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ABSTRACT
The top-k query is a common means to shortlist a number of op-
tions from a set of alternatives, based on the user’s preferences.
Typically, these preferences are expressed as a vector of query
weights, defined over the options’ attributes. The query vector im-
plicitly associates each alternative with a numeric score, and thus
imposes a ranking among them. The top-k result includes the k
options with the highest scores. In this context, we define the max-
imum rank query (MaxRank). Given a focal option in a set of al-
ternatives, the MaxRank problem is to compute the highest rank
this option may achieve under any possible user preference, and
furthermore, to report all the regions in the query vector’s domain
where that rank is achieved. MaxRank finds application in mar-
ket impact analysis, customer profiling, targeted advertising, etc.
We propose a methodology for MaxRank processing and evaluate
it with experiments on real and benchmark synthetic datasets.

1. INTRODUCTION
A multitude of online portals allow users to browse through dif-

ferent options for a product or service they wish to buy, such as
cars, phones, mobile plans, restaurants, apartments, etc. For exam-
ple, TripAdvisor.com maintains ratings of different hotels in terms
of location, service, sleep quality, etc. The top-k query is a com-
mon means to shortlist several options based on the user’s prefer-
ences. Each option r has a number of attributes, e.g., the different
aspects rated on TripAdvisor.com. In the most prevalent and intu-
itive top-k model, the user specifies a query vector q comprising
a numeric weight qi per attribute [11]; the score of each option is
defined as the weighted sum of its attributes (equivalently, the dot
product r · q), which in turn imposes a ranking of the available
options. The k highest ranking options form the top-k result.

In this work, we consider settings where users browse a pool of
options via such top-k queries. We view the problem, however,
from the perspective of the option providers. In particular, given a
focal option, we compute the maximum rank it may achieve w.r.t.
any possible query vector. Additionally, we report all the regions in
the query vector’s domain where that rank is attained. We call this
the maximum rank query (MaxRank).

This work is licensed under the Creative Commons Attribution-
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Rec. d1 d2 S1(r) S2(r)
r1 .8 .9 .83 .89
r2 .2 .7 .35 .65
r3 .9 .4 .75 .45
r4 .7 .2 .55 .25
r5 .4 .3 .37 .31
p .5 .5 .5 .5 q1

q2
1

0 1

(a) Records and scores (b) Query space

Figure 1: MaxRank example for d = 2

Figure 1(a) shows a set of options (data records) in a
2-dimensional example. The options could correspond to hotels,
and their attributes to hotel quality (d1) and value-for-money (d2).
Note that we draw vectors/records in boldface to avoid confusion
with scalars/attributes. The focal option is p = (0.5, 0.5). Given
a query vector q, we may sort the available options on descending
score – the position of p in the sorted sequence is called the order
of p w.r.t. q. Figure 1(a) presents the scores S1(r) and S2(r) of the
options w.r.t. query vectors q1 = (0.7, 0.3) and q2 = (0.1, 0.9),
respectively. The order of p w.r.t. q1 is 4, whereas its order w.r.t. q2

is 3. Assuming that the query weights take values between 0 and
1, the user’s query vector q may lie anywhere in the query space
shown in Figure 1(b). The purpose of MaxRank is to report (i) the
smallest order that p may achieve w.r.t. any possible query vector,
and (ii) all the regions of the query space where p achieves that
order. We denote the smallest order achievable by p as k∗. In our
example, MaxRank would report that k∗ = 3 and that it is attained
when q lies anywhere within the shaded regions of the query space.

The MaxRank query offers a direct measure of visibility and mar-
ket impact. In our running example, for instance, it is useful to the
owner of hotel p to know what is the best her hotel may fare, i.e.,
how high it could rank, relative to competing options. Knowing
k∗ is also useful for a “what-if” investigation, in a scenario where
the hotel is not yet priced/launched and the owner wants to exam-
ine a number of alternatives (in which case, an equal number of
MaxRank queries is required). On the other hand, knowing the re-
gions of the query space where p is the most appealing, reveals
the preference profiles of its most likely customers. In the exam-
ple of Figure 1(b), we infer that p is the most appealing either to
customers that largely favour value-for-money over hotel quality
(i.e., q2 � q1), or to those who weigh the two criteria roughly the
same (i.e., q1 ≈ q2). With this information, the option provider
(hotel owner) may better cater to the needs of her customers, or
target her marketing campaign at the right audience. Additionally,
if the probability distribution of q in the query space is known, the
MaxRank regions enable the computation of the probability that p
achieves its smallest possible order k∗.



In this paper, we introduce the MaxRank query and propose a
framework for its processing. By exploiting the computational ge-
ometric nature of the problem, we make several crucial observa-
tions and develop scalable MaxRank algorithms for two or more
dimensions. Moreover, we extend our methodology to a variant
of the query, called incremental MaxRank. With experiments on
real, as well as benchmark synthetic datasets, we demonstrate the
practicality and efficiency of our techniques.

2. RELATED WORK
The top-k query retrieves from a dataset D the k records with

the highest scores. The score is typically defined as a linear func-
tion over the data attributes. In that sense, the user’s preference is
represented by a vector of weights (query vector q), where the i-th
weight corresponds to the i-th data attribute (i ∈ [1, d]). By treat-
ing a data record r as a vector, its score is equal to the dot product
r · q. A flurry of techniques have been proposed for top-k queries;
Ilyas et al. [11] provide an extensive survey on the topic.

Soliman et al. [18] consider uncertain scoring functions and
identify the most “representative” top-k result, under different defi-
nitions. First, they compute the most likely top-k result if the query
vector is randomly chosen. Next, they compute the top-k result
that is least dissimilar to all possible alternative results. Finally,
they introduce sensitivity measures for a given top-k result.

Mouratidis and Pang [15] study local immutable regions (LIR).
By isolating one weight qi in the query vector q, and assuming that
the rest are fixed, the LIR is the range of qi values for which the
top-k result is the same as for the original vector q. Zhang et al. [24]
extend this concept to the global immutable region (GIR). The GIR
is the maximal locus around q where the top-k result remains the
same. The GIR is shown to be a convex polytope.

Das et al. [7] consider the evaluation of ad-hoc top-k queries
over a data stream. The main idea is that only a small subset of
the records could appear in the top-k result w.r.t. any query vector.
To identify (and maintain) this small subset they rely on a geomet-
ric representation of the top-k query and a notion of duality, where
records and queries are mapped into lines and rays, respectively. In
Section 4, we use a similar (albeit different) mapping in a first-cut
solution (called FCA) for the 2-dimensional case of MaxRank. Yu
et al. [23] extend the principles of [7] to continuous top-k queries.
The results of these queries must be continuously refreshed as new
data records are inserted and old ones are deleted (e.g., in the form
of an update stream). At the core of their approach lies the ef-
fective maintenance of the query response surface, which encodes
the score and identity of the k-th result record for any query vec-
tor. Similarly to [7], this work solves a different problem from
ours, where furthermore k must be fixed and input to the problem
(whereas in MaxRank the value of k∗ is the main unknown).

Vlachou et al. [19, 21] study the reverse top-k query. The input
comprises a set of query vectors Q and a set of data records D.
Specified a positive integer k and a record p ∈ D, the query re-
ports those vectors in Q for which p belongs to the top-k result.
Consider the data in Figure 1 and assume that Q includes vectors
q1 = (0.7, 0.3) and q2 = (0.1, 0.9). Figure 1(a) shows the scores
of the data records w.r.t. these vectors. The reverse top-2 set of p is
empty, because p does not belong to the top-2 result of any query
vector in Q. The reverse top-3 set of p includes only q2, because
p belongs to the top-3 result of q2 but not of q1, etc. Note that k
must be given as input to this problem and also that it considers a fi-
nite number of query vectors with specific, discrete positions in the
query space. This is different from MaxRank where k∗ is unknown
and the query vector q could be anywhere in the query space, i.e.,
there are infinite positions where it could lie at.

Building on the reverse top-k query, Vlachou at al. [20] identify
the top-m most influential data records, i.e., those that have the
largest number of query vectors in their reverse top-k result. This
variant is also inapplicable to MaxRank for the same reasons as the
original reverse top-k query.

Vlachou et al. [19] also discuss the monochromatic reverse top-k
query, which computes the parts of the query space where if q lies,
record p belongs to the top-k result. Although q is not bound to a
finite set of candidate positions, k is still an input to the problem.
Moreover, the proposed solution works only for two dimensions;
the authors identify the challenges of extending it to higher dimen-
sions and leave it for future work.

