
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2015

An iterated local search algorithm for solving the Orienteering An iterated local search algorithm for solving the Orienteering

Problem with Time Windows Problem with Time Windows

Aldy GUNAWAN
Singapore Management University, aldygunawan@smu.edu.sg

Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

Kun LU
Singapore Management University, kunlu@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons, and the

Theory and Algorithms Commons

Citation Citation
GUNAWAN, Aldy; LAU, Hoong Chuin; and LU, Kun. An iterated local search algorithm for solving the
Orienteering Problem with Time Windows. (2015). Evolutionary Computation in Combinatorial
Optimization: 15th European Conference, EvoCOP 2015, Copenhagen, Denmark, April 8-10, 2015,
Proceedings. 61-73.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2794

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

An Iterated Local Search Algorithm for Solving
the Orienteering Problem with Time Windows

Aldy Gunawan(B), Hoong Chuin Lau, and Kun Lu

School of Information Systems, Singapore Management University,
80 Stamford Road, Singapore 178902, Singapore

{aldygunawan,hclau,kunlu}@smu.edu.sg

Abstract. The Orienteering Problem with Time Windows (OPTW)
is a variant of the Orienteering Problem (OP). Given a set of nodes
including their scores, service times and time windows, the goal is to
maximize the total of scores collected by a particular route consider-
ing a predefined time window during which the service has to start. We
propose an Iterated Local Search (ILS) algorithm to solve the OPTW,
which is based on several LocalSearch operations, such as swap,
2-opt, insert and replace. We also implement the combination between
AcceptanceCriterion and Perturbation mechanisms to control the
balance between diversification and intensification of the search. In Per-
turbation, Shake strategy is introduced. The computational results
obtained by our proposed algorithm are compared against optimal solu-
tions or best known solution values obtained by state-of-the-art algo-
rithms. We show experimentally that our proposed algorithm is effective
on well-known benchmark instances available in the literature. It is also
able to improve the best known solution of some benchmark instances.

Keywords: Orienteering problem · Time windows · Iterated local search

1 Introduction

The Orienteering Problem (OP) was first introduced by Tsiligirides in [1].
The main objective is to select a subset of nodes and define the sequence of selected
nodes so that the total collected score is maximized while the maximum total travel
time (time budget given) is not exceeded. The recent survey of real-life applica-
tions of the OP and its variants is presented by Vansteenwegen et al. in [2].

The Orienteering Problem with Time Windows (OPTW) is a variant of the
OP with time window constraints that arise in situations where nodes/locations
have to be visited within a predefined time window specified by an earliest and a
latest time into which the service has to start [3]. An early arrival to a particular
node leads to waiting times, while a late arrival causes infeasibility. Given a set of
nodes, each one with a score, the goal is to maximize the total of collected score
by a particular route subject to a time budget and time window constraints. The
OPTW can be extended to the Team Orienteering Problem with Time Windows
(TOPTW) when the number of route considered is more than one route [4].
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 61–73, 2015.
DOI: 10.1007/978-3-319-16468-7 6

Published in Evolutionary Computation in Combinatorial Optimization. EvoCOP 2015.
Lecture Notes in Computer Science, vol 9026. Springer, Cham. pp. 61-73.
http://doi.org/10.1007/978-3-319-16468-7_6

62 A. Gunawan et al.

In this paper, an Iterated Local Search (ILS) algorithm is proposed to solve
the OPTW. The algorithm starts with generating an initial solution, which is
constructed by inserting nodes subsequently into a route. A set of feasible can-
didate nodes to be inserted is created and the selection of a node to be inserted
is based on roulette-wheel selection [5]. The initial solution is further improved
by ILS. We consider components of ILS: LocalSearch, Perturbation, and
AcceptanceCriterion. The LocalSearch procedure involves several oper-
ations, such as swap, 2-opt, replace and insert.

In Sect. 2, we present the problem description and literature review of the
OPTW. Section 3 is devoted to the proposed algorithm. Section 4 provides the
computation results together with the analysis of the results. Section 5 concludes
the paper and summarizes directions for further research.

