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Abstract

A number of cities around the world have adopted urban consolidation centers (UCCs) to address

some challenges of their last-mile deliveries. At the UCC, goods are consolidated based on their

destinations prior to their deliveries into the city center. Typically, a UCC owns a fleet of eco-

friendly vehicles to carry out deliveries. A shipper/carrier who buys the UCC’s service hence no

longer needs to enter the city center in which time-window and vehicle-type restrictions may apply.

As a result, it becomes possible to retain the use of large trucks for the economies of scale outside

the city center. Furthermore, time which would otherwise be spent in the city center can then be

used to deliver more orders. With possibly tighter regulation and thinning profit margin in near

future, requests for UCC’s services shall become more and more common and there is a need for a

mechanism to allocate UCC’s resources to provide sustainable services for shippers/carriers. Handoko

et al. (2014) proposed a profit-maximizing auction mechanism for the use of UCC’s last-mile delivery

service. In this paper, we extend that work with the idea of a rolling horizon to give bidders greater

flexibility in competing for the UCC’s resources in advance. In particular, it addresses the challenge

that many shippers/carriers plan their deliveries many weeks ahead, and simultaneously allows last-

minute bidders to compete for the UCC’s resources. Under a rolling horizon framework, shipping

capacity of the same truck is bid in several successive auctions. To allocation of truck capacities
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among these auctions, we also propose a virtual pricing method which makes use of Target-oriented

Robust Optimization techniques to address future demand uncertainty.

1 Introduction

Last-mile deliveries in urban areas exert serious pressures on environmental, social, and economic well-

being of a city. These three aspects are usually referred to as planet, people, and profit Quak and

Tavasszy (2011). On the planet, the impacts are contributed by the use of unsustainable natural

resources like the fossil fuel. On the people, the impacts are primarily due to air pollution and noise.

On the profit, the impacts include economic losses because of traffic congestion and low utilization of

transport vehicles. Addressing these issues, local authorities may then impose time-window or vehicle-

type restriction. The earlier complicates the scheduling of the last-mile deliveries from the perspective

of carriers/shippers. Quite-so-often, wait time becomes inevitably necessary. Efficiency of the deliveries

has thus been compromised. The latter, on the other hand, forces the carriers/shippers to operate

small eco-friendly trucks for deliveries into the city center. These trucks, however, are not efficient for

long-distance inter-city transport. It is then clear that one aspect may be affected while addressing the

others. Both the time-window and the vehicle-type restrictions affect the profit while trying to address

the planet and the people. This prompts carriers/shippers to collaborate and consolidate shipments for

greater efficiency.

The urban consolidation center (UCC) is an alliance concept where oders served by various par-

ticipating carriers get consolidated at the UCC. First, they are sorted according to their destination

addresses. Then, they are assigned to a sufficient number of vehicles for the actual last-mile deliveries.

The cost savings obtained are finally shared among the relevant carriers. As a consequence, higher truck

utilization is attained, fewer trucks are required, and lower delivery cost is incurred. This effectively

addresses the potential inefficiency due to the time-window restriction. The possible wait time suffered

by those carriers assigned to carry out the consolidated last-mile deliveries is compensated by the sav-

ings attained by those carriers that no longer need to enter the city center. A fair allocation of the total

savings earned among participating carriers enhances the profit.

To-date, there have been a number of UCC establishments with their own transport vehicles that

are in compliance with the rules and regulations set by local authorities. These UCCs provide last-mile

delivery service at a charge. Occasionally, the UCCs may be governments’ initiatives or pilot runs and

provide last-mile delivery service free-of-charge. In essence, carriers/shippers can simply drop their loads
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off at the UCCs and pay the UCCs accordingly to get the loads delivered into the city center. Examples

of these UCCs are La Petite Reine in Paris, France, Westfield Consolidation Center in London, and

Binnenstadservice.nl in Nijmegen, the Netherlands. This addresses not only the time-window but also

the vehicle-type restrictions. By using the UCCs’ service, carriers/shippers no longer need to enter the

city center. Retaining the use of large trucks for the economies of scale outside the city center thus

becomes possible. Besides, the time which would otherwise be spent in the city center may then be used

to deliver more orders. With these incentives, requests for using the UCCs’ service would intuitively

become more common. The UCCs could soon receive more demands than what they are capable of

serving.

