use
and the challenges they face during testing. We survey over
600 developers and received 127 responses.

The main contributions of this study are as follows:

• We are the first to conduct a study to understand the
test automation culture in Android and Microsoft app
development community.

• We analyze the extent to which Android apps are
adequately tested by checking the presence of test
cases and calculating coverage.

• We survey many Android and Microsoft app develop-
ers and collect their responses to understand testing
tools used by them and challenges faced by these
developers in testing their applications.

The structure of the remainder of this paper is as follows.
In Sections II, we explain our study design which includes the
research questions, data collection method, and basic statistics
of our collected data. We present the results of current state
of Android testing in Section III. We discuss the results of the
survey of Android developers in Section IV and survey results
of Microsoft developers in Section V. We discuss additional
interesting points and describe threats to validity in Section VI
and VII, respectively. Related work is discussed in Section
VIII. We conclude and mention future work in Section IX.

II. STUDY DESIGN

In this section, we first present the research questions we
investigate in this study. Then, we present how we collected
our dataset. Next, we present some basic statistics of over 600
apps in our dataset.

A. Research Questions

We investigate a set of research questions to understand the
testing practices commonly followed by Android developers.
First, we want to understand the current state of testing in
Android apps by analysing whether developers write test cases
for their apps. This leads us to our first research question:

RQ1: Are Android applications well tested?

Software testing is an important part of software devel-
opment processes as well tested applications are often of
high quality and experience few bugs. However, testing is
not an easy process as it requires developers to have good
understanding of their applications and on how users will
use them. Developers also need to be aware of the common
testing tools and frameworks available for mobile apps. After
analysing several apps, we want to know whether Android
developers use any automated testing tools or manually test
their apps. If developers use any tools, we want to know what
are the common tools used by developers for testing their apps
and the challenges faced by them during testing. As such, our
second research question is:

RQ2: Do Android developers use automated testing tools
to test their applications? What are the tools commonly used

by Android developers and the challenges faced by them while
testing their applications?

Similar to the second question, here we analyse the tools
used by Microsoft developers and the challenges faced by
them. Our third research question is:

RQ3: Do Microsoft developers use automated testing tools
to test their applications? What are the tools commonly used by
Microsoft developers and the challenges faced by them while
testing their applications?

Our study is divided into three parts. In the first part, we
analyse over 600 apps to understand the current state of testing
of Android applications. After analyzing the apps, we want to
find out the tools used by developers while testing their apps
and the challenges faced by them during the testing procedure.
To do this, in the second part, we collect email addresses of
Android developers from over 600 apps and ask them questions
using a structured survey. Furthermore, in order to understand
if Microsoft’s Windows app developers face similar issues as
their Android counterparts, in the third part of our study, we
survey over 600 Windows app developers within Microsoft.
We present the above results in Section III, IV and V.

B. Data Collection

We collect URLs of all the applications stored on F-Droid7

repository and select apps which are hosted on GitHub. In total,
we have 627 apps in our dataset.

Test Cases & Coverage: For each app, we examine the
presence of test cases by checking for the existence of files
which contain the word “Test”. We observe that many test
files have the word “Test” either in the beginning of their
names, e.g., TestUtil.java, or at the end of their names,
e.g., AccentTest.java. For projects containing test files, we
manually investigate them to build them and run test cases.
Some projects fail to compile due to dependencies on external
libraries. We try to resolve these dependencies issue by down-
loading libraries. However, many projects still fail to compile.
For projects which compile successfully, we run the test cases
present in the project repository and calculate code coverage
using Emma code coverage tool8.

Survey:

First Study - For each of the 627 apps, we collect e-mail
addresses of all developers that developed these apps. In total,
we sent out e-mails to 3,905 distinct e-mail addresses and
ask developers questions about testing tools used by them and
challenges that they face while testing their applications. Many
of these developers work on both open source and commercial
projects. We received a total of 83 responses (response rate of
2.13%). The unit of analysis is individual developer.

Second Study - Based on the responses from the first study,
we improve our survey questions and resend the survey to
Windows app developers in Microsoft. We sent out e-mails to
678 developers and received a total of 127 responses (response
rate of 18.73%). The unit of analysis is individual developer.

7https://f-droid.org/
8http://emma.sourceforge.net/



For the first study, we use a structured survey which
consists of several open-ended questions. The following are
the questions that we ask as part of our survey:

1) How do you test your app code?

Free form text

2) Do you use any test automation tools (e.g., monkeyrun-
ner, robotium, robolectric, etc)? If so, what tools do you
use and why do you use them (e.g., for generating test
cases, for managing test suites etc.)