2 Problem Description and Literature Review

The OPTW is defined as follows. Let us consider a set of nodes N = {1, 2, · · · , n}
where each node i ∈ N is associated with a score ui and a service time Ti. The
starting and end nodes are assumed to be nodes 1 and n, respectively; therefore,
u1, T1, un, Tn are set to 0. The non-negative travel time between nodes i and j
is represented as tij .

Each node i associates with a time window [ei, li], where ei and li are the
earliest and latest times allowed for starting service at node i. We assume that
e1 = en = 0 and l1 = ln = Tmax. For mathematical formulations for the OPTW,
we refer to [4,6]. The objective of the OPTW is to maximize the total collected
score when visiting a subset of the nodes with respect to following constraints,
as listed below:

– The route starts and ends at nodes 1 and n, respectively.
– Each node i ∈ N is visited at most once.
– The service start time at node i is within a time window [ei, li].
– The time budget is limited by Tmax.

The initial investigation of the OPTW has been presented by Kantor and
Rosenwein in [6]. Since OPTW falls into NP-hard, a heuristic based on the
tree heuristic was proposed. The experiments showed that the tree heuristic
outperforms the insertion heuristic. Righini and Salani [7] proposed an exact
optimization algorithm for the OPTW. The algorithm is based on dynamic pro-
gramming with decremental state space relaxation. The result shows that there
is no domination between the proposed algorithm and the other dynamic pro-
gramming proposed by Boland et al. in [8] for solving benchmark instances.
A new heuristic technique for the initialization of the critical vertex set has also
been proposed in order to reduce the number of iterations and the amount of
computing time required.

The Tourist Trip Design Problems (TTDP) can be formulated as the OPTW
and the TOPTW [4]. A simple, fast and effective Iterated Local Search (ILS)
was proposed to solve both problems. The proposed algorithm only combines

An Iterated Local Search Algorithm for Solving the Orienteering Problem 63

insertion and shaking operations to generate the solutions. New data set was
designed to analyse the performance of the proposed algorithm and to be used
as a benchmark for further research. Montemanni and Gambardella [9] pro-
posed a heuristic approach based on Ant Colony System (ACS). It includes a
local search procedure by exchanging two subchains of nodes of the giant tour.
Experimental results on benchmark instances have proven the effectiveness of
the algorithm. For other related works with further improvement of benchmark
instances’ results, we can refer to [10,11].

A Simulated Annealing-based heuristic was proposed by Lin and Yu in [12]
for solving both OPTW and TOPTW. Two different versions, fast SA (FSA)
and slow SA (SSA), were developed in order to tailor two different scenarios.
The former is mainly for the applications that need quick responses while the
latter is more concerned about the quality of the solutions. The SSA heuristic is
able to find 33 new best solutions. A heuristic based on a Variable Neighborhood
Search (VNS) was proposed in order to tackle the OPTW and the TOPTW [3].
The idea of granularity that includes time constraints and profits in addition to
pure distances is introduced. The proposed algorithm has been able to improve
25 best known solution values.

Hu and Lim [13] proposed an iterative framework which is based on three
components: a local search procedure, a Simulated Annealing procedure and
Route Recombination. The first two components are used to explore the
solution space and discover a set of routes. The last component which focuses on
combining the routes to identify high quality solutions is included. 35 new best
solutions are found and more than 83 % of instances with optimal solutions can
be found.

3 Proposed Algorithm

This section presents the description of our proposed algorithm. The algorithm
is started by generating an initial feasible solution using a greedy construction
heuristic. The initial solution is further improved by Iterated Local Search (ILS).
Components of ILS: LocalSearch, Perturbation and AcceptanceCrite-
rion, are taken into consideration. The differences between our ILS and ILS
proposed by Vansteenwegen et al. [4] would be described below.

3.1 Greedy Construction Heuristic

The greedy construction heuristic builds an initial solution from scratch. The
idea is to insert a node subsequently to a route until no more feasible insertion
can be found. A node insertion is feasible if all scheduled nodes after the insertion
still satisfy their respective time windows and the total spent time does not
exceed Tmax.

