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Towards City-scale Mobile Crowdsourcing: Task Recommendations under
Trajectory Uncertainties∗

Cen Chen Shih-Fen Cheng Hoong Chuin Lau Archan Misra
School of Information Systems, Singapore Management University

80 Stamford Road, Singapore 178902
{cenchen.2012, sfcheng, hclau,archanm}@smu.edu.sg

Abstract
In this work, we investigate the problem of large-
scale mobile crowdsourcing, where workers are
financially motivated to perform location-based
tasks physically. Unlike current industry practice
that relies on workers to manually pick tasks to
perform, we automatically make task recommen-
dation based on workers’ historical trajectories and
desired time budgets. The challenge of predicting
workers’ trajectories is that it is faced with uncer-
tainties, as a worker does not take same routes ev-
ery day. In this work, we depart from deterministic
modeling and study the stochastic task recommen-
dation problem where each worker is associated
with several predicted routine routes with probabil-
ities. We formulate this problem as a stochastic in-
teger linear program whose goal is to maximize the
expected total utility achieved by all workers. We
further exploit the separable structures of the for-
mulation and apply the Lagrangian relaxation tech-
nique to scale up computation. Experiments have
been performed over the instances generated using
the real Singapore transportation network. The re-
sults show that we can find significantly better so-
lutions than the deterministic formulation.

1 Introduction
In the traditional crowdsourcing paradigm (introduced by
Howe and Robinson in 2005 and elaborated in [Howe, 2006]),
task owners distribute tasks (or sub-parts, often referred to
as“microtasks”) via online platforms to attract crowdworkers
who would work on them for small payoffs. With the pro-
liferation of platforms such as Amazon Mechanical Turk and
CloudFactory, this paradigm has become an important and
integral part of many business operations and processes, as
well as led spawned the emergent field of human computa-
tion, where AI researchers study issues related to coordina-
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the Xerox Research Centre India.

tion, incentive design, process design, task assignment opti-
mization and even ethics.

Mobile crowdsourcing is a rapidly growing extension to
the traditional crowdsourcing paradigm, characterized by (a)
tasks having strong location specificity (i.e., the task re-
quires a crowdworker physically visiting a specific location)
and (b) tasks principally requiring the use of mobile de-
vices/smartphones at these location. Examples of mobile
crowdsourcing tasks include citizen sensing (ask participants
to contribute sensor readings such as pollution, congestion,
noise level) [Kanhere, 2011], price checks, store audits (e.g.,
checking shelves, store displays), logistics (package pickup
and delivery), crowd estimates (at movie theaters and food
courts), to name a few.

Most academic research and practical deployments of mo-
bile crowdsourcing presently employ a pull-based model,
such that individual workers independently search through,
and select from, the corpus of available tasks (often with
built-in proximity filters that enable them to identify jobs
that are close to their current location).As pointed out by
[Musthag and Ganesan, 2013], such pull-based embodiments
of mobile crowdsourcing, as in all other forms of crowd-
sourcing, suffer from the phenomenon of super agents; i.e.,
a small percentage of crowdworkers who perform the ma-
jority of tasks1. Domination at such high level is undesir-
able, as many ordinary crowdworkers might drop out as a
result of not having enough tasks, reducing the worker pool
and thus the peak capacity of the mobile crowdsourcing plat-
form. By examining empirical data, Musthag and Ganesan
conclude that the major difference between ordinary worker
agents and super agents is the latter’s ability in planning bet-
ter routes and choosing tasks that fit their routes best. A re-
cent work by [Chen et al., 2014] builds upon this insight and
investigates an alternative push-based mobile crowdsourcing
model, where the crowdsourcing platform can centrally plan
for task recommendation, taking into account each mobile
crowdworker’s likeliest daily routine route. Their proposed
system, TRACCS, can not only enable more tasks to be com-
pleted with less time spent in detours, recommended tasks
are also more evenly distributed, thus reducing the negative
impacts of super agents. However, they make the simplify-

1Based on their study, 10% of most active users complete 80%
of all completed tasks.



ing assumption that each crowdworker has one and only one
deterministically-known routine route.