Free form text

3) What are the challenges you face during testing
either manually or using automated tools (e.g., lack of
documentation, limited support, unclear benefits, etc.)?

Free form text

For the second study, we also use a structured survey.
However, we add additional questions, and provide multiple
choices to better understand app developers testing behaviors.
The questions that we ask include:

1) How do you test your app code?

Checkbox options: Manually, use automated testing tools,
don’t test, other

2) If you test your apps, what type of testing do you do
on your apps?

Checkbox options: Unit testing, integration testing, sys-
tem testing, functional testing, regression testing, ac-
ceptance testing, load testing, performance testing, beta
testing, other

3) If you use automated testing tools for your apps, what
are the names of the testing tools?

Free form text

4) If you use automated testing tools, why do you use
testing tools?

Checkbox options: Generating test cases, executing test
cases, managing test suites, creating and evaluating test
execution results, analysing code coverage, finding poten-
tial bugs, reporting bugs, performing load testing, other

5) Do you face the following challenges during testing
either manually or using automated testing tools and if
you do how serious are they?

Challenges: Time constraints, compatibility issues, lack
of exposure to tools, emphasis on development rather
than testing, lack of support from employer/organization,
unclear benefits of tools, poor documentation, lack of
experience, steep learning curve.
Seriousness levels: Very serious, serious, insignificant, do
not face, no opinion

6) Given the availability of testing tools for app develop-
ment, in your opinion what are the top 2 things you look
for/need/would like to see?

Free form text

C. Basic Statistics

We now present some statistics describing the data col-
lected for our study in terms of number of test cases, lines of
code and number of developers.

a) Test Cases: Table I shows the number of apps with and
without test cases. We find that 538 (85.81%) apps do not have
any test cases, whereas 89 (14.19%) apps have at least one test
case. This shows that a large number of Android apps lack test
cases.

Table I: Distribution of Apps in Terms of Presence of Test
Cases

Categories # of Apps % of Apps
Without Test Cases 538 85.81%
With Test Cases 89 14.19%

b) Lines of Code (LOC): We count the lines of code for
all the apps in our dataset. Figure 1 shows the distribution of
LOC. We can observe that 146 apps have sizes between 1 LOC
to 1,000 LOC, whereas 234 apps have sizes between 1,000
LOC to 5,000 LOC. Furthermore, 128 apps have sizes between
10,000 LOC to 50,000 LOC and 35 apps are larger than
50,000 LOC. The largest project in our dataset is FrostWire
- Downloader/Player4, which is a native BitTorrent & Cloud
file downloader with 1,070,130 LOC.

Figure 1: Distribution of Apps in Terms of Total Number of
Lines of Code

c) Number of Developers: We want to analyse number
of developers involved in the development of an app. We
use the information from git logs and collect unique e-mail
addresses to count the number of developers. Figure 2 shows
the distribution of the number of developers who worked on
different apps in our dataset. We can observe that a large
number of apps (242 apps) are developed by a single developer.
Also, 217 apps have more than 1 but less than 5 developers,
whereas 75 apps have greater than or equal to 5 developers
but less than 10 developers.



Figure 2: Distribution of Apps in Terms of Number of Devel-
opers

III. CURRENT STATE OF TESTING IN ANDROID
APPLICATIONS

In this section, we report the results of testing 89 out of
the 627 applications that contain test suites (i.e., test files).

Figure 3 shows the distribution of test suites for the 89
apps. We find that 19 apps have only 1 test suite, whereas
11 apps have more than 25 test suites. Furthermore, 23 apps
have more than equal to 5 but less than 10 test suites. We can
observe that most of the apps have very few test suites.

Figure 3: Distribution of Apps in Terms of Total Number of
Test Suites

We use coverage as a measure for the adequacy of testing.
We want to analyse if the projects which have test cases are
thoroughly tested or not. We use two measures of coverage:

1) Line Coverage measures the proportion of lines executed
during testing.

2) Block Coverage measures the proportion of code blocks
covered, where each block is a sequence of statements
without any jumps or jump targets which is executed as
one atomic unit.

Out of the 89 apps, we have 41 apps which compile
successfully and we run test cases for these apps. We then
calculate code coverage for these apps.

Figures 4 and 5 show the line and block coverage of the
41 projects, respectively. We observe that 37 projects have
line coverage of less than 40%, whereas 36 projects have
block coverage of less than 40%. The mean and median

value of line coverage is 16.03% and 9.33%, whereas the
corresponding values for block coverage are 17.22% and
10.65%, respectively. The results show that most of the apps
have low coverage, which shows that apps are not adequately
tested.