Let N ′ and N∗ be the sets of unscheduled and scheduled nodes respectively
(N ′∪N∗ = N). The greedy construction heuristic is outlined in Algorithm 1. N∗

is initialized by nodes 1 and n, while N ′ consists of the remaining unscheduled

64 A. Gunawan et al.

nodes. S0 represents the current feasible solution obtained so far, represented as
a vector (1 × |N∗|).

Let F be the set of feasible candidate nodes to be inserted. F is generated
iteratively in order to store feasible candidate unscheduled nodes to be inserted.
The idea of generating F is summarized in Algorithm 2. P is denoted as the set
of all positions of a route. We examine all possibilities of inserting an unsched-
uled node in position p ∈ P . Each element in F , which represents a feasible
insertion of node n in position p of a route, is represented as 〈n, p〉. For each
possible insertion, we calculate the benefit of insertion ration,p by using Eq. (1).
Δn,p represents the difference between the total time spent before and after the
insertion of node n in position p. For example, if the total time spent before the
insertion of node n in position p is 700 time units and the total time spent after
the insertion is increased to 720 time units, the value of Δn,p is 720 − 700 = 20
time units. All elements would be sorted in descending order based on ration,p
values and we only keep f elements in F and remove the rest.

Algorithm 1. Construction (N)

N∗ ← nodes 1 and n
N ′ ← N\ nodes 1 and n
Initialize S0 ← N∗

F ← UpdateF(N ′)
while F �= ∅ do

〈n∗, p∗〉 ← Select(F)
S0 ← 〈n∗, p∗〉
N ′ ← N ′ \ {n∗}
N∗ ← N∗ ∪ {n∗}
F ← UpdateF(N ′)

end while
return S0

Algorithm 2. UpdateF (N ′)
F ← ∅
for all n ∈ N ′ do

for all p ∈ P do
if insert node n in position p is feasible then

calculate ration,p

F ← F ∪ 〈n, p〉
end if

end for
end for
Sort all elements of F in descending order based on ration,p

Select the best f number of elements of F and remove the rest
return F

An Iterated Local Search Algorithm for Solving the Orienteering Problem 65

Algorithm 3. Select (F)

SumRatio ← 0
for all 〈n, p〉 ∈ F do

SumRatio ← SumRatio + ration,p

end for
for all 〈n, p〉 ∈ F do

probn,p ← ration,p/SumRatio
end for
U ← rand(0, 1)
AccumProb ← 0
for all 〈n, p〉 ∈ F do

AccumProb ← AccumProb + probn,p

if U ≤ AccumProb then
〈n∗, p∗〉 ← 〈n, p〉
break

end if
end for
return 〈n∗, p∗〉

ration,p =
(

u2
n

Δn,p

)
∀n ∈ N ′, p ∈ P (1)

If F �= ∅, Algorithm 3 is run in order to select which 〈n∗, p∗〉 to be inserted.
Each 〈n, p〉 corresponds to probability value probn,p. The probability is calcu-
lated by Eq. (2):

probn,p =

(
ration,p∑

〈i,j〉∈F ratioi,j

)
∀n ∈ N ′, p ∈ P (2)

Instead of always selecting an inserted node with the highest value of ration,p
[4], our approach is different. Selecting 〈n∗, p∗〉 from F is based on roulette-wheel
selection [5]. This method assumes that the probability of selection a particular
〈n, p〉 is proportional to the benefit of its insertion, ration,p. A random number
U ∼ [0, 1] is generated. The accumulative of probability values, AccumProb,
is initially set to 0. We select a particular 〈n∗, p∗〉 and update the value of
AccumProb iteratively. This loop will be terminated when (U ≤ AccumProb)
and the corresponding 〈n∗, p∗〉 is selected. S0, N ′ and N∗ will then be updated.
The greedy construction heuristic is terminated when there is no further feasible
insertion (F = ∅).

Due to the time windows, the score of a node insertion is more relevant
compared against the time consumption of an insertion. By removing the square,
the obtained results are worse [4]. Therefore, the square of score is then applied
in Eq. (1). Another main reason is by using the square of score, we increase the
probability of selecting a particular node with a higher ratio (Eq. (2)) since the
main objective is to maximize the collected score.