Zhang et al. [25] study the reverse k-ranks problem. They as-
sume a set of query vectors Q and a set of data records D. Given
a positive integer m and a record of interest p ∈ D, the problem is
to shortlist the m query vectors in Q for which p ranks the highest.
Although conceptually affine to MaxRank, this problem is intrinsi-
cally different because the considered query vectors are constrained
to a given setQ. The proposed pruning techniques are based on the
specific positions of the query vectors and on bounds derived by
these exact positions. Covering any position in the query space is
impossible through this approach.

A computational geometric problem that is related to top-k pro-
cessing is half-space range reporting [13]. The problem is to pre-
process a dataset D such that, given a hyperplane, we may effi-
ciently compute which records of D lie above it. Algorithms for
this problem can be used directly to determine the rank of a data
record p w.r.t. a given query vector q 1. Although related, this
problem is different from MaxRank. If there were a finite set of
candidate query vectors, we could determine the order of p w.r.t.
each of them (via half-space range reporting) and trivially identify
those that yield the smallest order for it. In MaxRank, however, q
could be anywhere in the query space.

The skyline operator is closely related to top-k processing [5].
We say that a record r dominates another record r′ if all the val-
ues of r are no smaller than those of r′, and the two records differ
in at least one attribute. The skyline of a dataset includes only
the records that are not dominated by any other. It holds that the
top record w.r.t. any query vector must belong to the skyline [11];
this property has been used for the effective preprocessing of a
dataset to facilitate top-k answering [27]. Branch-and-Bound Sky-
line (BBS) [17] is a skyline computation algorithm for data orga-
nized by a spatial index, e.g., an R-tree. It is I/O-optimal, i.e., it
reads the minimum possible number of disk pages (R-tree nodes) to
compute the skyline. BBS can efficiently update the skyline in the
event of subsequent record insertions/deletions. Also, it can com-
pute the k-skyband – this is a generalization of the skyline, which
includes the records that are dominated by fewer than k others.

Dellis and Seeger [8] study the reverse skyline. Given a record
p in a d-dimensional dataset D, the reverse skyline includes the
records in D that are not dynamically dominated by any other data
record w.r.t. p. A record r is said to dynamically dominate another
r′ w.r.t. p if the projection of r on each of the d axes lies closer to p
than the corresponding projection of r′. The reverse skyline deals
with geographic proximity/surroundings rather than ranking.

Top-k processing is related to convex hull computation [3]. The
convex hull of a dataset D is the smallest convex set that encloses
all the records in D. The top record w.r.t. any query vector must
lie on the boundary of the convex hull. Chang et al. [6] use this
property in a preprocessing technique for top-k answering. They

1q and p define a hyperplane in data space, above which lie exactly
those records that score higher than p [23].



materialize a number, say m, of convex hull layers in order to fa-
cilitate the processing of top-k queries with k ≤ m.

MaxRank assesses the potential/impact of a data record in a pool
of competing options. In that sense, it is somewhat related to the
competitive positioning of new products in an existing market. Sev-
eral studies consider the creation of new records in a dataset so that
they belong to the skyline of the extended dataset, e.g., [22]. Li et
al. [12] propose strategies to position a new product in the market,
based on the number of alternatives it would dominate or be dom-
inated by. Miah et al. [14] describe techniques to publicize only a
subset of a record’s attributes, so as to increase its visibility, i.e., the
number of queries (from a known set) that would include it in their
result. Unlike this stream of work, in MaxRank the focal record is
given and fixed, i.e., we cannot alter/choose its attributes.

3. PRELIMINARIES
We consider a dataset D that contains n records. Each record

r ∈ D has d numeric attributes ri (for i ∈ [1, d]). For ease of
presentation, we assume that the domain of each attribute is [0, 1],
yet this is not a requirement of our methods. Records are treated as
vectors in d-dimensional space; the ri value of a record is its coor-
dinate in the i-th dimension. In the context of linear top-k queries,
user preference is specified by a query vector q that comprises a
weight qi for each dimension. The score of a record r is defined as
its dot product with q, i.e., S(r) = r · q =

∑d
i=1 riqi. The result

of a top-k query (w.r.t. q) contains the k records with the highest
scores in D. For simplicity, we ignore ties in score.

To visualize, top-k processing corresponds to the sweeping of
the data space with a hyperplane that is normal to q. The sweep-
ing direction is from the top corner of the data space (i.e., point
(1, 1, ..., 1)) towards the origin. The order in which data records
are encountered indicates their rank w.r.t. q. That is, the i-th en-
countered record is the record with the i-th highest score; we say
that the order of that record is i. Note that a small order means that
the record ranks high.

Without loss of generality, in the following we assume that
qi > 0 for every dimension, and that

∑d
i=1 qi = 1. A query vector

that abides by these assumptions is called permissible. Note that
the normalization (i.e.,

∑d
i=1 qi = 1) does not constrain the se-

mantics nor the choice of query vector. To see this, in the sweeping
analogy drawn before, the ranking of the records solely depends on
the direction (but not the magnitude) of vector q.

MaxRank takes as input the datasetD and a (user- or application-
specified) data record p = (p1, p2, ..., pd), called the focal record.
We assume that p belongs to D, although this does not have to be
the case. The MaxRank problem is (i) to determine the smallest
order achievable by p w.r.t. any permissible query vector, and (ii)
to identify all the regions of the query space where p achieves that
order. We denote the smallest order achievable by p as k∗.

DEFINITION 1. Given a dataset D and specified a focal record
p ∈ D, the MaxRank query reports

• value k∗, i.e., the smallest possible order of p w.r.t. any per-
missible query vector, and

• all the regions of the query space where if q falls in, the focal
record p achieves order k∗.

Essentially, the second component of the output is a description
of all query vectors that render p the k∗-th result of the top-k query.
As we explain in Section 5, the MaxRank query is equivalent to
finding the minimal set of records we should remove from D so
that p may become the top record w.r.t. some query vector.

Symbol Description
D Dataset
d Data dimensionality
n Number of records in D

r = (r1, r2, ..., rd) Data record with coordinates r1, r2, ..., rd
q = (q1, q2, ..., qd) Query vector with weights q1, q2, ..., qd
p = (p1, p2, ..., pd) Focal record with coordinates p1, p2, ..., pd

S(r) Score of r
k∗ The smallest order achievable by p
T Query space regions where p has order k∗

τ Parameter of incremental MaxRank
D+ Set of dominators of p
Hc Set of half-spaces that contain cell c
Rc Set of records that correspond to Hc

Fl Set of half-spaces that contain leaf l
Pl Set of half-spaces that partly overlap with l

Table 1: Frequently used notation

While MaxRank is our main focus, we also consider a general-
ization of the problem, the incremental MaxRank (i.e., iMaxRank).
The input to iMaxRank includes an additional integer τ (τ ≥ 0).

DEFINITION 2. Given a dataset D, a focal record p ∈ D and
a positive integer τ , the iMaxRank query reports k∗, and all the
regions of the query space where if q falls in, the focal record p is
among the top-(k∗ + τ) records.

In other words, the output of the iMaxRank query is a description
of all permissible query vectors for which p achieves an order be-
tween k∗ and k∗+ τ . As mentioned in Introduction, an application
of MaxRank is to offer the option provider a description of her most
likely customer profiles; iMaxRank helps reach out to the parts of
the query space (i.e., potential preferences) where the appeal of p
is very strong, albeit not necessarily the strongest possible. We fo-
cus our algorithmic descriptions on MaxRank processing, but we
extend our techniques to iMaxRank as well.

In terms of data organization, we assume that D is indexed by a
spatial access method. In our implementation we use an R∗-tree [2]
due to its proliferation. By default, data and index reside in sec-
ondary storage, although our experiments evaluate the in-memory
scenario too. Table 1 summarizes frequently used notation.

In Section 4, we present a first-cut algorithm for MaxRank in two
dimensions (d = 2). In Section 5, we describe a basic approach
for higher dimensions (d ≥ 2), and in Section 6 we develop its
optimized version. A general note on d is that the top-k problem, to
begin with, and hence MaxRank too, suffer from the dimensionality
curse and are not meaningful for large d. In the Appendix, we show
that as d grows, the score of the top record approaches quickly
that of the lowest-scoring record in the entire dataset, exhibiting a
behaviour (and usefulness deterioration) very similar to the nearest
neighbor query [4]. Thus, we focus on low-dimensional data.