Figure 4: Line Coverage (Ascending Order)

Figure 5: Block Coverage (Ascending Order)

Only 14.19% (89 out of 627) of the apps contain test cases
and 9.75% (4 out of 41) of the apps that have executable test
cases (i.e., 0.64% of all 627 apps) have line coverage above
40%.

IV. SURVEY OF ANDROID DEVELOPERS

In this section, we present our results of the survey con-
ducted on Android developers.

A. Android Automated Testing Tools Usage

This section reports our findings on the automated testing
tools that are used by Android developers. A large number
of automated testing tools are available to test Android
applications. Table II shows the number of respondents who
use a particular tool. Some developers use more than one tool
simultaneously. We briefly explain some of tools commonly
used by Android developers.

a) JUnit9 - A popular unit testing framework for Java. Since
Android applications are written in Java, it can be directly used
to test the parts of the code that do not call the Android API.

9http://junit.org/



b) MonkeyRunner10 - Monkeyrunner tool provides an API
to write programs to control an Android device or emulator
from outside of the Android code.

c) Robotium11 - Robotium is a test automation framework,
which allows developers to write black-box UI tests for An-
droid apps. Robotium enables developers to write function,
system and user acceptance test spanning multiple Android
activities.

d) Robolectric12 - It is a unit test framework for Android,
which allows developers to execute test cases in Java Virtual
Machine (JVM), rather than running on a mobile device or
emulator.

We can observe that JUnit is the most commonly used
testing framework. This could be due to the fact that JUnit is
one of the mature frameworks and have been used extensively
in the industry.

Table II: Automated Testing Tools Usage

Tools Number of Respondents
JUnit 18
MonkeyRunner 8
Robotium 7
Robolectric 6
Android unit testing framework 6
Monkey 1
Espresso 1
TestNG 1
Other tools 1
No tool 35

Some developers often leverage automated testing tools to
test their apps based on the requirements of the project and
the functionalities provided by the tool. One of the developers
said:

“RoboElectric. I use this pretty heavily for unit testing, but
the scope of tests is rather limited at the moment. I run my
suite of tests against my data model before checking in code.
I find this to be the most mature framework at the moment,
but the amount of supported features is still a bit limited as
its a community driven project. There have been a number
of areas (e.g. the PreferenceActivity and Preferencefragment
classes) that are a bit more limited in scope.

MonkeyRunner. I run tests using this generally the night
before uploading an app. My UI tends to be fairly stable at
this point, so it’s not that helpful, but it usually catches any
serious functionality that I might have broken.

Robotium. I don’t use this at the moment, but I intend to
in the future. One of my limitations here right now is that
there is no free ”recorder” software that I’m aware of at
the moment (a recorder would track a series of keystrokes for
testing purposes, so I could repeat app tests rather than having
to do this by hand). I need to research this a bit further.”

Developers have varying opinions over usage of these tools.
Some of them regularly use such tools (“I use Jenkins as a

10http://developer.android.com/tools/help/monkeyrunner concepts.html
11https://code.google.com/p/robotium/
12http://robolectric.org/

tool for Continuous integration, for testing I use monkeyrunner,
roboelectric, it’s easy to integrate it with Jenkins. I also use
uiautomator for testing the UI interface.”), whereas others
prefer to use older frameworks like JUnit (“I am testing my
application logic (ie. service layer) with JUnit and/or TestNG
as it is not dependent on Android framework. I usually do not
use automation tools for GUI itself, in fact my experience with
GUI testing frameworks is somewhat ... unbalanced.”). On the
other hand, some developers prefer to write their own scripts
to test their applications (“Honestly I prefer to code instead
of spent my time figuring out how complex debugging tools
works.”).

Our survey shows that some developers are aware of the
new tools coming into the market and they express their
intentions of using those tools for future projects (“...However,
I’m interested in Espresso testing tool. It can write clean test
code, and runs faster than Robotium. I’ll try to use it if I make
a next new app.”). Furthermore, some developers who are not
satisfied with some tools, plan to use new tools which provide
similar functionalities (“Robotium has been giving us a little
bit of trouble by having tests flake, so I’m going to work on
migrating those to espresso in the near future, as I’ve heard
nothing but good things about it so far.”).