To our knowledge, most—if not all—UCCs operate with some fixed-rate mechanism on a first-come-

first-serve basis. We found no literature discussing the automatic matching of orders to the available

fleets of UCCs’ transport vehicles for the efficient last-mile deliveries. Handoko et al. (2014) proposed an

auction mechanism for the last-mile delivery via the UCC. Compared to the fixed-rate mechanism, the

proposed auction is distinctively aimed at achieving both operational efficiency and economic viability—

both of which are important for the sustainability of the UCC.

Figure 1: A rolling horizon framework.

The basic auction mechanism proposed in (Handoko et al., 2014) is however quite restrictive in

that bidders are only allowed to compete for the UCC’s resources in the immediate period following

the winner determination. In that paper, a period of one week was observed. Indeed, one can argue

that this is somewhat unrealistic as many shippers/carriers plan for their deliveries far in advance. To

address this issue, not only the period needs to be lengthened but the auction needs to be conducted

over a rolling horizon. This is as illustrated in Figure 1. Consider a planning horizon of 4 weeks and the

UCC starts Auction #1 at the beginning of Week #0 and accept bids for deliveries in Week #1 to Week

#4. Prior to the start of Week #1, the UCC determines the winning bids for Auction #1. The UCC
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then starts Auction #2 at the beginning of Week #1 and accept bids for deliveries in Week #2 to Week

#5, and so on. This gives greater flexibility for the bidders in that the participating shippers/carriers

can choose to bid far in advance or at the last minute. Unlike the basic UCC auction model, there is

an overlap in the planning horizons of the UCC between two consecutive auctions. Intuitively, there

may be only a few bids for deliveries in Week #4 in Auction #1. Profitable consolidation may thus

be impossible at the time the winners of Auction #1 is determined. However, there should be more

bids to come for deliveries in Week #4 in Auction #2 to Auction #4. Hence, profitable consolidation

may in fact be possible after the upcoming auctions. This suggests that the UCC needs to be able to

anticipate the potential revenue due to future bids in the upcoming auctions. For deliveries in Week

#3, there may be enough bids to consolidate but some of the bids have low bid prices. Rather than

accepting bids with low value to make profitable consolidation, it could be better for the UCC to accept

only highly profitable bids in the current auction in the anticipation of other highly profitable bids in

the upcoming auctions.

Our contribution in this paper is an auction mechanism with a rolling horizon that determines which

demands are to be served in the anticipation of future demands. This is achieved by virtually pricing

truck capacities so that only highly profitable bids are selected and the truck capacities are reserve

for upcoming auctions. To our knowledge, this is the first auction with rolling horizon in the context

of last-mile deliveries via the urban consolidation center. Our second contribution is to propose an

approach determining the virtual prices of truck capacities in the face of uncertain future demand. The

proposed approach makes use of Target-oriented Robust Optimization techniques, and can determine

a solution that is robust again demand uncertainties. Note that this is not a trivial problem, since the

price should not be too conservative nor too optimistic to maximize the profit of UCC. We then verify

this through computational experiments.

The remaining of this paper is then organized as follows. Section 2 briefly reviews some related works

on auction in the logistics. Section 3 elaborates the basic auction mechanism presented in (Handoko

et al., 2014) and forms the basis of our extension described in this paper. Section 4 proposes the auction

mechanism in elaborative manner. Mathematical formulation of the augmented winner determination

problem is also presented therein. Section 5 describes a virtual price determination approach using

robust auction techniques. Finally, Section 6 concludes the paper.
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2 Related Works

Auction has been commonly used in the logistics context. Solving winner determination problems in

logistics auctions is similar to solving scheduling problems in order to minimize certain transportation

cost. Combining the services provided by different providers to fulfill some deliveries can be modeled

as the set-partitioning (Song and Regan, 2003) or lane-covering problems (Agarwal and Ergun, 2010;

Özener and Ergun, 2008). Typically, the model is an Mixed-Integer Program (MIP) with an objective

of minimizing the cost subject to constraints on delivery time, capacity, and network structure. Such an

MIP, when optimally solved, guarantees a least-cost solution preferred by decision makers. However, it is

usually computationally expensive even for medium-sized problems. A linear relaxation may be used to

come up with a feasible solution in polynomial time (Özener and Ergun, 2008). A greedy algorithm can

also be used to provide an efficient way for a procurement schedule (Agarwal and Ergun, 2008). A greedy

approach is first used to construct an initial sub-optimal solution to different scheduling components.