In this paper, we extend this recently proposed work on
push-based mobile crowdsourcing, to incorporate more real-
istic scenarios where an individual worker’s movement tra-
jectory has inherent uncertainty (as the worker may travel on
different routes on different days). Such uncertainty presents
a technical challenge to effective task recommendation under
the push-based model, as the recommendation strategy must
still seek to recommend individual workers (modeled as inde-
pendent agents) tasks that are likely to lie along their routine
commuting routes, while accounting for and trying to miti-
gate the likelihood that their actual routes (on a specific day)
might make it infeasible for them to perform one or more of
the recommended tasks.

Our contributions to this novel problem of multi-agent
task recommendation, under stochastic spatiotemporal un-
certainty are twofold:
• First, we show that this task recommendation problem

can be formulated as a stochastic integer linear program-
ming model, assuming that each agent’s list of possible
routine trajectories is finite, and governed by a known
probabilistic distribution.
• Second, we develop and evaluate a combination of

heuristics to address this computationally intractable
problem. More specifically, we exploit the problem’s
structure to decompose the problem into independent
agent-specific routing subproblems (each of which can
be solved very efficiently), where the global coupling
constraint is relaxed using the Lagrangian relaxation
framework. Applying this computationally tractable
framework to representative city-scale topologies, we
show that we can not only obtain significant improve-
ment over the deterministic model (around 8% – 15%),
but also that the performance is almost identical to the
cases where perfect information is available (i.e., where
each agent’s routine route realization is assumed to be
exactly known).

2 Related Work
Mobile crowdsourcing: Recent approaches such as [Alt et
al., 2010], [Kazemi and Shahabi, 2012], and [Kazemi and
Shahabi, 2011] have focused on a particular class of mobile
crowdsourcing, called participatory sensing, with a goal of
maximizing the number of assigned tasks based on agents’
current locations. For example, [Kazemi and Shahabi, 2012]
developed a centralized allocation algorithm focused on max-
imizing an agent’s set of allocated tasks, while satisfying a
proximity constraint (which implied that some tasks could
be potentially performed by multiple agents). [Sadilek et
al., 2013] studied a general class of problems called crowd-
physics where tasks requires people to collaborate in a syn-
chronized space and time. They reduced the problem into a
graph planning problem and proposed two methods: global
coordination using shortest-path algorithm and opportunistic
routing based on the ranking of the time-stamped locations.

Researchers have also investigated the impact of incen-
tives on task assignment/selection behavior in mobile crowd-

sourcing. [Rula et al., 2014] investigated the relative impacts
of two different incentive mechanisms—micro-payments vs.
weighted lotteries, on the task acceptance and completion
rates of mobile agents (crowd-workers). The MSensing ap-
proach by [Yang et al., 2012] focuses on incentive design
for mobile crowdsourcing tasks, employing either a Stackel-
berg game model (for scenarios where the reward is specified
by the platform) or an auction-based agent selection mech-
anism (where the reward is determined through competitive
bidding) to model the dynamics between the pricing of indi-
vidual tasks and the willingness of each agent (task worker)
to perform that task. However, this approach either consid-
ers a single task in isolation or employs a cost function (for
each agent) that fails to account for the regular movement
trajectory of each agent. Other work on task assignment in
mobile crowdsourcing addresses questions of reliability – for
example, recently [Boutsis and Kalogeraki, 2014] seek to
maximize the reliability of crowdsourcing tasks by selecting
agents, subject to a task completion latency constraint.

In all of these approaches, the feasibility of task assignment
is defined by the task’s proximity to the agent’s current loca-
tion. In contrast, our focus is on a coordinated mechanism for
task recommendation that operates over a longer time horizon
(e.g., a day). We also explicitly model the inherent stochas-
ticity (uncertainty) in individual agent trajectories and seek to
minimize their task-related detours.

Orienteering problem: The planning of an agent’s route
to perform tasks that maximizes utility can be seen as the Ori-
enteering Problem (OP) or Prize-Collecting Traveling Sales-
man Problem. The goal is to find a route that maximizes util-
ity while respecting budget constraints. This problem was
originally defined in [Tsiligirides, 1984] and motivated by the
scheduling of a cross-country sport in which participants get
rewards from visiting a predefined set of checkpoints. Since
then, OP has been studied extensively by the Operations Re-
search and AI communities and recently, [Vansteenwegen et
al., 2011] provided a survey of the formulations and solution
approaches for the OP and its variants.