4. A FIRST-CUT SOLUTION FOR d = 2
The characteristics of MaxRank in the special case of d = 2 al-

low for a first-cut algorithm (FCA). The 2-dimensional case reveals
important facts about MaxRank in general dimensionality too.

Since
∑d

i=1 qi = 1, in two dimensions it holds that q2 = 1 −
q1. Hence, the score of a record r is defined as S(r) = r1q1 +
r2(1 − q1). In turn, this means that the plot of S(r) versus q1
is a line. Figure 2 plots the score of each record in Figure 1(a)
versus q1. Every intersection of the score line of p with the score
line of another record r indicates a reordering between the two at
the corresponding q1 value. FCA computes all these intersections
(circled in Figure 2), and sorts them in increasing q1 order.
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Figure 2: Score vs. q1, and order of p in different intervals

At q1 = 0 the order of p is equal to the number of records that
have r2 > p2 plus one. At the first (i.e., leftmost) intersection,
the order of p increases or decreases by one (when the slope r1
of the intersecting score line is greater or smaller than that of p,
respectively). In our example, the initial order of p is 3, which at
q1 = 0.2 becomes 4 (due to the intersection induced by r3). Re-
peating this process for the remaining intersections (in increasing
q1 order) produces a partition of the q1 domain into intervals, and
the corresponding order of p in each of them2. In our example, the
order of p per interval is shown at the bottom of Figure 2.

Given this information, it is trivial to answer a MaxRank or
iMaxRank query. E.g., the smallest order achievable in this case
is k∗ = 3 and the corresponding intervals of q1 are (0, 0.2) and
(0.4, 0.6). Recall that these intervals fully determine q, because
q2 = 1 − q1. That is, they are equivalent to the shaded regions
of the query space in Figure 1(b). Computing the intersection be-
tween two lines takes constant time. Thus, probing every score line
against that of p takes a total of O(n) time, producing a maximum
of n intersections. Sorting the intersections by q1 takes another
O(n logn) time, which determines the complexity of FCA.

A key observation is that there may be multiple intervals where
p attains the minimum order k∗. Also, there is no particular trend
as to whether the order increases or decreases as q1 grows. This is a
general characteristic of MaxRank, independent of dimensionality.

5. BASIC APPROACH FOR d > 2
In this section, we present our basic approach (BA) for MaxRank

processing in higher dimensions. We begin with an observation
that will help prune D. Every record r ∈ D that dominates p has
a smaller order (equivalently, a higher score) than p w.r.t. any per-
missible query vector [5]. We call such records dominators. Letting
D+ be the set of dominators, it holds that k∗ > |D+|. Other than
incrementing k∗ however, dominators can be safely disregarded in
MaxRank processing. Symmetrically, each record dominated by
p is guaranteed to have an order greater than p w.r.t. any query
vector. We call these records dominees and also disregard them.
The remaining records, i.e., those that are neither dominators nor
dominees, are called incomparable. For any incomparable record
r, there are query vectors for which S(r) > S(p), and at the same
time there are query vectors for which S(r) < S(p).

In general dimensionality, the focal object partitions the data
space into 2d regions – each of these regions is an axis-parallel
hyper-rectangle, defined by p and a corner of the data space. The
region with all coordinates larger than p contains the dominators,

2A similar score line intersection approach is used in [19] for the
monochromatic reverse top-k query in two dimensions.

h1q2
3

4

4

5

3

2

1

3

4

2

3
4

3

4

h2

h3

h7
h6

h4

h5
q1

q

(a) Half-space arrangement

h1

1

h2

h3

h7
h6

h4

h5

3

3

2 3

l1 l2

l3 l4

F1: h3
P1: h1,h2,h6,h7

P2: h1,h2,h6,h7

F4: h1,h2
P4: h3,h4,h5

F3: h2
P3: h1,h3,h4,h5

q2

q1

F2:h3

(b) BA example

Figure 3: MaxRank in (reduced) query space, d = 3

and the one with all coordinates smaller contains the dominees. The
remaining 2d−2 regions contain incomparable records – MaxRank
(and iMaxRank) processing needs to focus on these regions only.
The said focusing can be easily done using the R∗-tree index on
D. The only necessary information about the dominators is their
number (as it increments k∗) which can be computed either from
the R∗-tree via a range search, or even faster if an aggregate R∗-
tree is used instead [16]. The latter is a regular R∗-tree where each
index entry is augmented with the total number of records in the
sub-tree rooted at it. The same pruning applies to d = 2 as well,
and we use it to enhance FCA too, i.e., in the 2-dimensional ex-
ample of Figure 1(a), FCA disregards record r1 (dominator) and
record r5 (dominee).

Consider now an incomparable record r. Its order is smaller
than p when and only when S(r) > S(p) ⇔

∑d
i=1 riqi >∑d

i=1 piqi ⇔
∑d

i=1(ri − pi)qi > 0. The interpretation of the
last inequality in (d-dimensional) query space is a half-space that
passes through the origin. As discussed in Section 3, however, we
enforce that

∑d
i=1 qi = 1 (which, we repeat, does not sacrifice

generality). This allows removing the d-th dimension of the query
space, because qd = 1 −

∑d−1
i=1 qi. The inequality S(r) > S(p)

can therefore be rewritten as
∑d−1

i=1 (ri−rd)qi+rd >
∑d−1

i=1 (pi−
pd)qi + pd ⇔

∑d−1
i=1 (ri − rd − pi + pd)qi > pd − rd. The latter

corresponds to a half-space in the (d−1)-dimensional query space
with axes q1, q2, ..., qd−1; we refer to this (d − 1)-dimensional
space as the reduced query space. The supporting hyperplane of
the half-space is given by equation

∑d−1
i=1 (ri − rd − pi + pd)qi =

pd − rd. To summarize, the inequality S(r) > S(p) holds if and
only if the query vector lies inside that half-space.

Via the above process, each incomparable record is mapped into
a half-space in the reduced query space. Assume that d = 3 and
that there are 7 incomparable records. In Figure 3(a), we illustrate
the reduced query space, with axes q1 and q2 (since q3 is removed).
Each incomparable record ri (for 1 ≤ i ≤ 7) is mapped into a half-
plane hi with supporting line

∑2
i=1(ri−r3−pi+p3)qi = p3−r3

(note that the half-planes and their supporting lines are the 2-
dimensional counterparts of the half-spaces and the supporting hy-
perplanes we used in our general-dimensionality description). The
arrows drawn on the supporting line of each half-plane point to-
wards its interior, to indicate containment. For instance, consider
h3. Every query vector that lies inside the half-plane (i.e., above its
supporting line), renders S(r3) > S(p).

LetA be the arrangement of all induced half-spaces. A partitions
the reduced query space into disjoint cells [3], which are convex
polytopes. Any point inside a cell falls in exactly the same set of
half-spaces. In our 3-dimensional example, Figure 3(a) shows the
arrangement of 7 half-planes, which includes 14 cells.



Let c be a cell, and Hc be the set of half-spaces that contain it,
i.e., half-spaces that fully include c. We refer to |Hc| (i.e., the num-
ber of half-spaces that contain c) as the order of the cell. We denote
by Rc the set of incomparable records that induce the half-spaces
in Hc (there is a one-to-one correspondence between records inRc

and half-spaces in Hc). Lemma 1 is derived directly from the defi-
nition of the arrangement.

LEMMA 1. For every query vector q that lies in a cell c of A,
the incomparable records that have an order smaller than p (i.e., a
score higher than p) are those and only those records in Rc.

It follows from the lemma that when q is inside c, the order of
p is |D+| + |Hc| + 1. That is, the records that score higher than
p are exactly those in D+ ∪ Rc. In Figure 3(a), consider the cell
where vector q lies. The set of half-planes that contain this cell is
Hc = {h1, h2}, thus its order is 2. For q and for any query vector
that falls inside that cell, records r1 and r2 are the only incompa-
rable records that score higher than p. The following corollary of
Lemma 1 forms the basis of our methodology.

COROLLARY 1. Let T be the set of cells inAwith the minimum
order |Hc|. The cells in T are those and only those regions of the
(reduced) query space where p attains the minimum order k∗. Also,
k∗ = |D+|+ |Hc|+ 1, where |Hc| is that minimum cell order.