The Benders- or column-generation-based algorithm is then used to optimize the combination of the

lanes. A column-generation-based algorithm solves some form of a restricted problem with a set of

selected columns, reducing the size of the original problem considerably. Benders-based algorithm, also

known as the row-generation-based algorithm, solves optimization problems in two stages. In the first

stage, the master problem is solved to formulate some constraints for sub-problems. In the second

stage, scheduling solution is identified for each sub-problem. Note that despite the numerous literature

on logistics auction, we found none pertaining to the use of the UCC. Furthermore, the concept of rolling

horizon (Sethi and Sorger, 1991) has been extensively used for decision making(Mula et al., 2006; Chand

et al., 2002; Ouelhadj and Petrovic, 2009) . Recently, the rolling horizon concept has also been adopted

in transportation and logistics context (Berbeglia et al., 2010; Wang and Kopfer, 2013; Andersson et al.,

2010). However as long as UCC is concerned, we believe no work has been done regarding an auction

of shipping capacities with a rolling planning horizon.

In contrast to traditional auctions where each item for sale is typically one entity and all belongs to

one winner once sold, the auction for truck capacities of UCC differs in some ways. First, the capacity

of one truck load may be shared by several winning bidders. Second in the case of auction with a rolling

planning horizon, bidders in different auctions may compete for the same truck capacity and the truck

capacity is gradually assigned in several auctions. Such features make it necessary to develop a method

for reserving truck capacity. In this paper, we consider a dynamic virtual pricing approach for this

purpose. The literature of dynamic pricing is rich and expanding fast, especially in the area of logistics
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and inventory control (Elmaghraby and Keskinocak, 2003; Bitran and Caldentey, 2003). In the context

of UCC, the pricing of truck capacity is primarily for the reservation of truck capacity and the “price” is

never release to bidders. Therefore, this problem is different from most of the problems considered in the

literature and that is why we call it virtual pricing. In this work, we determine the optimal price using

robust optimization techniques. Adida and Perakis (2007) proposed a dynamic pricing approach using

robust optimization techniques, but it is for a nonlinear continuous time inventory control problem.

Our approach is also different in the sense that we propose a target value for the profit of UCC and

maximize the uncertainty set that can be accommodated.

3 Problem description and Auction mechanism for UCC

We consider a UCC operating her own storage resources and delivery trucks. By consolidating the

customers’ packages into truckloads to the city center, the UCC can achieve economics of scale to

reduce the total delivery cost, which benefits herself and all the costumers. This consolidation effort

also mitigates the negative impact on the city’s environment by reducing traffic in the city center.

In the value chain of the UCC, the packages originate from a shipper (for example, a manufacturer).

They are transported to the UCC by the shipper himself or by a carrier (for example, a logistics service

provider). The UCC consolidates them with other packages and then delivers them to a receiver (for

example, a retailer, a restaurant, or a hotel in the city center). This last segment of distribution is also

known as the last-mile delivery. Since the UCC is not obliged to deliver the packages for all the shippers

and carriers,Handoko et al. (2014) proposed an auction mechanism for the UCC to select the packages

to deliver.

3.1 Auction Protocol

We assume there are Z zones indexed as j = 1, . . . , Z in the city center. The UCC operates K trucks

indexed as k = 1, . . . ,K to deliver packages to these zones. Assume there are T periods (for example,

each period represents a day) in the planning horizon. Each truck k has volume capacity V t
k in period t.