66 A. Gunawan et al.

3.2 Iterated Local Search

Given the initial solution S0 generated by the greedy construction heuristic,
we propose an Iterated Local Search (ILS) algorithm to further improve the
quality of S0. Three components of ILS: Perturbation, LocalSearch and
AcceptanceCriterion, are taken into consideration. Let S∗ be the best found
solution so far. The outline of ILS is presented in Algorithm 4.

Algorithm 4. ILS (N)

S0 ← Construction(N)
S0 ← LocalSearch(S0, N

∗, N ′)
S∗ ← S0

NoImpr ← 0
while TimeLimit has not been reached do

S0 ← Perturbation(S0, N
∗, N ′)

S0 ← LocalSearch(S0, N
∗, N ′)

if S0 better than S∗ then
S∗ ← S0

NoImpr ← 0
else

NoImpr ← NoImpr + 1
end if
if (NoImpr+1) Mod Threshold1 = 0 then

S0 ← S∗

end if
end while
return S∗

Perturbation is applied to S0 in order to escape from local optima. In
this paper, we implement Shake operation. The Shake operation is adopted
from [4] with some modifications. During Shake operation, one or more nodes
will be removed, which depends on two integer values. The first one indicates
how many consecutive nodes to be removed (denoted as cons), while the second
one indicates the first position of the removed nodes (denoted as post). If the
last scheduled node is reached and there are still some nodes to be removed,
we go back to the start node and include nodes after the start node. Both cons
and post are initially set to 1. After each shake operation, post is increased by
cons. cons remains the same for a fixed number of consecutive iterations, e.g. 2
iterations and it is then increased by 1 subsequently. In [4], cons will always be
increased by 1 for each iteration. If post is greater than the size of the smallest
route, post is subtracted with the size of the smallest route in order to determine
the new position. If cons is greater than the size of the largest route, or S∗ is
updated, cons is reset to one. Again, this differs from [4] where cons is set to
1 if cons is equal to n/3. After removing cons nodes, we generate F based on
Algorithm 2 and select a node to be inserted using Algorithm 3. N ′ and N∗ are
then updated accordingly. This is repeated until F = ∅.

An Iterated Local Search Algorithm for Solving the Orienteering Problem 67

ILS proposed by Vansteenwegen et al. [4] only considers Insert and Shake
operations for generating the solutions. In our LocalSearch, we consider four
different operations that would be explained as follows. Swap is applied by
exchanging two scheduled nodes within a route. All possible combinations of
selecting two different scheduled nodes are examined. Swap is executed if it
increases the remaining travel time and there is no constraint violation. 2-opt
is started by selecting two positions of two scheduled nodes. The sequence of
scheduled nodes is reversed as long as there is no constraint violation and there
is an improvement of the remaining travel time. This would be terminated if no
further improvement in terms of total of remaining travel time.

Insert is applied in order to insert one unscheduled node to a route. It is
started by generating F based on Algorithm 2 and selecting node i ∈ N ′ to be
inserted using Algorithm 3. This is repeated until F = ∅. The idea is the same
with the one introduced in the greedy construction heuristic. The last operation,
Replace, tries to replace one scheduled node i ∈ N∗ with one unscheduled node
j ∈ N ′ with the highest score uj . We then check each position p and examine
whether selected node j can replace the node in position p. The feasibility of
the solution and the improvement of total score are considered in this operation.
Once this operation is successful, we continue with the next unscheduled node j
with the second highest score uj . Otherwise, the operation would be terminated.

Acceptance criterion is described as follows. The new local optimum
solution is always accepted as the initial solution for the next run of local search.
However, if there is no improvement of S∗ obtained for a certain number of
iterations, ((NoImpr+1) Mod Threshold1 = 0), the search is continued by
applying an intensification strategy. This strategy focuses the search once again
starting from the best found solution, S∗ in order to improve the probability of
hitting the global optimum. Finally, the entire algorithm will be run within the
computational budget, TimeLimit.