MaxRank outputs T and k∗. In the example of Figure 3(a), the
number in each cell indicates its order. T includes only the shaded
cell, whose order is 1. Thus, k∗ = |D+| + |Hc| + 1 = |D+| +
2. Note that in general there may be multiple cells with the same
(minimum) order |Hc|; this is the case in Figure 2, for instance.

In Section 3, we mentioned that MaxRank is equivalent to finding
the minimal set(s) of records to remove from D so that p becomes
the top record w.r.t. some query vector. Each of the cells c ∈ T
determines a minimal such set, that is, the union of D+ and the
corresponding Rc. E.g., in Figure 3(a) the minimal set to remove
is r2 and the dominators of p.

Returning to MaxRank processing, Corollary 1 is key but far
from leading to a practical solution. As explained previously, there
are 2d − 2 incomparable regions. If the data records are randomly
and uniformly distributed, and p is near the center of the data space,
the incomparable records comprise a fraction 2d−2

2d
of the dataset.

This implies a huge number of half-spaces. To compute their ar-
rangement A, let alone the order of its cells, has a complexity of
O(nd) [1]. Furthermore, the existing algorithms for arrangement
computation are theoretical in nature and involve large constant fac-
tors. The key fact is that we do not need to compute nor store the
entire arrangement, but only the smallest-order cells.

To achieve this, we use a space partitioning index on the half-
spaces, in the (d − 1)-dimensional reduced query space. The
structure we employ is an augmented Quad-tree. Its leaves de-
fine a partitioning of the space and are processed one by one.
Leaves contained in too many half-spaces to affect the MaxRank
(or iMaxRank) result are pruned. The augmented Quad-tree and
the leaf pruning strategy are described in Section 5.1.

Our pruning strategy disregards the majority of Quad-tree leaves.
For those that are not pruned, however, within-leaf processing is
necessary. The latter is still a (constrained) half-space arrange-
ment problem. In Section 5.2, we describe a practical technique
for within-leaf processing that capitalizes again on the fact that not
all cells of the (leaf-constrained) arrangement need to be consid-
ered, and relies on half-space intersection, a much simpler problem
than arrangement computation.

5.1 Half-space Index and Leaf Pruning
We organize the half-spaces (induced by incomparable records)

by a Quad-tree. The leaves of the Quad-tree define a partitioning
of the reduced query space. The Quad-tree is augmented with in-
formation that allows deriving efficiently for any leaf l (i) the set of
half-spaces Fl that fully contain l and (ii) the set of half-spaces Pl

that partly overlap with it.
In particular, we maintain two sets of half-spaces for each leaf

(one for full containment and another for partial overlap). In con-
trast, for the internal nodes we only maintain the set of half-spaces
that fully contain them. Importantly, in every node of the tree, we
exclude from the containment set those half-spaces that already
contain the node’s parent – recording such half-spaces is redun-
dant, since every half-space that contains the parent also contains
its descendants. The half-spaces are inserted one by one into the
tree. A leaf l is split when |Pl| exceeds a certain threshold.

Given a leaf l, we can efficiently derive set Fl as the union of the
leaf’s full containment set (as maintained in the Quad-tree) and the
full containment sets of all its ancestors in the tree. Set Pl is simply
the partial overlap set kept with the leaf node.

Having built the Quad-tree, BA extracts all its leaves. The leaves
partition the reduced query space and, implicitly, the half-space ar-
rangement too. Consider a leaf l in the Quad-tree. Cardinality |Fl|
is a lower bound for the order of all cells of the arrangement that fall
in l. BA considers leaves, i.e., partitions of the reduced query space,
in increasing |Fl| order. For each of them, the within-leaf pro-
cessing module of Section 5.2 identifies the cell(s) inside with the
smallest order. BA terminates when the smallest cell order found so
far is smaller than cardinality |Fl| of the next leaf to be processed
(or smaller than |Fl| − τ , in the iMaxRank case). This technique
disregards (without within-leaf processing) the leaves whose |Fl|
cardinality is too large to affect the MaxRank result.

Example: Assume that we construct an augmented Quad-tree
with the half-spaces in Figure 3(a). Suppose that this produces the
four leaves l1, l2, l3, l4 in Figure 3(b). Inside each of the leaves,
we indicate the respective full containment and partial overlap sets.
For example, l1 has F1 = {h3} and P1 = {h1, h2, h6, h7}. BA
considers the leaves in increasing order of cardinality |Fl|, which
is 1, 1, 1 and 2 for l1, l2, l3, l4, respectively. The tie among the first
three is resolved arbitrarily, e.g., l1, l3, l2. The within-leaf mod-
ule is invoked to compute the cell(s) in l1 with the smallest order,
i.e., the striped cell with order 2, which becomes the interim result.
The next leaf, l3, has |F3| = 1 which is smaller than the order in
the interim result (i.e., 2). Thus, the within-leaf module is invoked
for l3, retrieving the shaded cell with order 1, which becomes the
new interim result. The next leaf, l2, has |F2| = 1. Although that
cardinality is equal to the order in the interim result (i.e., 1), the
within-leaf module must still be invoked for l2 because it may in-
clude additional cells with order 1. The smallest-order cells found
in l2 have order 3 (there are three such cells), and fail to enter the
interim result. The last leaf, l4, has |F4| = 2 which is greater than
the order in the interim result (i.e., 1) and is pruned without any
within-leaf processing, because any cell in l4 is guaranteed to have
an order of at least |F4| = 2. The interim result (i.e., the shaded
cell with order 1) is reported as the MaxRank result.

Note that if a cell of the arrangement overlaps with multiple
leaves of the Quad-tree, its extent is essentially broken into an equal
number of parts. Each of these parts is considered if and when BA
processes the corresponding leaf. That is, if the cell belongs to the
MaxRank result, its extent will be reported in its entirety, albeit in
parts. In Figure 3(b), if the shaded cell overlapped with leaves l1
and l3, its respective parts would be identified independently by the
within-leaf processing of l1 and of l3.



Before presenting the within-leaf processing module, we remark
that unlike the original query space, the reduced query space is no
longer a unit hyper-cube. Because

∑d
i=1 qi = 1 and qd > 0, it

must hold that
∑d−1

i=1 qi < 1. This constraint corresponds to a half-
space whose supporting hyperplane intersects each axis at value 1.
That is, the reduced query space is only a half of the unit hyper-
cube in (d − 1)-dimensions. In Figure 3, for example, although
we visualize the reduced query space as a square, in reality it is a
right triangle with unit legs and right angle at the origin. Similarly,
when d = 4, it is a (3-dimensional) trirectangular tetrahedron with
right angle at the origin, etc. The implication is that we discard any
Quad-tree node that is completely outside half-space

∑d−1
i=1 qi < 1.

For simplicity, our visualizations ignore this constraint.

5.2 Within-leaf Processing
Processing within a leaf is not straightforward. Let l be the leaf

to be processed. Every half-space in Fl increments the order of
p by one (when q is anywhere inside l). On the other hand, the
half-spaces in Pl define an arrangement that partitions the leaf into
cells. Each cell c in that arrangement lies inside a subset of the half-
spaces in Pl. The number of those half-spaces is called the p-order
of c. In other words, the order of c (as defined and used so far)
is equal to its p-order plus |Fl|. To avoid the cost and complexity
of computing the entire arrangement of Pl, we compute individual
cells one by one, prioritized by their p-order, as follows.

Each cell is defined by a bit-string b. The i-th bit bi in the string
corresponds to the i-th half-space in Pl. Bit bi is 1 if the cell is
inside the half-space or 0 otherwise. Given a bit-string, we can
produce the cell by half-space intersection (of the half-spaces with
bi = 1 and the complements of those with bi = 0) and a subsequent
intersection with the leaf’s extent, since the module focuses only on
what happens within the leaf. The number of 1 bits in b (i.e., the
Hamming weight of b) is equal to the p-order of the cell.

A way to implement the within-leaf module is to consider all
possible bit-strings in increasing Hamming weight, starting from 0
(i.e., from bit-string 00...0). If the corresponding cell (computed as
described above) has non-zero extent, it is the cell with the small-
est order in l and the module terminates. Alternatively (i.e., if the
intersection is empty), we consider all bit-strings with Hamming
weight 1. For each of them, we compute the corresponding cell. If
one or more of the produced cells have non-zero extent, they are
returned to the calling algorithm (i.e., BA), and the module termi-
nates. Otherwise, we consider all bit-strings of Hamming weight
2, and so on, until for some Hamming weight we encounter at least
one cell with non-zero extent.