To plan for the last-mile deliveries in its nearest upcoming planning horizon, at the start of the planning

horizon each shipper or carrier is invited to submit a bid for his package to be delivered to the city

center. Each bid i specifies the following information in a tuple:

[vi, di, ai, `i, pi]
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where

• vi is the volume of the package,

• the zone di ∈ [1, Z] that the package is to be delivered to,

• the arrival period ai ∈ [1, T ] of the package to the UCC,

• the deadline period li ∈ [1, T ] of delivery to its receiver,

• the bid price pi of the package.

Let B denote the total number of bids when the auction is close (after that no more bids are accepted).

Based on this information, the UCC selects the packages to serve subject to her trucks’ capacity con-

straints. She then notifies the bidders about the result of the auction and arranges the deliveries

accordingly.

3.2 Winner Determination

To determining which bids are to be served such that the profit of the UCC over its planning horizon

is maximized, a winner determination problem is to solve. To model this problem and determine the

winning bids mathematically, we define xtik as a decision variable that equals 1 if bid i is delivered

by truck k in period t, and equals 0 otherwise. We also define ytjk as decision variable that equals

1 if truck k delivers to zone j in period t, and equals 0 otherwise. For notational convenience, define

B := {1, 2, . . . , B}, Z := {1, 2, . . . , Z}, K := {1, 2, . . . ,K}, and T := {1, 2, . . . , T}. We have the following

constraints.

Constraint (i): Each bid is served at most once and this can be represented as∑
k∈K,t∈T

xtik ≤ 1, ∀i ∈ B. (1)

Constraint (ii): Each truck serves at most one zone in one period and this can be represented as∑
j∈Z

ytjk ≤ 1, ∀t ∈ T ,∀k ∈ K. (2)

Constraint (iii): The truck capacity constraint can be expressed as∑
i∈B

vix
t
ik ≤ V t

k , ∀t ∈ T , ∀k ∈ K. (3)
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Constraint (iv): A truck will visit zone di in period t if bid i is served by the truck in period t, which

can be expressed as

xtik ≤ ytjk, for j = di,∀t ∈ T ,∀i ∈ B, ∀k ∈ K. (4)

Constraint (v): Each bid should be served within its delivery time window, which can be expressed as

xtik = 0, ∀t /∈ [ai, li],∀i ∈ B, ∀k ∈ K. (5)

Constraint (vi): The binary decision variables can be expressed as

xtik, y
t
jk ∈ {0, 1}, ∀i ∈ B, ∀j ∈ Z, ∀k ∈ K,∀t ∈ T . (6)

For notational convenience, we define the following sets of decision variables

X :=
{
xtik, i ∈ B, k ∈ K, t ∈ T

}
, (7a)

Y :=
{
ytjk, j ∈ Z, k ∈ K, t ∈ T

}
. (7b)

We define the set of feasible solutions as

F := {(X,Y)|X,Y satisfy (1)-(6)} . (8)

We assume the cost of the UCC consists of two major components: the warehousing cost and the

delivery cost. If a package is stored in the UCC before its delivery, it incurs a holding cost per volume

per period h for the UCC. For truck k to deliver to zone j in period t, a delivery cost ctjk is incurred.

Given a solution (X,Y) and the delivery costs ctjk, the profit of UCC can be expressed as

r (X,Y) :=
∑

i∈B,k∈K,t∈T
[pi − hvi(t− ai)]xtik −

∑
j∈Z,k∈K,t∈T

ctjky
t
jk. (9)

The basic Winner Determination Problem is to

max r (X,Y) (10a)

s.t. (X,Y) ∈ F. (10b)

In the rest of this paper, we propose an auction with rolling horizon based on the above formulation.

Table 1 summarizes the parameters and the notation used in this paper. The rest of the paper

is organized as follows. Section 4 extends the basic Winner Determination Problem and proposes an

auction with rolling horizon. Section 5 introduces two virtual pricing approaches for the choice of key

parameters in the auction with rolling horizon. Section 6 concludes this paper.
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Table 1: Notation

Sets B = {1, 2, . . . , B}, where B is the number of bids

of indices Z = {1, 2, . . . , Z}, where Z is the number of zones

K = {1, 2, . . . ,K}, where K is the number of trucks

T = {1, 2, . . . , T}, where T is the number of planning time periods

Parameters h: holding cost per volume per period of the UCC

V t
k : capacity of truck k in period t

ctjk: delivery cost for truck k to visit zone j in period t

vi: volume of bid i

di: destination of bid i, di ∈ Z
ai: arrival time of bid i, ai ∈ T
li: delivery deadline of bid i, li ∈ T
pi: bid price of bid i