Several developers prefer to test applications manually
because their applications are small. Developers do not find
it useful to put in effort and learn something new, when the
app can be tested manually in a short amount of time. One
of the developers said “because i only develop some small
app. therefore, i don’t need any test tool. i just write code,
run, debug until it’s run correct.”, while another developer
mentioned that “Most of the projects I’ve worked so far are
simple and for short-term. So I was just fine with manual
testing.”

Google Play makes it easier for users to search and install
apps. Therefore, some developers do not perform much testing,
rather they depend on users who download their applications
to report problems. One of the respondents mentioned “... if
someone comes across a bug, they can submit on the issue
tracker and I will try to fix it.”.

Our survey results also show that a large number of
developers prefer testing their apps manually rather than using
any automated testing tool. From our analysis, we find that
such cases occur due to various reasons. The app to be tested
could be simple or it could be difficult to find a tool which can
meet the testing requirements of the developers. One developer
stated “I have used robotium for some UI testing, however I
haven’t found it particularly useful. The things that robotium
can test are very easily verified manually and there are a lot
of things it can’t test AFAIK (layouting, aesthetics, etc)”.

B. Challenges faced by Android Developers while Testing

This section discusses the challenges faced by the Android
developers while testing their apps either manually or when
using automated testing tools. Table III shows some of the
common challenges confronted by the developers. Some devel-
opers that we survey do not mention any challenges and some
mention more than one challenges. We describe each of the
challenges in detail and quote responses from the developers.



Table III: Challenges Faced by Developers while Testing

Challenges Number of Respondents
Time constraints 20
Compatibility issues 16
Lack of exposure 11
Tool is cumbersome 9
Emphasis on development 6
Lack of organization support 5
Unclear benefits 4
Poor documentation 4
Lack of experience 4
Steep learning curve 2

Time is one of the biggest factors which hinders testing.
Most of the developers want to release their applications
as soon as possible before someone else develops a similar
application. In such cases, developers do not want to invest
time in testing but rather develop the application quickly. One
developer commented “...I work as a freelance developer. So
often there are time constraints to finish the project. Designing
and implementing test cases takes some extra time, which
makes it difficult to finish the project in time.”.

Automated testing tools are generic in nature and are devel-
oped to suit many applications. However, several apps contain
custom functionalities which make it difficult for developers
to use automated testing tools. A number of developers were
of the opinion that some parts of the code are hard to test
using automated testing tools, which forces them to resort to
manual testing. Also, automated testing tools are designed to
work on specific technology. When developers use different
technology, these automated testing tools no longer work well.
One developer lamented “I tried robolectric, but ran into
several issues, that were probably also related to the fact that
I am using Scala on Android.”

Some developers are not aware of automated testing tools
available in the market. One developer admitted “I have not
been aware of them .” Furthermore, lack of discussion about
the importance of automated tests worsens the problem. One
developer commented “... but it’s not a common thing to ’do’
so there isn’t a lot of discussion around it.”

Usability of a tool is one of the key characteristics of it
being used by a large number of developers. A tool which is
easier to use will appeal to more developers as compared to
a tool whose usage is complex. Several developers responded
that they tried to use a particular tool but due to its cumbersome
usage, they discarded the tool. One respondent mentioned
“I think Monkey runner is kinda cumbersome, and breaks
easily when changing layout options.”. Yet another commented
“There is some coordination problems with Robotium which
can be painful to workaround sometimes”.

Functionalities of an application are one of the key factors
which decide whether the app is useful or not. If an app
provides functionalities which suits the need of a large number
of users, the app will be popular. For example, one of the apps
in our dataset, i.e., Open Explorer13, has between 100,000 -
500,000 installs. Therefore, developers are often more focussed
on adding new features of an app. Thus, they devote most
of their time towards development rather than testing. One

13https://play.google.com/store/apps/details?id=org.brandroid.openmanager

developer commented “... I spend most of the time I dedicate
to this project to implementing features”.

With the increasing size of an application, it becomes
imperative to adequately test the application. However, larger
application means significant investment in terms of cost
involved in testing it, which can act as a hindrance for many
developers and organizations. If organizations are not able to
provide resources to the developers, it would be difficult for
developers to do much testing or invest time to learn automated
testing tools. One developer commented “The advice I was
given was ... not bother with trying to use the Android testing
tools/frameworks”. In several cases, clients are not willing to
pay extra for doing automated testing. One developer com-
mented “...few clients were ready to pay more for automatic
tests : they did manual tests themselves. We never used
automatic tests for this reason.”