Example: Consider within-leaf processing for l1 in Figure 3(b),
where P1 = {h1, h2, h6, h7}. Bit-string 0000 corresponds to the
intersection of complements of all h1, h2, h6, h7, which is empty.
Thus, bit-strings with Hamming weight 1 are considered, i.e., 1000,
0100, 0010, 0001. Bit-string 0100 corresponds to the intersection
of h2 with the complements of h1, h6, h7, which has non-zero ex-
tent (shown striped in the figure). The other three bit-strings lead
to empty intersections. Hence, the striped cell is reported as the
smallest-order cell in l1 with p-order 1 and cell order 1+ |F1| = 2.

Producing a cell (via half-space intersection) takes a hefty
O(nd/2) time [3], where n = |Pl| in our case. To optimize the
module, we make some observations that allow us to disregard
some bit-strings without half-space intersection, because the result-
ing cells are guaranteed to be empty. Without loss of generality,
assume that there is no pair of half-spaces in Pl with identical sup-
porting hyperplanes. Given any two half-spaces h and h′ in Pl

whose supporting hyperplanes do not intersect within l, there are
only three possible containment statuses between them; (i) they are
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h
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Figure 4: Containment statuses, reduced query space, d = 3

disjoint, (ii) one (say, h) contains the other, or (iii) they overlap but
none completely includes the other. These cases are illustrated in
Figure 4 for d = 3 (i.e., 2-dimensional reduced query space). In
the first case (disjoint), the bits of the two half-spaces cannot be
both 1 at the same time, i.e., they would lead to an empty intersec-
tion. Similarly, in the second case (h contains h′), the bit for h′

cannot be 1 when the bit for h is 0. In the third case (overlap but no
complete inclusion), the bits cannot be both 0. Note that these three
statuses refer only to the parts of the half-spaces that fall within l
– their parts that fall inside other leaves of the Quad-tree will be
considered if/when these other leaves are processed by BA.

In the beginning of the within-leaf module, we consider each pair
of half-spaces in Pl. For pairs where hyperplanes do not intersect
within l, we classify them under one of the three categories, and
record the respective binary condition. Bit-strings are considered in
increasing Hamming weight, as per normal, but we dismiss without
half-space intersection those that violate a binary condition.

Within-leaf processing for iMaxRank is as described above, but
we examine bit-strings with Hamming weights up to τ units larger
(compared to the MaxRank case).

5.3 Correctness and Completeness of BA
Lemma 1 and Corollary 1 are the basis of BA. By constructing

the augmented Quad-tree to reflect all incomparable records, its
leaves partition the (reduced) query space, and along with it, the
half-space arrangement A. That is, every cell in T (i.e., in the
MaxRank result) is covered by one or more leaves of the Quad-tree.
BA prunes a leaf l only if its full containment set Fl includes more
half-spaces than the smallest cell order found so far. By definition,
every arrangement cell (or part of an arrangement cell) that falls in
l is contained in at least the half-spaces in Fl, and thus its order is at
least |Fl|. Hence, BA pruning is safe, i.e., it only disregards leaves
that are guaranteed not to include any cell from T .

It remains to show that within-leaf processing is also correct and
complete. The module considers exhaustively all possible combi-
nations of bits (i.e., combinations of containment in the half-spaces
of Pl), in increasing Hamming weight. Let i be the first (i.e., small-
est) Hamming weight where we find a bit-string that corresponds to
non-empty intersection. First, we are certain that i is the smallest
p-order in the leaf (equivalently, that the smallest cell order in the
leaf is i+ |Fl|), and thus there is no need to consider any bit-string
with Hamming weight greater than i. Second, the within-leaf mod-
ule reports all the cells (non-empty intersections) in the leaf with
p-order i, since it examines every bit-string of Hamming weight i.

6. ADVANCED APPROACH
The basic approach (BA) offers a viable MaxRank solution. It

suffers, however, from a major drawback. To exemplify, in the
simple scenario we assumed in Section 5, we estimated the incom-
parable records to comprise a fraction 2d−2

2d
of the dataset. While



for d = 2 that is half the dataset, as the dimensionality grows, the
fraction quickly approaches 1. This implies that BA needs to access
almost the entire dataset and insert into the Quad-tree an excessive
number of half-spaces. The advanced approach (AA) circumvents
this problem, while retaining the correctness and exactness of the
solution. It achieves this by accessing incomparable records (equiv-
alently, by inserting half-spaces) progressively and only when they
could affect MaxRank processing.

6.1 Outline of Methodology
In Section 5, we discussed pruning the dataset based on the dom-

inance relationship between p and the data records. The crux in
AA is to leverage on the dominance relationship among the data
records, in order to avoid considering some of them, thus saving
on the access and processing costs. In the rest of this section, we
focus on data records that are incomparable to p; dominators and
dominees are disregarded, similarly to BA.

Consider two records r and r′, where the first dominates the sec-
ond. By definition, the order of r is always smaller than that of r′,
for any permissible query vector. This implies that r′ cannot score
higher than p unless r already scores higher than p. In the reduced
query space, this means that the half-space induced by r contains
that of r′, regardless of what the focal record is. The main idea in
AA is to refrain from processing r′ unless r is processed first. We
achieve this by subsuming (the half-space induced by) r′ under r.
The objective is to accurately identify the minimum order cell(s)
of the half-space arrangement, without considering the majority of
subsumed half-spaces.

To formalize, the half-spaces of records that subsume no other
records are called singular – such are all the half-spaces we dis-
cussed in the previous sections. If a record subsumes at least one
other, its half-space is called augmented. Each augmented half-
space is (implicitly) associated with the half-spaces/records it sub-
sumes. Note that we do not subsume all the dominees of a record
under it, but just some (we will explain which later). On the other
hand, only the dominees of a record could be subsumed under it.
AA executes in iterations, through which it maintains a mixed ar-
rangement, i.e., the arrangement of a mix of singular and aug-
mented half-spaces. Similarly to Section 5.1, the mixed arrange-
ment is only implicitly maintained, using an augmented Quad-tree.

In the first iteration, AA constructs the mixed arrangement from
half-spaces (be they singular or augmented) that are not subsumed
under any other. Consider again the example in Figure 3(a), and
assume that r1 dominates r4, r5; also, that r3 dominates r6, which
in turn dominates r7. Figure 5(a) shows the result of subsumption.
Due to the stated dominance relationships, half-space h1 subsumes
h4 and h5, becoming an augmented half-space denoted by h1,4,5.
Similarly, h3 subsumes h6 becoming the augmented half-space
h3,6. Half-space h6 subsumes h7, however, h7 does not appear
in the figure (neither as a singular half-space nor as the augmented
h6,7). The reason is that, as already stated, the first iteration con-
siders only the half-spaces that are not subsumed under any other.

Returning to our example, in the first iteration, AA initializes the
mixed arrangement by the half-spaces in Figure 5(a), and identifies
the cell(s) with the smallest order. Practically, this means that the
half-spaces are inserted into the (initially empty) Quad-tree, and the
smallest order cell(s) are identified by the process in Section 5.1. In
the following, we refer directly to the mixed arrangement and to its
cells (rather than the inner workings of the Quad-tree).

In Figure 5(a), the number drawn in each cell indicates its order
in the mixed arrangement. The cells with the smallest order are
c1 and c2 (both have order 1). All half-spaces (i.e., h2) that con-
tain c1 are singular. Therefore, its extent and order in the mixed
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Figure 5: AA example in (reduced) query space, d = 3

arrangement is identical to what it would be in the arrangement
induced by all incomparable records (shown in Figure 3(a)). Note
that the boundary of c1 may be defined by an augmented half-space
(i.e., h1,4,5), but since that half-space does not contain c1, the half-
spaces subsumed under it (i.e., h4 and h5) cannot affect the order
nor the extent of c1.

On the contrary, c2 is inside an augmented half-space, i.e., h3,6.
To determine accurately the order and extent of c2, AA needs to
expand that augmented half-space, i.e., to replace it by its singular
form and the half-spaces it subsumes. The rationale is that some
of the half-spaces subsumed under h3,6 could overlap with c2. In
our example, h3,6 subsumes h6,7. Thus, h3,6 is replaced by h3

and h6,7. Figure 5(b) illustrates the arrangement after the expan-
sion. If in the beginning of the first iteration, c2 were inside more
augmented half-spaces (in addition to h3,6), they too would be ex-
panded. The first iteration terminates after the expansion.