Decision xtik: binary variable, which equals 1 iff bid i is served by truck k in time period t

variables ytjk: binary variable, which equals 1 iff truck k visits zone j in time period t

Sets X = {xtik, i ∈ B, k ∈ K, t ∈ T }
of variables Y =

{
ytjk, j ∈ Z, k ∈ K, t ∈ T

}

4 Proposed UCC Auction with Rolling Horizon

Winner determination problem for the basic UCC auction elaborated in Section 3 assumes that the

planning horizons of two consecutive UCC auctions never overlap one another. As established in Section

1, this restricts shippers/carriers as the bidders to compete only for the UCC’s delivery resources in the

immediate period following the winner determination.

In practice, longer planning horizon is often desirable so as to allow shippers/carriers to bid for

delivery resources not only in the immediate period but also in the subsequent few periods following the

winner determination. Announcement of the results of each auction—and hence, determination of the

winning and the losing bids—should remain as frequent so that the losing bidders could have a chance

to arrange for some other means of delivery or to alter their bid prices and resubmit their bids in the

subsequent auction. This gives rise to the UCC auction with a rolling horizon. The requirements of

longer planning horizon and high-frequency update makes the implementation of rolling horizon in the

UCC auction an interesting and significant topic.

As illustrated earlier in Figure 1, winners for the multiple consecutive delivery periods across the

planning horizon are determined simultaneously at the end of each auction before the start of the next

auction. Upon closing Auction #1, bids for potential deliveries at any days in Week #1 to Week
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#4 could have been received and the corresponding winners are determined simultaneously. While

the committed deliveries in Week #1 are carried out, Auction #2 is accepting bids for the potential

deliveries at any days in Week #2 to Week #5. At the closure of Auction #2, the winners for deliveries

in Week #2 to Week #5 are determined. Committed deliveries in Week #2 are then carried out while

Auction #3 accepts bids for deliveries in Week #3 to Week #6. The cycle then continues. From this

illustration, it is clear that the UCC’s delivery resources in one period are considered in a number of

auctions altogether. The delivery resources for Week #3, for instance, are considered in 3 consecutive

auctions. When determining the winners of Auction #1, the auctioneer may intuitively wish to reserve

some capacity for profitable bids yet to come in Auctions #2 and #3 for deliveries in Week #3. When

determining the winners of Auction #3, however, it is intuitive to use as much remaining capacity as

possible since capacity left unused will no longer have any potential value.

Motivated by this, we propose herein an augmentation to the profit expression of the winner de-

termination problem (10) . This augmentation aims at pricing the unused capacity with its potential

to be allocated to more profitable bids in upcoming auctions. This is equivalent to introducing virtual

bids to the current auction, which could potentially be replaced by real bids of equal or higher values in

the future auctions. Other than reserving capacity for highly profitable future bids, such augmentation

additionally allows selection of few profitable bids in the current auction as the winners although there

may not be enough bids to realize profitable consolidation at the moment.

Precisely, we adjust the profit function as follows. Let qtkz denote the potential value of one unit of

unused truck capacity if truck k delivers to zone z at day t and hereafter we refer to it as virtual price.

Also Let V t
k denote the remaining capacity of truck k at day t. If ytkz = 1, the potential value for the

remaining capacity of the truck after the auction is qtkz(V
t
k −

∑
i vix

t
ik), and 0 otherwise. Additionally if

truck k does not deliver to any zone in period t, we assume the potential value is the average potential

value of the full truckload (
∑

z q
t
kz/Z)V t

k . Hence, the profit after adjustment can be expressed as

r̂(X,Y) := r(X,Y) +
∑
k,z,t

qtkz min{M · ytkz, V t
k −

∑
i

vix
t
ik}

+
∑
k,t

((∑
z

qtkz/Z

)
V t
k

(
1−

∑
z

ytkz

))
, (11)

where M in (11) is a large constant. In the rolling horizon implementation, we update the value of V t
k

in each auction, replace r(X,Y) by r̂(X,Y), then solve the optimization problem (10) for new winning

bids. This process is repeated for every auction.
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4.1 An example of auction with rolling horizon

The UCC: In this section, the efficacy of the proposed UCC auction with rolling horizon will be

demonstrated via computational experiments. To understand the contribution of the rolling horizon

framework more clearly and easily, we consider a problem with one zone and one truck with capacity 10.