The closest variant of OP to our problem is the team orien-
teering problem (TOP), where a team of agents are sched-
uled to visit different locations to collect reward within a
time budget [Chao et al., 1996]. However, to the best of
our knowledge, none of the previous research to date on
TOP actually considers the incorporation of agent-specific
location information, namely the probability distribution
of routine routes taken by agents. One other variant of
OP is the Multi-Period Orienteering Problem with Multiple
Time Windows (MuPOPTW, studied by [Tricoire and Hartl.,
2010]). In MuPOPTW, sales representatives need to visit a
list of mandatory customers on a regular basis, while non-
mandatory customers located nearby should also be consid-
ered and integrated into the current customer tours. While
one may view the set of mandatory customers as the nodes on
the routine routes and non-mandatory customers as the tasks
in our problem, there is no predefined visiting sequence for
the mandatory customers and the stochasticity of agent rou-
tine routes is not captured in that model.



3 The Model
As mentioned in Section 1, we are interested in creating mod-
els for recommending tasks to mobile crowdworkers with
known routine route distributions, so as to maximize the ex-
pected total rewards collected by all agents. The major con-
straints in task recommendation for each individual agent are
the maximal amount of detour time allowed, the routine route
that specifies the list of nodes each agent needs to traverse
in order, and the probability distribution over a collection of
routine routes (if this agent has multiple routine routes).

Mathematically speaking, this can be viewed as a special-
ized routing problem with time budget constraint and rou-
tine route requirement, and can be modeled as a variant of
the well-known orienteering problem (OP). The classical OP
can be seen in Figure 1a. In the classical OP, usually the
requirement is for an agent to begin his trip from a given ori-
gin O1, and to end at a given destination D1. An agent can
visit any node in-between O1 and D1 and incur correspond-
ing link travel costs; yet he cannot exhaust his time budget be-
fore reaching D1. The objective is for an individual agent to
maximize value collected at visited nodes (each node comes
with different value). The OP variant for the mobile crowd-
sourcing problem with deterministic routine route (for easy
explanation) can be seen in Figure 1b. There are two major
differences when compared to the classical OP in Figure 1a:
1) there are multiple agents involved, and the planner aims
to optimize the sum of all agent’s values; and 2) for each
agent, a routine route is specified, and its partial order needs
to be followed (e.g., in Figure 1b, agent 1 needs to follow
O1−M1−D1, while agent 2 needs to followO2−M2−D2).
In both cases, all nodes can be visited at most once.
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(a) Classical OP.
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O2

D2

M1

M2

(b) OP variant for mobile
crowdsourcing.

Figure 1: Illustrations of OP variants.

To model uncertainty on agent’s routine route, we assume
that each agent may take one of multiple routes with known
probability distribution. The objective is to optimize the sum
of each agent’s expected collected values. For the rest of
the section, we will introduce an integer linear programming
(ILP) formulation for the problem of mobile crowdsourcing
with routine route uncertainty.

Note that our solution approach generates task recommen-
dations for agents prior to the realization of actual routes
taken. Such approach requires no agent inputs, and thus can
reduce agent’s cognitive burden in picking tasks; such ap-
proach is thus superior to the alternative where an agent has to

first specify a deterministic route, before receiving task rec-
ommendation (this was the model in [Chen et al., 2014]).

3.1 Notations
Let N be the set containing both the routine nodes and the
task nodes (denoted as Nt), and for all pairs (i, j), where
i, j ∈ N and i 6= j, let tij be the corresponding travel time to
move from i to j. Let K be the set of agents, and let Mk be
the set of agent k’s routine routes. For each route m ∈ Mk,
let βm

k be the probability that agent k would use route m,
Rm

k be the collection of all nodes in route m, omk be the ori-
gin, dmk be the destination, and pmik be the visit order for node
i ∈ Rm

k . For each task i ∈ Nt, let si be its reward, and ei
be its required execution time. The upper bound of the total
detour time along route m for agent k is bmk .

We have the following four sets of decision variables:
• yik ∈ {0, 1}: set to 1 when task i is recommended to

agent k.
• xmijk ∈ {0, 1}: set to 1 when agent k moves from nodes
i to j when the realized routine route is m.
• umik ∈ {0, . . . , N}: indicates the visit order of node i for

agent k, when the realized routine route is m.
• zmik ∈ {0, 1}: set to 1 when agent k fails to complete

recommended task i, when the realized routine route is
m; if task i is not recommended to agent k in the first
place, zmik is set to 0 for all m ∈Mk.