The second iteration commences with c1 already identified with
(accurate) order 1, and the mixed arrangement shown in Fig-
ure 5(b). The smallest cell order in this arrangement is 2, which
is already greater than that of c1. Thus, AA terminates with
k∗ = |D+| + |Hc1 | + 1 = |D+| + 2, and T = {c1} as the
region of the query space where this order is achieved (recall that
|D+| denotes the number of dominators of p, and |Hc1 | the or-
der of c1). Observe that AA processes the MaxRank query without
considering half-spaces h4, h5, h7.

To provide perspective, the order of each cell in the mixed ar-
rangement is a lower bound of the cell’s actual order (i.e., its order
in the complete arrangement induced by all incomparable records).
For instance, cell c2 has an order of 2 in Figure 5(b), whereas its
actual order (in Figure 3(a)) is 3. AA progressively and selectively
drills down into the smallest-order cells of the mixed arrangement,
by expanding the augmented half-spaces that contain those cells.
As explained previously, if a cell is not inside any augmented half-
space, its order and extent are accurate. AA terminates when the
smallest accurate cell order is smaller than all the other cell orders
in the mixed arrangement. The cells with that smallest accurate
order form set T of the MaxRank result.

An important feature in AA is nested subsumption, e.g., h3,6

subsumes h6,7 which subsumes h7. The nested subsumption al-
lows for prioritized processing and enables AA to defer/avoid con-
sideration of half-spaces that might not affect the MaxRank result.
For example, referring to Figure 5 and the expansion of h3,6, AA
inserts into the mixed arrangement half-space h6,7, but not h7. The
latter will only be inserted if h6,7 is expanded in a future iteration.

Extending AA to iMaxRank is straightforward. After the identifi-
cation of k∗ (as in the basic MaxRank case), AA keeps considering
cells in increasing order and terminates when all un-reported cells
in the mixed arrangement have order larger than k∗ + τ − |D+|.



d1

r2

r6

r4

d2

r3

p
r5

r7
r8

r1

(a) First iteration

d1

r2

r6

d2

p

r7
r8

r4

r3

r5

r1

(b) Second iteration

r2

d1

d2

p

r4

r3

r5

r1

r6
r7

r8

(c) Third iteration

Figure 6: Implicit subsumption in data space, d = 2

In our presentation so far, we assumed that subsumption was
somehow performed before AA commences. To subsume half-
spaces beforehand would incur high access cost, because it requires
reading all incomparable records. It would also be unadaptive to
the data and the AA process. In Section 6.2, we solve these prob-
lems by making the subsumption implicit and decided dynamically,
depending on which half-spaces are being expanded.

6.2 Implicit Subsumption Strategy
The description holds for any dimensionality, but for the sake

of visualization, we use d = 2. Consider the example in Figure 6.
Figure 6(a) shows the records that are incomparable to p. The dom-
inators and dominees fall in the gray areas and are disregarded, as
per normal. In its first iteration, AA computes the skyline of the in-
comparable records. The skyline is represented by the dashed line
and comprises r1, r2. AA inserts into the mixed arrangement one
half-space for each skyline record. At this point, all half-spaces
are treated as augmented, since AA is oblivious of what lies be-
neath; non-skyline records (r3, r4, ..., r8, shown hollow) have not
been accessed nor reflected into the mixed arrangement.

Assume that the first iteration requires expansion of h1 (the
half-space induced by r1). AA first marks h1 as a singular half-
space. Then, it implicitly removes r1 from the set of incomparable
records, and recomputes/updates the skyline. This introduces r3
and r4 into the skyline, and their respective half-spaces are inserted
into the mixed arrangement (marked as augmented). Figure 6(b)
shows the updated skyline. In retrospect, we can consider that r3
and r4 were previously subsumed under r1. However, their sub-
sumption was not determined in advance, neither did it require ac-
cessing r3 and r4 prior to the expansion of h1.

Suppose that the second iteration requires expansion of h4. This
half-space is marked as singular and r4 is removed from the sky-
line. The updated skyline includes r2, r3, as shown in Figure 6(c).
Since the skyline includes no new records, no half-spaces are in-
serted into the mixed arrangement. Focus now on r5, which is not
yet encountered/accessed. That record could be subsumed under ei-
ther r3 or r4. Since r4 is expanded first, AA implicitly subsumes r5
under r3, thus postponing the access of r5 (and the insertion of h5

into the mixed arrangement) until h3 is expanded, if at all. That is,
AA decides subsumption dynamically, aiming to defer, and poten-
tially avoid, unnecessary record accesses and half-space insertions.

Practically, AA maintains the skyline of non-expanded records,
and maps its members into augmented half-spaces. If the current
iteration of AA expands some skyline records, they are removed
from the skyline and their half-spaces are marked as singular. The
skyline is then updated, and its new members introduce new (aug-
mented) half-spaces. We perform skyline computation and mainte-
nance by the I/O-optimal BBS algorithm [17] on the R∗-tree of D.
When records are expanded (and removed from the skyline), BBS
reuses its search heap to incrementally update the skyline, without

re-accessing the same R∗-tree nodes and records.
Algorithm 1 summarizes the complete AA process. The mixed

arrangement is abbreviated as MA. Variable o∗ stores the small-
est (accurate) cell order found so far. Set E holds the augmented
half-spaces to be expanded in the current iteration. Lines 15-17 per-
form half-space expansion and update the skyline of incomparable
records accordingly.

Algorithm 1: Advanced Approach
1 Set o∗ = +∞ and T = ∅;
2 SL = the skyline of incomparable records;
3 Insert into MA an augm. half-space for each record in SL;
4 while TRUE do
5 Identify the cell(s) in MA with the minimum order;
6 if that minimum order is greater than o∗ then
7 Break;

8 E = ∅;
9 for every cell c identified in Line 5 do

10 if c is not inside any augm. half-space then
11 T = T ∪ {c};
12 Set o∗ to the order of c;

13 else
14 Insert into E all augm. half-spaces that contain c;

15 Mark every half-space h ∈ E as singular in MA;
16 Update SL by ignoring all expanded records;
17 Insert into MA an augm. half-space for each new record in SL;

18 Report T and k∗ = |D+|+ o∗ + 1;

6.3 AA in Special Case of d = 2
A specialized version of AA is necessary for d = 2, since the

reduced query space is 1-dimensional. AA proceeds as before, but
the mixed arrangement is maintained using a sorted list instead of
a Quad-tree. Consider the data in Figure 1(a). The incomparable
records are r2, r3, r4, where r3 dominates r4.

In the first iteration, the skyline includes r2, r3 whose half-
spaces need to be reflected in AA’s mixed arrangement. Figure 7(a)
illustrates the reduced query space; it is 1-dimensional, reflecting
the domain of q1. Here, half-spaces become half-lines. E.g., in-
equality S(r2) > S(p) translates to q1 < 0.4, and S(r3) > S(p)
to q1 > 0.2. To store the mixed arrangement, we represent each
half-line by a value-direction pair. E.g., the half-line of r2 is rep-
resented as 〈0.4,←〉 and that of r3 as 〈0.2,→〉. We maintain the
pairs in a sorted list in ascending order of q1 values, and keep track
of the number of ← pairs in the list. The sorted list defines as
many cells as its cardinality plus one, delimited by the values of
consecutive pairs. In Figure 7(a), for instance, there are 3 cells. To
determine the order of the cells, we scan the list from left to right.
The first cell (0, 0.2) has order equal to the total number of← pairs
in the list, i.e., 1. If the first pair in the list is←, the second cell has
the order of the first cell decremented by one; otherwise, the order
is incremented by one, and so on for the subsequent cells.

In Figure 7(a), the minimum order cells are (0, 0.2) and
(0.4, 0.6). Expansion of their containing augmented half-lines (i.e.,
h2 and h3, respectively) turns them into singular, accesses r4 (pre-
viously subsumed under r3), and introduces h4 into the mixed ar-
rangement, i.e., inserts 〈0.6,→〉 into the sorted list. Figure 7(b)
illustrates the new arrangement. AA terminates in the second it-
eration since the minimum order cells (0, 0.2) and (0.4, 0.6) fall
inside singular half-lines only, i.e., their order is accurate. To sup-
port efficient updates, the sorted list is implemented as a sorted
container, e.g., a red-black tree.
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Figure 7: AA example for d = 2

Compared to FCA (in Section 4), the 2-dimensional version of
AA is expected to access/process significantly fewer records. Re-
call that FCA needs to consider all incomparable records in order
to compute the intersections of their score lines with that of p.