The planning horizon is 10 weekdays (2 weeks) and the auction result is released weekly. The delivery

cost is deterministic and equals 10.

Bid Generation: For each auction, a total of 30 bids are generated in which 15 bids compete for the

UCC’s delivery resources on the first week of the planning horizon and another 15 for resources on the

second week. The price-to-volume ratio of the bids is uniformly distributed between 0 and 3.

Efficacy of UCC Auction with Rolling Horizon In our first experiment, we set qt11 = 0 for each

t = 1, 2, ..., 5 and qt11 = 1 for each t = 6, 7, ..., 10 and let the simulation runs for 10 weeks. The truck

load on Friday of the Week #2 to Week #10 are shown in Figure 2(a). The result of Week #1 is not

shown since it is only involved in one auction and no truck load is committed before. In the figure,

the circles show the truck load committed one week before the delivery date and the stars show the

final truck load. It can be observed that in most of the days, the final truck load contains a portion

that is committed one week before the delivery date. For truck load on Monday, Tuesday, Wednesday

and Thursday we can also observe the similar pattern, which also lead to a weekly total truck load as

shown in Figure 2(b). From Figure 2(b), we can observe that about half of the weekly truck load are

committed one week before and this is shown specifically by Figure 3. In the figure, the dash line shows

the percentage of the weekly load that is committed one week before. It can be seen that around 50%

of the total load is committed one week before. In Figure 3, the solid line also shows the percentage of

the total profit that is due to such load. In most weeks, the solid line is above the dash line, suggesting

that by pricing the unused capacity properly (i.e. setting qtkz appropriately) the winning bids chosen

one week before are more profitable.

Effect of Various Pricing of Unused Capacity: To further show the importance of the potential

value rate, we let qt11 where t = 6, 7, ..., 10 change from 0 to 3.4 while keeping qt11 for each t = 1, 2, ..., 5

to see how the total revenue (profit) changes with the pricing of the unused capacity. Since the delivery

cost remains the same for all cases, we just compare revenue contributed by different types of bids.

The result is shown in Figure 4 where the darker bars at the bottom shows the revenue contributed

by the winning bids for deliveries on the second week of the planning horizon and the lighter bars on

the top corresponds to the revenue attributable to the winning bids for deliveries on the first week of

11



(a) (b)

Figure 2: (a) Truck load of Friday. (b) Weekly total truck load.

Figure 3: Percentage of profit and truck load committed in advance (i.e. one week ahead of the actual

delivery week).
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the planning horizon. Note that when qt11 = 0 for all t, the winning bids are selected exactly according

to Problem (10). As q increases, the revenue contributed by the winners of the second week’s delivery

resource first increases and then decreases. The total revenue follows the same trend. When q > 3,

all the shipping capacity is reserved for the very last auction before the delivery date as no bids have

the price-to-volume ratio larger than 3. Therefore, there is no winning bids for deliveries on the second

week of the planning horizon in such cases, and it is equivalent to run the auction with one week

planning horizon every week without rolling horizon. Figure 4 also verifies the idea of choosing value of

q described in Section 4. As the expected total volume of the 15 bids is 22.88, the value of q should be

3 ∗ 10/22.88 = 1.31 in the ideal case. But due to non-splittable bid volumes and the small number of

bids, the best value of q appears around 1 which is smaller than 1.31.

Figure 4: Revenue v.s. value of qt11 for all t = 6, 7, ..., 10.