Note that the first set of decision variables, yik, is planner’s
recommendation decision; while the rest of decision variables
are used for evaluating the outcome of the recommendation
under different routine route realizations for each agent.

3.2 The Integer Programming Formulation
The objective of the integer programming formulation is to
maximize expected total rewards earned by all agents, con-
sidering uncertainties over their routine routes. The quantity
yik(1−

∑
m∈Mk

βm
k · zmik) refers to the probability that a task

i can be finished, if it is recommended to agent k (i.e., if yik
is set to 1). Hence, the objective is to:

max
∑
i∈Nt

si
∑
k∈K

yik

(
1−

∑
m∈Mk

βm
k · zmik

)
. (1)

The above objective function is not linear, and in the next
subsection, we will propose a linearized model.

Constraint (2) ensures that each task is recommended to at
most one agent.

∑
k∈K

yik 6 1, ∀i ∈ Nt. (2)

All other constraints are at agent-route level (k,m), i.e., for
each agent, k ∈ K, and for each of his routine route real-
ization, m ∈ Mk, the same set of constraints applies. These
constraints are explained as follows.

The first group of constraints ensures that flows are consis-
tent at all nodes. In particular, (3) specifies that inflow and
outflow at any node d must be balanced (except for the origin



and destination nodes) . (4) specifies that all routine nodes
must be visited exactly once, while all other nodes can be
visited by at most once.∑

i∈N
xmidk =

∑
j∈N

xmdjk, ∀d ∈ N\{omk , dmk }, (3)
∑

j∈N xmdjk 6 1,∑
j∈N xmdjk = 1,∑
i∈N xmidk = 1,

∀d ∈ N\Rm
k ,

∀d ∈ Rm
k \{dmk },
d = dmk .

(4)

The time budget constraint for each routine route is en-
forced in (5). ∑

i∈N

∑
j∈N

(tij + ei) · xmijk 6 bmk . (5)

The following group of constraints produces visit orders
(umik) from flows (xmijk), and ensures that all nodes in the rou-
tine route m are visited according to the given sequence pmnk.
In particular, (6) states that the visit order of the origin node
must be 1; (7) states that if j is visited immediately after i
(i.e., xmijk = 1), the visit order of j should be at least 1 more
than the visit order of i (i.e., umjk ≥ (umik + 1)).

umik = 1, i = omk , (6)
(umik + 1)− umjk 6 N · (1− xmijk), ∀i, j ∈ N, (7)

(8) states that the partial order between any pair of nodes in
the routine route must be preserved.

umik − umjk > pmik − pmjk, ∀i, j ∈ Rm
k & pmik > pmjk. (8)

Finally, (9) extracts whether a task node is bypassed (zmik =
1) from the flow decision (xmijk).

zmik > 1−
∑
j∈N

xmijk, ∀i ∈ Nt. (9)

3.3 Linearization
As noted earlier, the objective function (1) is nonlinear, as it
includes multiplicative terms composed of yik and zmik , both
of which are decision variables. We would linearize (1) by
introducing δmik to replace zmik :
• δmik is set to 1 if task i is recommended to agent k, yet

cannot be completed when the realized routine route is
m, and 0 otherwise. In other words, δmik = yik · zmik .

With δmik , we can rewrite (1) as:

max
∑
i∈Nt

si
∑
k∈K

(
yik −

∑
m∈Mk

βm
k · δmik

)
. (10)

To characterize δmik , we would rewrite (9) for all (k,m) as:

δmik > yik −
∑
j∈N

xmijk, ∀i ∈ Nt. (11)

With the above modifications, the formulation is now lin-
ear, and can be solved as an ILP using standard commercial
solvers such as CPLEX.

3.4 Scalability of the Model
The above ILP model can be solved exactly using CPLEX.
However, it cannot scale to realistic sizes (we are looking at
city-scale deployment). We nonetheless introduce this exact
model for two purposes: 1) to enable the design of heuristic
that exploits the problem structure revealed in the ILP model
(to be described in Section 4), and 2) to provide a benchmark
for the designed heuristic.