6.4 Correctness and Completeness of AA
Each incomparable record corresponds to a half-space. Every

such half-space is either explicitly reflected in the mixed arrange-
ment (as a singular or augmented half-space) or subsumed under an
augmented half-space. Thus, the mixed arrangement accounts for
all incomparable records to p (be it explicitly or implicitly).

AA terminates when the smallest-order cell(s) in the mixed ar-
rangement is/are not inside any augmented half-space, and any
other cell in the mixed arrangement has greater order. The afore-
mentioned smallest-order cells form set T in the AA result. To
prove correctness and completeness we must show that (i) the or-
der and extent of the reported cells are both accurate, and (ii) the
remaining part of the mixed arrangement cannot include cells with
equal or smaller order. To see (i), if a cell is not inside any aug-
mented half-space, it cannot be inside any subsumed half-space
(hence, no subsumed half-space can affect its order), neither can
it have an overlap with a subsumed half-space (thus, its extent is
accurate too). Regarding (ii), the order of a cell in the mixed ar-
rangement is a lower bound of its actual order in the complete ar-
rangement3. Since all remaining cells in the mixed arrangement
have order greater than those in T , it is safe to disregard them.

7. COMPLEXITY ANALYSIS
As demonstrated by Lemma 1 and Corollary 1 in Section 5,

MaxRank can be solved by computing the complete arrangement
of all incomparable records. However, the best known algorithms
for this have a time and space complexity of O(nd) [1]. The crux
of BA and AA is to only compute the smallest-order cells of the ar-
rangement and to only implicitly maintain it. We first analyze their
time and then their space complexity. For brevity, we denote by dr
the dimensionality of the reduced query space (i.e., dr = d− 1).

BA builds an augmented Quad-tree that holds one half-space for
every incomparable record, that is, O(n) half-spaces. Assume that
the Quad-tree leaves are all in the same level, and their total number
isC. We focus the analysis on the leaf level, because internal nodes
account for a trivial fraction of the Quad-tree. Insertion of a half-
space alters the full and partial containment sets of C

2
leaves on the

average4. Thus, Quad-tree construction takes O(nC
2
) time. Leaf

sorting takes another O(C logC). Yet the dominant cost is the
computational geometric processing that follows.
3This is so because cell orders in the mixed arrangement are cal-
culated based only on incomparable records that are explicitly re-
flected in the arrangement (i.e., ignoring the subsumed ones).
4This overestimate ignores the redundancy avoidance optimiza-
tion in our Quad-tree (by keeping full containment sets in inter-
nal nodes) but simplifies the time analysis. Later on, in our space
analysis, we quantify it accurately as O( n

dr
√
C
).

We first analyze the cost of within-leaf processing for a single
leaf. Consider the arrangement A of all incomparable records. A
contains O(ndr ) cells [1], a fraction 1

C
of which overlap with the

leaf. In the worst case, within-leaf processing needs to compute all
these cells (i.e., the entire part of the arrangement that overlaps with
the leaf’s extent) in O( 1

C
ndr ) time. A reasonable estimate is that

the number of Quad-tree leaves processed by BA is proportional to
|T | (while the rest are pruned). Thus, the computational geometric
part of BA takes O( |T |

C
ndr ) time in total.

Turning to AA, let na be the total number of incomparable
records it processes. We expect that na is proportional to the
cardinality of the skyline of incomparable records, i.e., na is
O( log

d−1 n
d!

) [9]. The rationale is that AA only considers the
records that appear in the (progressively updated) skyline of in-
comparable records in some iteration.

Quad-tree construction takes O(na
C
2
) time. Since every itera-

tion in AA processes additional records, the costs for leaf sorting
and computational geometric processing are dominated by those
in the final iteration, i.e., O(C logC) and O( |T |

C
ndr
a ), respec-

tively. Note that C here refers to the Quad-tree of AA, which is
smaller than in BA, because it holds only na half-spaces. Skyline
computation and maintenance considers O(na) records in total5 in
O(na log

d−2 na) time [26].
Overall, we see analytically that our algorithms are expected to

improve vastly over the straightforward application of an off-the-
shelf algorithm for arrangement computation, and that AA is ex-
pected to largely outperform BA, because na is much smaller than
the total number of incomparable records (O( log

d−1 n
d!

)� O(n)).
The space complexity of BA is determined by the size of the

Quad-tree, which in turn is dominated by the size of its leaf level.
As explained previously, we expect that O( 1

C
ndr ) arrangement

cells overlap with a leaf l. These cells are induced by O( n
dr
√

C
)

half-spaces [1], i.e., the partial overlap set Pl includes as many ele-
ments. On the other hand, for a half-space to be in the full contain-
ment set Fl, the half-space must partly overlap with at least one of
the siblings of l (recall from Section 5.1 that if the half-space fully
contains all sibling leaves, it is only stored in one of their ances-
tors). Hence, a half-space is included in a number of full contain-
ment sets that is proportional to the number of leaves that it partly
overlaps. Thus, the size of Fl is expected to be proportional to Pl.
That is, BA requires O( n

dr
√
C
) space per leaf, i.e., O(C n

dr
√
C
) in

total. Similarly, AA requires O(C na
dr
√

C
) space, where na � n as

described earlier. Both space complexities largely improve on the
O(nd) storage required for complete arrangement computation.

8. EMPIRICAL EVALUATION
In this section, we empirically evaluate the MaxRank algorithms

and present measurements that provide insight into the nature of the
problem. We use real and synthetic datasets. The real datasets are
HOTEL, HOUSE, NBA, PITCH, and BAT. HOTEL (from hotels-
base.org) contains 418,843 hotel records with four attributes, i.e.,
number of stars, price, number of rooms, and number of facilities.
HOUSE (from ipums.org) contains 315,265 records; each holds six
values that represent an American family’s spendings in gas, elec-
tricity, water, heating, insurance, and property tax. NBA (from
basketballreference.com/stats) contains 21,961 records of perfor-
mance statistics for NBA players. PITCH and BAT hold 43,058
and 99,847 records of performance statistics for baseball pitchers
and batters (both from baseball1.com/statistics).
5BBS considers all records stored in leaves of the R∗-tree on D
that hold some of the na records that appear in the skyline [17].



We use three types of synthetic datasets, namely Independent
(IND), Correlated (COR), and Anti-correlated (ANTI). These
types of data are standard benchmarks for preference-based
queries [5]. IND data are generated randomly and uniformly across
the data space. In COR, if a record has a large value in an attribute,
it tends to have large values in the other attributes too, and vice
versa. In ANTI, if a record has a large value in an attribute, it is
highly likely to have small values in the remaining ones.

We index each dataset by an R∗-tree, and store data and index
on the disk. The performance metrics are CPU time and I/O cost
(measured in seconds and number of page accesses, respectively).
Note that the CPU charts by themselves represent performance in
the scenario where data and index reside in main memory. Table 2
lists the experiment parameters, their tested value ranges, and their
default values (typed in boldface). In each experiment we vary one
parameter, while setting the remaining ones to their defaults. Every
presented measurement is the average over 40 queries for randomly
selected focal records. All methods were implemented in C++, us-
ing the Qhull library from qhull.org for half-space intersection. Ex-
periments were performed on a machine with Intel Xeon 2.67GHz
CPU. The disk page size is set to 4KBytes.

Parameter Range of values
Dataset cardinality, n 100K, 500K, 1M, 5M, 10M
Dimensionality, d 2, 3, 4, 5, 6, 7, 8
iMaxRank parameter, τ 0, 1, 2, 3, 4, 5

Table 2: Experiment parameters and tested values

In Figure 8, we investigate the effect of dataset cardinality n, as it
varies from 100K to 10M records. The first pair of plots represents
the performance of AA and BA on 4-dimensional IND data. BA
fails to terminate within reasonable time for more than 10K records.
Hence, in Figure 8(a), we only present its CPU time for the 10K
dataset, drawn as a dashed line and labeled ‘BA-10K’. However, its
I/O cost in Figure 8(b) is accurate – this can be measured because
BA performs all its data access before the heavy computation part.

BA faces serious scalability issues, because every incomparable
record needs to be accessed and reflected into the augmented Quad-
tree. This implies a large I/O cost, but also an excessive amount of
calculations for processing within the leaves of the Quad-tree. On
the other hand, AA needs to access/process only a fraction of the
incomparable records, and scales well with n in terms of both CPU
time and I/O cost. The comparison between AA and BA verifies
the effectiveness of the half-space subsumption methodology.