5 Virtual price determination

The virtual price qtkz is a critical parameter in rolling horizon implementation and has great impact on

the performance. In this section, we introduce two approaches for the determination of its value, one

for the case with known price/volume distribution and the other for the case with uncertainties.
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5.1 The case with known price/volume distribution

For an ideal case, a reasonable value of qtkz can be roughly determined in the following way. Suppose

the volume of each bid is relatively small compared with a truck load so that almost all the highly

profitable bids can be consolidated in a truck load. We also assume the volume and price of each bid

are independent and the distribution of the ratio of price to volume of a bid, namely p/v, is available

or can be estimated from historical data. We let F (·) denote the cumulative distribution function of

the ratio p/v. Then we want to fill the remaining truck capacity Vk with the bids with the highest

value of price-volume ratio. If the total volume of the oncoming bids is V , then the best value of q is

F−1(1− Vk/V ), as shown in Figure 5. This value is for the optimistic case where all bids with the high

price-volume ratio can be consolidated into a truck load. However, this is almost not possible in reality

due to non-splittable volume of bid and limited number of bids. Therefore, the value of q in practice is

usually appropriately smaller than F−1(1− Vk/V ). This is already observed in the results of numerical

example in Section 4.1. In the next section, we will discuss another scenario where the distribution of

p/v is unknown and the total volume is uncertain.

Figure 5: Determination of value of potential value rate.

5.2 Approach using robust optimization

This section consider a scenario that is more realistic. Let n denote the index of future auctions and

snj denote the total volume that is to be allocated for zone j in the future auction n. Also for the clear

presentation, we assume the trucks are homogeneous and qtkj remains the same for all k ∈ K. We let

qnj denote the value of qtkj that is set for the next N auctions and Z zones. Then typically, snj is a
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decreasing function of qnj in general and may also be subject to uncertainties. In this paper, we assume

snj , as a function of qnj , takes the following form,

snj (qnj , δ
n
j ) = (anj − bnj qnj )(1 + δnj ) (12)

where anj and bnj are known parameters, δnj is an uncertain factor round 0 and lies in the range [δnj , δ̄
n
j ].

Then an lower bound of the revenue due to the winning bids to zone j in auction n is

Υ(qnj , δ
n
j ) := snj q

n
j = pnj (anj − bnj qnj )(1 + δnj ). (13)

It has been pointed out (Chen and Sim, 2009) that the primary target of decision makers is to meet

certain pre-specified target on profit instead of maximizing simply maximizing the profit. This motives

us to propose a Target-oriented Robust Optimization approach to determine the value of qnj . Let Vn

denote the total remaining capacity of UCC’s truck fleet before auction n and let τ denote the total

revenue that is expected from the future N auctions. We aim to determine the vale of qnj so that the

revenue target is met for an uncertainty set that is as much as possible, so the optimization problem

takes the following form.

max
0≤γ≤1

γ (14a)

s.t.
∑
j∈Z

snj (qnj , δ
n
j ) ≤ Vn, ∀δnj ∈

[
γδnj , γδ̄

n
j

]
, ∀n ∈ N ; (14b)

∑
n∈N

∑
j∈Z

Υ(qnj , δ
n
j ) ≥ τ, ∀δnj ∈

[
γδnj , γδ̄

n
j

]
. (14c)

As the worst case scenarios of each constraint in Problem (14) can be determined by observation,

Problem (14) is equivalent to

max
0≤γ≤1

γ (15a)

s.t.
∑
j∈Z

(anj − bnj qnj )(1 + γδ̄nj ) ≤ Vn, ∀t ∈ N , (15b)

∑
n∈N

∑
j∈Z

pnj (anj − bnj qnj )(1 + γδnj ) ≥ τ. (15c)

Problem (15) can be solved by performing a binary search over γ and solving the following problem a

few times.

r∗(γ) := max
∑
t∈N

∑
j∈Z

qnj (anj − bnj qnj )(1 + γδnj ) (16a)

s.t.
∑
j∈Z

(anj − bnj qnj )(1 + γδ̄nj ) ≤ Vn, ∀t ∈ N . (16b)
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The specific procedure is summarized in Algorithm 1.