To make the ILP model more scalable (it would bene-
fit both objectives listed above), we propose the following
performance-boosting preprocessing procedures on the data
without affecting the optimality of the model.

• For each subproblem pair (k,m), we would remove all
tasks that cannot be reached within the given detour
time. Therefore, instead of using global node sets N
andNt in (k,m)-level constraints, we would use (k,m)-
specific node sets Nm

k and Nm
tk instead.

• To avoid having to solve shortest path routing explic-
itly in the ILP model, we pre-compute all-pair shortest
path distance, and refer to it as a N -by-N distance ma-
trix. With this matrix, we can further eliminate all non-
essential nodes from Nm

k . More specifically, Nm
k only

needs to contain nodes along the routine routem and the
feasible task nodes Nm

tk .

With these preprocessing steps, we are now ready to formally
introduce the Lagrangian relaxation heuristic for the ILP.

4 Lagrangian Relaxation
In this section, we present a LR-based heuristic for our prob-
lem, and show that it is computationally efficient in producing
high quality solutions.

In our ILP formulation, (11) is the set of complicating
constraints that couples all agent-route subproblems together;
therefore, this is the set of constraints we choose to dualize.
Following the convention in the standard LR literature, we de-
fine λ = {. . . , λmik, . . .} to be the vector of Lagrangian multi-
pliers associated with each and every constraint in (11) (each
constraint is indexed as (k,m, i)), and convert the objective
function to be a minimization function.

Denote the Lagrangian dual problem as L(λ), with the fol-
lowing objective function:

min
∑
i∈Nt

si
∑
k∈K

( ∑
m∈Mk

βm
k · δmik − yik

)

+
∑
i∈Nt

∑
k∈K

∑
m∈Mk

λmik

yik − δmik −∑
j∈N

xmijk

 . (12)

All constraints except (11) remain the same. However, by
observing the problem structure, we can further decompose
L(λ) into two different classes of subproblems. The first is
the assignment subproblem, which decides how tasks should
be recommended to individual agents (focus on yik); the sec-
ond is the routing subproblem, which finds the exact node



visit sequence for each (k,m) tuple (focus on xmijk). The as-
signment subproblem is defined as:

min
∑
i∈Nt

si
∑
k∈K

( ∑
m∈Mk

βm
k · δmik − yik

)
+
∑
i∈Nt

∑
k∈K

∑
m∈Mk

λmik (yik − δmik) , (13)

δmik 6 yik, ∀i ∈ Nt,m ∈M,k ∈ K, (14)

together with the constraint set (2). (14) is included to further
tighten this subproblem such that incompletion penalty will
only be imposed if the task is recommended.

The routing subproblem is defined for each (k,m) tuple;
the total number of routing subproblems is thus

∑
k∈K |Mk|.

For each (k,m) tuple, let fmk (λm
k ) be the corresponding rout-

ing subproblem, where

λm
k = {. . . , λmi−1,k, λi,k, λmi+1,k, . . .},

and fmk (λm
k ) is defined as:

min−
∑
i∈Nt

λmik
∑
j∈N

xmijk, (15)

with constraints (3) – (8).
The Lagrangian dual problem is solved by using a standard

subgradient descent algorithm as follows. Given a λ vector
(initialized to zeros), we solve all dual subproblems; obtain
the dual objective function value, and use a primal extraction
procedure to obtain primal objective function value. The dual
objective function value of our problem can be computed by
simply summing up all objective values from the subprob-
lems (i.e., (13) and (15)). The corresponding primal solution
can be obtained by inserting the dual solutions ({xmijk}) back
into the original problem (i.e. optimizing (10) subject to the
same set of primal constraints (2) and (11).

The Lagrangian multipliers are updated according to the
function below:

λmik,t+1 := λmik,t + αt(yik − δmik −
∑
j∈N

xmijk).

We perform this procedure iteratively and terminate if the du-
ality gap is less than certain threshold or we have exhausted
allocated computational time.

The update step size αt is defined to be adaptive to both the
duality gap and the solution quality (the magnitude of con-
straint violation):

αt =
µt (F

∗ − L(λt))∑
i∈Nt,k∈K,m∈Mk

(
yik − δmik −

∑
j∈N xmijk

)2 ,

where ({xmijk}, {yik}, {δmik}) are obtained by solving dual
subproblems, F ∗ is the best primal value seen so far, and
L(λt) represents dual value obtained in iteration t. µt is in
the range of (0, 2], and is defined as:

µt =

{
2,

0.5 µt−1,

t = 0,

if L(λt) fails to increase for κ iter.