Testing tools can play an important role during software
development life cycle as they assist developers in writing
and running test scripts and creating test results automatically
as compared to manually testing the application. However,
it is important to clarify how the tools would be beneficial
to a developer or organization who wants to use it. Unclear
benefits would resist developers from venturing into the arena
of automated testing. One developer stated “The pain points
for me would be assessing what automated test tools are
available, assessing their applicability to my applications
and writing comprehensive test scripts or whatever the tools
require. That is probably more effort than what went into
writing the applications in the first place.”

Learning new tools and techniques requires developers to
read documentation and try out examples before they can apply
the tool to their app. A good documentation makes it easier
for novice as well as experienced developers to grasp the
functionality of a tool and get started quickly on using the
tool to test their apps, whereas a poor documentation will act
as a hindrance for developers to adopt the tool. Therefore,
a good and easy to understand documentation is a must for
a new tool. Four developers in our survey mentioned that
lack of documentation is one of the challenges. One of them
mentioned “Testing is documented there, but not very well and
there should be far more information (for instance, how to test
interaction with data providers - there’s only a chapter how
to test OWN data providers, but that’s not what we need).”

Developers who have prior experience of using automated
testing tools are more likely to use new tools. Our survey
responses show that developers with no experience of using
automated testing tools are reluctant to use Android test au-
tomation tools. One developer mentioned “For that, I haven’t
used any kind of tool for testing pourposes. The reason? Well,
for starters, I have no experience with testing tools for any
language/platform, so I don’t really know how to tackle that...”.

Some of the developers perceive that using testing tools
involve steep learning curve. One developer mentioned “I fear
it would represent a strong learning curve.”. Another developer
commented that “I know what automated testing is how to
write a test case or prepare a test suite. But I don’t know how
can I use automated testing effectively. Learning this will take
considerable amount of time and effort.”



Most of the developers prefer using well-known testing tools
such as JUnit. Others experiment with new tools specifically
designed for Android such as Robolectric, Robotium and
Monkeyrunner. However, a large number of developers prefer
to stay away from using tools and perform testing manually.
Our survey shows that Android developers face challenges
in adopting automated testing tools such as time constraints,
compatibility issues, lack of exposure, cumbersome tools, em-
phasis on development, lack of organization support, unclear
benefits, poor documentation, lack of experience, and steep
learning curve.

V. SURVEY OF MICROSOFT DEVELOPERS

In this section, we present our results of the survey con-
ducted on Microsoft developers.

A. Types of Testing

114 out of 127 developers use manual testing whereas 68
developers use automated testing tools. Some developers use
both manual and automated testing. 4 developers responded
that they do no test their apps. Figure 6 shows number
of developers who perform different types of testing while
developing apps. Most of the developers i.e., 103 in our survey
perform functional testing. 97 developers perform unit testing,
75 perform integration testing, 74 perform performance testing,
63 perform regression testing, 47 perform system testing, 45
perform acceptance and load testing and 43 perform beta
testing.

Figure 6: Types of Testing

B. Automated Testing Tools Usage

Table IV shows some of tools used by app developers in
Microsoft. The results show that developers prefer using in-
house tools. We also analyze why developers use automated
testing tools. Figure 7 shows why developers use automated
testing tools and the corresponding number of developers for
each type of usage. 64 developers use tools for executing test
cases, 48 use them for finding potential bugs, 43 use them for
analysing code coverage, 37 each use them creating & eval-
uating test execution results and for performing load testing,
33 each use them for generating test cases and managing test
suites, whereas 27 developers use tools for reporting bugs.

Table IV: Automated Testing Tools Usage
Tools Number of Respondents
Visual Studio 35
Internal Tool 8
Selenium 7
Microsoft Test Manager 5
Others (QUnit, Robotium etc.) 27

C. Challenges faced by App Developers

In this section, we discuss the challenges faced by the
app developers at Microsoft while testing their apps either
manually or using automated testing tools. Figure 8 shows
the challenges encountered by developers along with their
perceived severity levels. We can observe that 35 developers
consider time constraints as a very serious challenge and 56
consider it as a serious challenge. Poor documentation is the
next big challenge which was mentioned by 19 developers as
very serious and by 32 developers as serious. Lack of expo-
sure, emphasis on development and compatibility issues were
mentioned by several developers as a very serious challenge
among others.

D. Developer Needs

In this section, we discuss the needs of the developers from
the automated testing tools they use. We ask developers for
two additional things they would like to see in the automated
testing tools.

Poor documentation is one of the barriers for learning a
new tool. Several developers expressed that a good documen-
tation will increase their likelihood of using the tool. One
of the developers commented “Proper documentation so that
a person new to the system can easily ramp up using these
documents or articles.”