Algorithm 1 Binary search for solution of Problem (15)

1: procedure TROBS(τ , imax)

2: LB = 0, UB = 1, i = 1

3: if r∗(LB) of Problem (16) is less than τ then Return infeasible

4: end if

5: if r∗(UB) of Problem (16) is no less than τ then Return 1

6: end if

7: while i ≤ imax do

8: if r∗((UB + LB)/2) of Problem (16) is no less than τ then LB =(UB+LB)/2

9: else UB =(UB+LB)/2

10: end if

11: i = i+ 1

12: end while

13: Return LB

14: end procedure

5.3 An example of virtual pricing

UCC: In this section, we demonstrate the pricing approach proposed in Section 5.2 using an example.

The UCC considered in this section is the same as the one in Section 4.1 with one truck, one zone and

a planning horizon of 10 days.

Bid Pattern: We assume the mean of the daily total bid volume increases evenly from10 on Monday

to 30 on Friday, and remains the same for every week. The actual daily total volume is uniformly

distributed within ±10% around its mean value. The distribution of the ratio p/v is the same for all

bids, and is uniformly distributed between 3 and 5. Therefore for a pricing problem with a planning

horizon of 2 weeks, the parameters is summarized in Table 2. When we generate detailed bid information,

we draw the total daily volume first, and then determine the number of bids such that the average bid

volume is 0.5.

Virtual pricing using robust optimization: We choose τ = 200 for Problem (14) which is about 60%

of the theoretical maximum mean of revenue in two weeks’ time. With this target and the parameters

in Table 2, Algorithm 1 determines an optimal γ∗ = 0.53 and Figure 6 shows the trajectories of the
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Table 2: Parameters in pricing problem

Monday Tuesday Wednesday Thursday Friday

a 50 75 100 125 150

b 10 15 20 25 30

δ̄ 10% 10% 10% 10% 10%

δ -10% -10% -10% -10% -10%

upper bound and lower bound of γ in Algorithm 1. The resultant optimal virtual prices for one unit of

iteration
2 4 6 8 10 12

γ

0

0.2

0.4

0.6

0.8

1 Upper bound of γ
*

Lower bound of γ
*

Figure 6: Trajectories of upper and lower bounds of γ in Algorithm 1.

shipping capacity on weekdays are given in Table 3.

Daily revenue: We also conduct simulation to run the UCC for 10 weeks, and therefore 10 auctions are

closed. Assuming that each truck load captures the highest profitable portion of the total bid volume,

we can calculate the upper and lower bounds of the theoretically highest revenue of each weekday, and

they are shown in Figure 7 together with the average revenue of each weekday over the 10 weeks in our

simulation. It can be observed that the average daily revenue in our simulation is actually very close to

its theoretically highest value. This verifies the validity of our virtual pricing approach.
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Table 3: Optimal virtual prices for weekdays

Monday Tuesday Wednesday Thursday Friday

optimal q 4.05 4.37 4.53 4.62 4.68

Mon Tue Wed Thu Fri

R
e

v
e

n
u

e

40

41

42

43

44

45

46

47

48

49

50

Upper bound of highest daily revenue
Lower bound of highest daily revenue
Average daily revenue in simulation

Figure 7: Average daily revenue of each weekday.

6 Conclusion

In this paper, we have presented auction mechanism with rolling horizon for the consolidation of last-

mile deliveries into the city center via an urban consolidation center (UCC). To anticipate profitable

bids in future auctions, we augment the profit function of the basic winner determination problem with

additional terms to allow pricing of the unused capacity. This is essentially equivalent to introducing

some virtual bids to the current auction, which may potentially be replaced by the real bids in the

upcoming auctions. Simulation results suggest that by setting the virtual price appropriately, more

revenue can be made out of the auctions of UCC.

For the determination of appropriate virtual price, we also proposed approaches for two different

scenarios. One is for the ideal case where the distribution of price/volume ratio of upcoming bids and

the total bid volume are known. In this case, the optimal virtual price can be determined using the

distribution function. The other pricing approach is for a more realistic scenario where the distribution

18



of price/volume and the total volume are unknown and subject to uncertainties. For this case, we

proposed an approach which use Target-oriented Robust Optimization to determine virtual prices that

makes the resultant revenue robust against uncertain factors. The validity of the proposed approach is

verified by numerical experiments.
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