On another note, 94% to 97% of the computations in AA are
spent on within-leaf processing. The percentage in BA (for the
10K dataset) is 71% because it reflects all incomparable records in
its Quad-tree, thus spending a more significant amount of computa-
tions on Quad-tree construction. This difference is reflected in their
space requirements too. AA takes up 3.8MBytes for n = 100K,
and 13.3MBytes for n = 10M records; 85% and 87% of that space,
respectively, is occupied by the augmented Quad-tree. In contrast,
in BA the Quad-tree takes up 98.8% of the 212MBytes utilized.

In Figures 8(c) and 8(d), we vary n in the same range, but focus
only on AA and its performance on the three benchmark distribu-
tions. AA scales gracefully with dataset cardinality for all three.
To understand the performance differences among these distribu-
tions, in Figures 8(e) and 8(f), we plot the values of k∗ and |T |
(i.e., the number of regions where order k∗ is attained). Value k∗

is the largest in COR, and it is achieved in relatively few regions
of the query space. This means that the order of p is rather stable,
which is reasonable because if a record r has a larger value than
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Figure 8: Effect of dataset cardinality n (d = 4)

p in an attribute, its other values tend to also be larger, thus over-
shadowing p in terms of score w.r.t. to any (or almost any) query
vector. Conversely, in ANTI we observe the smallest k∗ values and
the most regions where that order is achieved. The reason is that if
a record r has a larger value than p in an attribute, it is highly likely
to have a smaller value than p in another attribute. That is, the
order of p fluctuates vastly for different query vectors, thus achiev-
ing a small order for some of them. The differences in CPU time
among the three distributions are due to the great differences in |T |
– the larger the number of regions in MaxRank result, the higher
the computational cost to identify them.

Regarding I/O cost in Figure 8(d), BA accesses all the domina-
tors of p (to derive |D+|) and all the incomparable records, result-
ing in linear increase with n. In AA the I/O cost is spent on access-
ing (i) all the dominators of p (for counting), and (ii) those of the
incomparable records that are needed for AA processing. In ANTI,
by definition, p has fewer dominators (i.e., factor (i) is smaller) and
more incomparable records (leading to a larger factor (ii)) than in
IND/COR. For small n, factor (ii) outweighs factor (i), thus the
more I/Os in ANTI than in IND/COR. As n increases, however,
the relative impact of the two factors is reversed, and the I/O cost
in ANTI drops below IND/COR. This is because factor (i) increases
linearly with n, whereas factor (ii) corresponds to value na which,
as estimated in Section 7, increases sub-linearly to n.

In Figure 9, we study the effect of dimensionality d using IND
data. For AA the measurements are for fixed cardinality n = 100K
(the default). The CPU results for BA correspond to 10K datasets
(due to the scalability limitations explained previously), on which
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Figure 9: Effect of dimensionality d (n = 100K, IND)

d k∗ |T |
2 39,199 1.6
3 13,663 6.5
4 11,316 55
5 4,393 436
6 3,495 11,493
7 522 74,280
8 214 149,732

Table 3: Effect of dimensionality on k∗ and |T |

it still cannot terminate when d > 5. For d = 2 the measurements
correspond to FCA (which we treat as the 2-dimensional version of
BA) and to the 2-dimensional version of AA from Section 6.3. We
take a closer look into d = 2 via a specialized experiment later.

Other than the problematic performance of BA, our findings sug-
gest that AA scales effectively with d. The costs of AA (CPU and
I/O), and especially its CPU time, increase with d. The reason is
the sharply growing number of regions |T | where k∗ is achieved.
To substantiate this, in Table 3 we present the values of k∗ and |T |
for the same experiment. As d grows, |T | increases exponentially;
conversely, k∗ drops sharply. As we mentioned in Section 3 and
empirically demonstrate in the Appendix, as d grows the score dif-
ferences among the data records diminish (together with the use-
fulness of the top-k and MaxRank queries). This effect leads to
numerous regions in the query space where the focal record attains
a small order.

In Table 4, we present the performance of AA on the real
datasets, together with the corresponding k∗ and |T | values (BA is
not represented because it fails to scale to these datasets). We used
all the attributes in HOTEL and HOUSE. In NBA we used the eight
attributes that are suitable for rank-based processing as suggested
in [10]. In PITCH and BAT we eliminated columns with many
missing values and used, respectively, the eight and nine remaining
attributes that are meaningful for scoring. The dimensionality and
the cardinality of each dataset are listed in the first two columns of
the table.

HOTEL and HOUSE have comparable cardinality, but the CPU
time and the I/O cost are higher for HOUSE because it has more
dimensions (i.e., six instead of four). NBA has the same dimen-
sionality as PITCH, but half the size. Hence, the I/O cost is smaller
for NBA. However, the CPU time in NBA is longer than in PITCH.
The reason is that NBA is less correlated, because it includes statis-
tics for players that play in different positions (e.g., point guards,
power forwards, etc), whereas in PITCH all players are pitchers.
This is also witnessed by |T |, which is more than double in NBA.
Finally, BAT has the largest dimensionality and is quite volumi-
nous. Nonetheless, AA terminates in 1005 seconds, demonstrating
efficiency and efficacy.

Dataset n k∗ |T | CPU time I/O cost
HOTEL (4d) 418,843 19,403 179 4.45s 606.5
HOUSE (6d) 315,265 3,258 30,022 784.14s 1852.2

NBA (8d) 21,961 4,550 36,648 912.40s 245.4
PITCH (8d) 43,058 2,268 16,579 267.96s 527.9

BAT (9d) 99,847 20,530 18,096 1004.48s 1173.5

Table 4: Performance of AA on real datasets
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Figure 10: iMaxRank processing, effect of τ

In Figure 10, we consider iMaxRank, using HOTEL and IND.
For IND, d = 4 and n = 100K. We vary τ between 0 and 5 (where
τ = 0 corresponds to plain MaxRank). We only represent AA,
because BA fails to terminate. The CPU cost increases significantly
with τ , due to the sharply growing number of result regions |T | (see
Figure 10(c)). The I/O cost, however, increases only slightly, since
the additional incomparable records that need to be processed for
larger τ , often reside in disk pages fetched for τ = 0 anyway.

In Figure 11, we look into the special case of d = 2. We com-
pare FCA with the 2-dimensional AA, using IND, COR and ANTI
datasets of cardinality n = 100K. Unlike AA, FCA accesses and
processes all incomparable records, which is reflected in their per-
formance difference in both CPU and I/O cost. The difference in
CPU time is not as wide as in I/O cost, since AA needs to spend
some calculations on half-line expansion and skyline updates.
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Figure 11: FCA and AA in special case of d = 2 (n = 100K)



9. CONCLUSION
In this paper, we formulate the MaxRank query and develop a

scalable framework for its processing. The problem is defined
in the context of ranking queries, where the scoring function is
a weighted sum of the data attributes. Given a dataset and a fo-
cal record in it, MaxRank computes the highest rank that the focal
record may achieve w.r.t. any permissible weight setting. It also
reports a description of all weight settings that yield that rank. An
interesting direction for future work is to extend MaxRank process-
ing to incomplete or uncertain data.
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Monochromatic and bichromatic reverse top-k queries. IEEE
Trans. Knowl. Data Eng., 23(8):1215–1229, 2011.

[20] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis.
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APPENDIX
In Section 3, we made a claim that the top-k query (let alone
MaxRank) suffers from the dimensionality curse. In particular, that
as the dimensionality grows, the highest score across the dataset ap-
proaches the lowest score. That is, the distinguishability between
records (in terms of score) diminishes and, along with it, ranking by
score loses usefulness in shortlisting the most preferable records.

We generated IND datasets with fixed cardinality n = 100K, for
various d. In each of them, we identified the highest-scoring record
and the lowest-scoring record (w.r.t. a randomly chosen query vec-
tor q), and recorded the ratio of their scores. In Figure 12, we plot
this ratio versus d in linear and in logarithmic scale, for clarity. The
results validate our claim. We note that the trends resemble closely
those in [4], where the nearest neighbor query is shown to suffer a
similar loss of meaning with d (the distances of the nearest and of
the furthest data record to the query point converge).
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Figure 12: Effect of d on MaxScore/MinScore ratio
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