Developers often struggle to meet the deadlines due to the
amount of the work they are assigned and the correspond-
ing amount of time allotted for completion. To worsen the
problem, developers are unaware of the testing tools which
would be helpful for them. Examples of testing from successful
projects would go a long way in motivating developers to use
these tools. One of the developers mentioned “We should have
more internal material on proven practices about how to do
testing, which Tools to use and many many samples and how-
to Videos would be great. There is a lot of stuff about .NET
code testing but not much about XAML App testing (at least
not enough Deep digging Content)”.

Although there are lot of testing tools available, devel-
opers have to put in significant effort in activities such as
generating and executing test cases. An automated testing tool
which accepts the requirements and perform testing would do
wonders for the developers. A developer mentioned “Test case
generation on most of the testing tools I came across needs to
be generated by manually. this needs to be reduced with tools
automation.”, while another one commented “There should a
tool which should accept the requirement from Dev. and should
be able to develop the test suite to run test cases. It reduces
lot of testing efforts.”

In general, developers expect tools which are easy to use.
One of developers opined “I would love to see testing tools
that are simple to learn and straightforward to use. Most tools



Figure 7: Usage of Automated Testing Tools

Figure 8: Challenges Faced by Developers

are cumbersome, lacking documentation and support is poor.
Most of the existing UI Framework testing Tools for XAML
feel incomplete.”

Our survey shows that most of the Microsoft developers test
the apps that they build and perform various kinds of testing.
They employ a number of automated testing tools for various
purposes; the top three reasons are executing test cases,
finding potential bugs, and analyzing code coverage. The
top 3 challenges faced by Microsoft developers in testing
their apps are time constraints, compatibility issues, and lack
of exposure to tools. Microsoft developers expect automated
testing tools which are more well documented and promoted
in the company, easy to use, and automating more manual
tasks.

VI. DISCUSSION

Automated testing is not a panacea but is useful and
important especially for apps that will be regularly updated in
many releases over a long period of time. One of the Android
developers commented that “The problem with automatic test
is, that you need to update them with the code, and it’s not
unusual, that you change a code, which needs a bunch of unit
tests to be rewritten, or if you change the layout of an app, then
your complex ui tests needs to be updated. This can add more
development time than you save on not having bugs, when you
are doing a one-off app development, but can really save you
a lot of time, when you have frequent releases of the same
app for years.”



Despite the benefits of software testing, our study finds
that most open-source Android apps are not adequately tested
- nearly 86% of the apps do not contain any test cases and the
median line coverage across all the apps that have executable
test cases is only 9.33%. Our study is the first one that
empirically demonstrates this phenomenon over a large number
of open-source Android apps. Therefore, there is a need to
improve testing for Android apps.

Both Android and Microsoft developers find some parts
of code are hard to test with existing automated testing tools.
Many also find existing tools hard to use. Thus, there is a
room to develop new automated testing tools that are both
more powerful and more user friendly. The tools should be
able to help developers test difficult cases. On the other hand
it needs to be easy to use such that developers do not need
to invest much effort and resources to learn these tools. One
thing that make tools hard to use is the unavailability of
good documentations. A documentation of a tool might be
spread across tutorials, read me files, blogs, forums, question
& answer sites, etc. It will be interesting to develop a tool
that can aggregate and summarize these pieces of information
together to make it easier for developers to learn how to use
automated testing tools effectively.

Many developers are not aware of existing testing tools.
This highlights the need for researchers to not only release
research prototypes online (e.g., in GitHub) but also promote
these tools through various channels that developers often use
to get information. Singer et al. highlighted various social
channels that developers have used to get information [5].
It would be interesting to investigate ways to automatically
propagate relevant information to practitioners using these
channels.

VII. THREATS TO VALIDITY

Threats to External Validity. Threats to external validity relate
to the generalizability of our results. We have investigated
over 600 Android apps from F-Droid, which is one of the
largest repositories of open-source Android apps. Our dataset
consists of many kinds of apps from small ones to large
and popular ones that contain more than one million lines of
code or downloads. Still, it is unclear if our findings would
generalize to all Android applications. In the future, we plan
to reduce this threat further by analyzing more Android apps.
Our respondents might not be representative of the entire
population of app developers and thus our results might not
generalize to all app developers. We have tried to reduce this
threat to validity by surveying more than 200 developers of
Android and Windows, which are the two most popular mobile
app platforms. To the best of our knowledge, our study is the
largest study on app developers to date.