4.1 LR Variants
The performances of our LR heuristics depend on how sub-
problems are solved. The assignment subproblem can be
solved exactly and efficiently using a greedy algorithm (it’s
provably optimal since each task can be recommended to a
particular agent purely based on the contribution to the ob-
jective function value, and is independent of other tasks and
other agents; the proof is omitted in the interest of space).
The routing subproblem, on the other hand, can not be solved
so efficiently, and are the major performance bottleneck. To
investigate the trade-off between the optimality and the time
performance, we define the following two LR variants based
on how the routing subproblems are solved:
• LR-Exact: Routing subproblems are solved exactly by

pure enumeration. Pure enumeration is the preferred ap-
proach in most instances since with reasonable detour
limit (say up to 30%), the number of feasible tasks will
be small enough such that pure enumeration will outper-
form regular routing algorithm; a threshold can be set
for the solver to switch to regular router if number of
feasible tasks is too large.
• LR-Greedy: Routing subproblems are solved using a

simple greedy heuristic: an agent starts with the routine
routem, and repeatedly try to evaluate the gain of insert-
ing one of the remaining tasks into all potential slots; of
all possible (task, slot) combinations, the best is chosen
(thus greedy). There is no optimality guarantee, but it
can solve routing subproblems very efficiently.

5 Experiment Results
The ILP model and two corresponding LR heuristics have
been introduced in Sections 3 and 4, with these, we have
addressed the first major contribution of the paper: model-
ing task recommendation under route uncertainty using ILP
model and come up with efficient heuristics. What remained
to be shown is the quality of LR heuristics, and the benefits
of modeling routine route uncertainty in a large-scale mobile
crowdsourcing operation. The numerical experiments in this
section are designed to achieved these two goals.

More specifically, we will investigate the performance of
our LR heuristics from the following two perspectives:
• Performances of LR heuristics: We will compare the

two LR heuristics against the optimum obtained by solv-
ing ILP model exactly. Both solution quality and com-
putational time will be measured. This evaluation will
be limited to only small instances due to the complexity
of solving our ILP model exactly.
• Deterministic versus stochastic models: We will also

compare the performance of LR heuristics against two
deterministic planning approaches. One is the push-
based deterministic model proposed by [Chen et al.,
2014]; the other is the pull-based proximity approach
that emulates current best practices. We will use city-
scale network topology to perform this comparison.

5.1 Performances of LR heuristics
The purpose of this evaluation is to compare LR-Exact and
LR-Greedy to the exact ILP model, both in terms of solution



quality and computational time. Test instances are generated
randomly with parameters (K,Nt, N), where K refers to the
number of agents, Nt refers to the number of task nodes, and
N refers to the total number of nodes in the network. Each
agent is assumed to have two routine route candidates, where
all routes have 5 nodes and are selected with equal proba-
bility. The coordinates of all nodes are generated uniformly
randomly on a grid network. The distance between all pairs
of nodes are Euclidean distance.

(K,Nt, N)
ILP LR-Exact LR-Greedy

time gap time gap time
(2,4,40) 0.8s 0% 0.09s 0% 0.05s
(4,8,80) 22.9s 0% 0.2s 4.12% 0.06s
(8,16,80) 6558s∗ 0.06% 14.8s 0.06% 0.14s

Table 1: LR heuristics vs. ILP: on both quality and time.
∗: We cut off CPLEX solver as the optimality gap is only 0.06%.

Our evaluation is summarized in Table 1 above. The gap is
percentage from the optimum obtained via solving ILP model
exactly. From these small testing instances, we can see that
both LR heuristics can produce close-to-optimum solutions
very quickly. But examining the results closer, we can see that
the efficiency of LR-Exact and LR-Greedy can potentially be
different by one to two orders of magnitude.

5.2 Deterministic vs. Stochastic Models
To empirically quantify the benefits of generating recommen-
dations considering routine route uncertainties, we introduce
the following two deterministic baselines to compare with:

• Deterministic-ILS: Following the deterministic model
and the iterated local search (ILS) heuristic proposed by
[Chen et al., 2014], we designate each agent’s routine
route to be the route with highest probability. We de-
noted this baseline as DILS.