Threats to Internal Validity. Threats to internal validity relate
to the conditions under which experiments are performed. We
automatically identify apps which contain test cases by using
the following heuristics: we treat .java files whose names
contain the word “test” as test files. We might miss some
test files or mistakenly consider a file to be a test file when
it is not. Furthermore, we manually analyse 89 apps which
contain test files and calculate the coverage of test cases
contained in these files. Out of the 89 apps, many failed to

compile mainly due to missing dependencies. We tried our best
to resolve all the dependencies by finding and downloading
needed external libraries. However, we still cannot resolve
many of them. We only compute coverage for 41 apps that
we can successfully compile. To calculate the number of
developers, we use information from git logs. There may be
cases where the same developer uses different e-mail addresses
to commit to the same git repository and we may have wrongly
counted the number of developers.

VIII. RELATED WORK

Android Testing Techniques. There have been many studies on
techniques for testing Android applications. Hu and Neamtiu
proposed automatic testing framework for Android applica-
tions which combines test case and automatic event generation
with runtime monitoring and log file analysis [6]. Amalfitano
et al. proposed a GUI crawling approach to automate testing
in Android applications [7]. Recent study by Amalfitano et
al. proposed MobiGUITAR, a model based tool that allows
automated testing of mobile applications [8]. Anand et al.
proposed Acteve, a tool for performing automatic concolic
testing in smartphone applications [9]. Mirzaei et al. proposed
a technique to test Android applications using symbolic exe-
cution [4]. Jensen et al. proposed a targeted event sequence
generation based technique to automate Android application
testing [10]. Machiry et al. proposed Dynodroid, a tool for
generating relevant inputs for Android applications [2]. Gomez
et al. proposed RERAN, a tool for recording and replaying in-
puts to Android applications, which can be used for generating
automated UI tests [3].

The above studies signify a growing interest in the software
engineering research community to support automated testing
of Android applications. However, no tool/technique will ever
be useful if no one wants to use it. To the best of our knowl-
edge, there has not been any study about testing practices in the
Android community, especially on the adoption of automated
testing tools. In this work, we fill this gap by presenting the
current state of testing practice in Android community and
describing the challenges in adopting automated solutions for
testing Android applications.

Empirical Studies on Android. There have been many empirical
studies on Android. Takala et al. reported experiences on
applying model based user interface testing on Android ap-
plications [11]. Kropp and Morales investigated strengths and
weaknesses of two approaches for testing mobile GUI appli-
cations: the Android instrumentation framework and Positron
framework [12]. Bhattacharya et al. performed an analysis
on bug reports and bug fixing process of Android applica-
tions [13]. McDonnell et al. studied the stability and adoption
of APIs in Android ecosystem [14]. Syer et al. studies 15
most popular Android applications and compare them with 3
desktop applications [15]. Ruiz et al. investigated the practice
of reuse in Android ecosystem [16]. Maji et al. characterize
failures in Android and Symbian mobile OSes [17].

In this work, we perform empirical study on automated
testing practices in Android community. We surveyed Android
developers and mined source code repositories of the applica-
tions that they develop to understand the current practices for
testing Android applications.



Empirical Studies on Testing. A number of studies investigate
test adequacy of open-source projects. Kochhar et al. investi-
gated the correlation between the presence of test cases and
various project development characteristics, including the lines
of code and the size of development teams [18]. They extended
their study to include characteristics such as number of bugs,
number of bug reporters and the programming languages [19].
Moreover, in their latest study they investigated the adequacy
of testing by analysing correlations between code coverage and
software metrics such as lines of code, cyclomatic complexity,
and number of developers [20].

In this work, we uncover the current state of automated
testing practices in app development community which has
not been studied by prior works.

IX. CONCLUSION AND FUTURE WORK

Testing is a crucial activity during the software develop-
ment lifecycle. With an ever-growing app community, testing
holds much more importance to ensure that apps are adequately
tested and reliable, which would lead to better user experience
and overall growth of the community.

Our study reports the current state of testing of over 600
Android apps from F-Droid. We analyze the source code repos-
itories of these apps and count the number of applications that
have test cases. We also run these test cases and compute their
line and block coverages. Furthermore, we survey developers
of these apps to understand the test automation culture in
Android app and Windows app development community. We
ask developers about tools used by them and challenges faced
by them while testing their apps.

The following is a summary of our findings:

1) Only around 14% of the apps contain test cases and only
around 9% of the apps that have executable test cases
have coverage above 40%.