• Proximity-Based Approach: This heuristic emulates
how most pull-based mobile crowdsourcing platforms
work nowadays. At each decision epoch, the agents who
are available will be given the opportunity to pick de-
sired tasks based on proximity. We denoted this baseline
as Proximity.

The network used in this evaluation is based on the actual
public transit network in Singapore (4,296 nodes and 10,129
edges), which contains all stops from the metro and bus ser-
vices. All-pair-shortest distance matrix is computed a pri-
ori. To reflect the heterogeneous travel patterns of agents,
we include two types of agents: 80% of normal agents who
compute back and forth between fixed locations (e.g., home
and office), and 20% of freelancers whose routine routes have
randomly chosen origin and destination nodes. For both agent
types, the origin nodes are randomly picked from the non-
central zones, while the end nodes are from the central zones
(reflecting a commuting pattern from “home” to “office”).
Two routes are constructed for each agent as follows: (i) the
shortest path between the chosen origin and destination, and
(ii) the path with the least number of stops. The probability

distribution over agent k’s two routes follows Bernoulli dis-
tribution with parameter αk, where αk is sampled uniformly
from (0, 1). Locations of tasks are generated according to
the distribution (pr, ph), where pr and ph refer to the ratio
of tasks in the non-central and the central zones. For the
synthetic instances, half are generated with (pr, ph) equals:
(60%, 40%), while the rest with (40%, 60%). Each task is
associated with a fixed utility value of 100.

Estimate LR-E LR-G DILS Proximity
Detour Bound Gap Gap Gap Gap

10% 54.5% -0.6%∗ 0.6% 13.2% 15.3%
20% 77.4% -0.9%∗ 0.1% 10.4% 12.2%
30% 91.9% 0.1% 1.1% 7.1% 8.6%

Table 2: LR heuristics vs. deterministic baselines.

The results are categorized using different detour limits and
(K,Nt, N) tuples, where 20 synthetic instances are randomly
generated for each category using the above scheme. To eval-
uate the performance of all competing approaches in a par-
ticular instance, 1000 routine route realizations are sampled.
Table 2 shows the reduction in the average task completion
ratio (compared to an estimated upper bound) achieved by
these methods for the tuple (20,30,160). The estimated up-
per bound is computed by assuming full knowledge of route
realizations and then solve the deterministic problem using
DILS. This is why in some cases (∗), the LR-Exact approach
actually outperforms the estimated bound. From Table 2 we
can clearly see the advantage of considering route uncertain-
ties. Due to the space limit, we cannot comprehensively list
all experiment results, however, in all instances we evaluated,
LR-based approaches outperform deterministic alternatives,
and the advantages of LR heuristics increase further as we
tighten detour limits.
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Figure 2: Runtime(s) when Nt is increased.

In terms of scalability, LR-Exact does not scale well. With-
out parallelization, LR-Exact takes more than 9 hours to solve
(100, 200, 600) instances, which is of moderate size. LR-



Greedy, on the other hand, is much more scalable. In Fig-
ure 2, we fix K at 500 and increase Nt from 500 to 2500; in
Figure 3, we fixNt at 1000 and increaseK from 200 to 1000.
From both figures, we empirically observe that runtime scales
linearly in K and Nt.
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Figure 3: Runtime(s) when K is increased.

6 Conclusions
In this paper, we investigate a “push-based” paradigm for
large-scale mobile crowdsourcing, where a centralized en-
gine recommends tasks for a large pool of workers, while tak-
ing into account the inherent probabilistic uncertainty about
their future trajectories. A stochastic integer linear program
is developed to find assignments that maximize the cumu-
lative expected utility. Subsequently, to develop a solution
that can scale to city-scale scenarios, we exploit the sepa-
rable problem structure and apply the Lagrangian relaxation
approach. Experiments using realistic movement traces over
Singapore’s public transport network show that our approach
can find significantly better solutions (10-12% higher task
completion rates) than the deterministic baselines, and are es-
pecially useful for expected real-world situations, where the
available worker pool is limited and workers are likely to ac-
cept only modest task-related detours.
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