2) Android app developers prefer using standard framework
such as JUnit, but they also use Android specific testing
tools such as Monkeyrunner, Robotium and Robolectric.
However, many Android developers prefer to test their
applications manually without the help of any testing
framework or tools. Most Windows app developers make
use of Visual Studio, Coded UI, Selenium, and Microsoft
Test Manager to test their apps.

3) Android and Windows app developers face numerous
challenges in testing their apps and in using automated
testing tools. These challenges include time constraints,
compatibility issues, lack of exposure, cumbersome tools,
emphasis on development, lack of organization support,
unclear benefits, poor documentation, lack of experience,
and steep learning curve.

App developers can use our findings to gain insights into
tools used and challenges commonly faced by their counter-
parts. Software organizations can use our findings to provide
support to developers to overcome these challenges.

Our study is the first exploratory step to understand the
automated testing practices in the app development commu-
nity. In the future, we want to expand our empirical study by
analyzing more apps and by surveying more developers to get
more responses. We also plan to develop tools that address the

“pain points” that are faced by developers. For example, we
want to investigate automated ways to improve documentations
of automated testing tools by aggregating and summarizing
information from various blogs, forums, and question and
answer sites (e.g., StackOverflow). We also want to build
powerful and yet user-friendly testing tools that will make
testing Android and Windows apps much easier for developers.

ACKNOWLEDGEMENT

We would like to thank all the survey participants for
sharing their time and experience, and the ICST reviewers for
their valuable feedback on this paper.

REFERENCES

[1] Gartner, “Gartner says annual smartphone sales surpassed
sales of feature phones for the first time in 2013,” in
http://www.gartner.com/newsroom/id/2665715?fnl=search, Last
accessed on October 22, 2014.

[2] A. MacHiry, R. Tahiliani, and M. Naik, “Dynodroid: An input genera-
tion system for Android apps,” in FSE, pp. 224–234, 2013.

[3] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: timing-and
touch-sensitive record and replay for Android,” in ICSE, pp. 72–81,
2013.

[4] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood,
“Testing Android apps through symbolic execution,” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 6, pp. 1–5, 2012.

[5] L. Singer, F. M. F. Filho, and M.-A. D. Storey, “Software engineering
at the speed of light: how developers stay current using Twitter,” in
ICSE, pp. 211–221, 2014.

[6] C. Hu and I. Neamtiu, “Automating GUI testing for Android applica-
tions,” in AST, pp. 77–83, ACM, 2011.

[7] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A GUI crawling-
based technique for Android mobile application testing,” in ICSTW,
pp. 252–261, 2011.

[8] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. Ta, and A. Memon,
“MobiGUITAR – a tool for automated model-based testing of mobile
apps,” IEEE Software, vol. 99, 2014.

[9] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in FSE, p. 59, 2012.

[10] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing with
targeted event sequence generation,” in ISSTA, pp. 67–77, 2013.

[11] T. Takala, M. Katara, and J. Harty, “Experiences of system-level model-
based GUI testing of an Android application,” in ICST, pp. 377–386,
2011.

[12] M. Kropp and P. Morales, “Automated GUI testing on the Android
platform,” Testing Software and Systems, p. 67, 2010.

[13] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An
empirical analysis of bug reports and bug fixing in open source Android
apps,” in CSMR, pp. 133–143, 2013.

[14] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stability
and adoption in the Android ecosystem,” in ICSM, pp. 70–79, 2013.

[15] M. D. Syer, M. Nagappan, B. Adams, and A. Hassan, “Revisiting prior
empirical findings for mobile apps: An empirical case study on the 15
most popular open source Android apps,” in CASCON, pp. 283–297,
2013.

[16] I. J. M. Ruiz, M. Nagappan, B. Adams, and A. E. Hassan, “Under-
standing reuse in the Android market,” in ICPC, pp. 113–122, 2012.

[17] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing
failures in mobile oses: A case study with Android and Symbian,” in
ISSRE, pp. 249–258, 2010.

[18] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “Adoption of
software testing in open source projects-a preliminary study on 50, 000
projects,” in CSMR, pp. 353–356, 2013.

[19] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical
study of adoption of software testing in open source projects,” in QSIC,
pp. 103–112, 2013.

[20] P. S. Kochhar, F. Thung, D. Lo, and J. Lawall, “An empirical study on
the adequacy of testing in open source projects,” in APSEC, 2014.


	Understanding the Test Automation Culture of App Developers
	Citation

	tmp.1474795482.pdf.mpXNE