4 Computational Experiments

4.1 Benchmarks and Experimental Setup

The test problems for the OPTW in the literature were initially proposed by
Righini and Salani in [7], which are generated from Solomon’s [14] and Cordeau
et al.’s instances [15]. 48 Solomon’s instances contain 100 nodes of series (c100,
r100 and rc100). Cordeau et al.’s instances consists of 10 instances with different
number of nodes, varying from 48 to 288 nodes (pr01–pr10). Those instances
were designed for the Vehicle Routing Problem with Time Windows (VRPTW)
and the Multi Depot Periodic VRPTW respectively. In this paper, we only
concern with benchmark instances with the number of route = 1, which related
to the OPTW problem. 37 additional instances were created [9]. 27 instances
are converted from Solomon’s dataset (c200, r200 and rc200) and 10 instances
are converted from Cordeau et al.’s dataset (pr11–pr20).

68 A. Gunawan et al.

Table 1. Estimation of single-thread performance [13].

Algorithm Experimental environment SuperP i Estimate of

single-thread

performance

IterLS Intel Core 2 with 2.5 gigahertz CPU,
3.45 gigabytes RAM

18.6 0.53

ACS∗ Dual AMD Opteron 250 2.4 gigahertz
CPU, 4 gigabytes RAM

Unknown 0.22

SSA Intel Core 2 CPU, 2.5 gigahertz 18.6 0.53

GVNS Intel Pentium (R) IV, 3 gigahertz
CPU

44.3 0.22

I3CH Intel Xeon E5430 CPU clocked at 2.66
gigahertz, 8 gigabytes RAM

14.7 0.67

ILS Intel Core i7-4770 with 3.4 GHz
processor, 16 gigabytes RAM

9.8 1

The experiments were carried out on a personal computer Intel Core i7 -
4770 with 3.4 GHz processor and 16 GB RAM. Vansteenwegen et al. [4] dis-
cussed the difficulty of solving the instances by a commercial solver (CPLEX).
ILS was tested by performing 10 runs with different random seeds per each
instance. The performances of the proposed ILS are compared to the state-of-
the-art methods: Iterated Local Search (IterLS) [4], Ant Colony System (ACS)
[9], Enhanced Ant Colony System (Enhanced ACS) [11], Slow Simulated Anneal-
ing (SSA) [12], Granular Variable Neighborhood Search (GVNS) [3] and Itera-
tive Three-Component Heuristic (I3CH) [13]. Enhanced ACS [11] has empirically
outperformed the original ACS [9]. In this paper, we refer to the results of both,
whichever is better and denote them as ACS∗.

For each instance, ACS∗ was executed in 5 runs whereas ILS and GVNS were
executed 10 times. On the other hand, IterLS, SSA and I3CH were only executed
once and reported only the best found solutions. For comparison purpose, the
solutions of our ILS were compared against the best known solutions (BKs) of
IterLS, ACS∗, SSA, GVNS and I3CH. In order to ensure the fair comparisons,
we refer to the same approach [13] to compare the speed of the computers used
in obtaining the solutions, as shown in Table 1. SuperP i is a single-threaded
program that computes the first 1 million digits of π of a particular processor.
The comparability of processors used by ACS∗ and GVNS is shown in [10] since
the SuperP i for ACS∗ is not available.

By setting the performance of our machine to be 1, we then estimated the
single-thread performance of other processors by multiplying with the single-
thread performance estimation (last column of Table 1). For the details, please
refer to [13]. Among all algorithms, only ACS∗ used one hour of the compu-
tational time for each instance, while the rest use the number of iterations. In
this paper, we are more concerned with solution quality, we then used ACS∗

as our reference. Instead of using 100 % of ACS∗’s computational time, we only

An Iterated Local Search Algorithm for Solving the Orienteering Problem 69

Table 2. New best known solution values found by ILS.

Instance Old BK New BK Instance Old BK New BK Instance Old BK New BK

r203 1021 1026 r209 950 956 rc206 895 899

r204 1086 1093 r211 1046 1049 rc208 1053 1057

r208 1112 1113 rc202 936 938

use 35 % of it. The computational time for each instance is then set to 35 % ×
0.22 × 3600 = 272 s using our processor. Based on the preliminary testing, the
following parameter values seem to have the best performance within a reason-
able computational time: f = 5 and Threshold1 = 10.

4.2 Experimental Results

Table 2 reports the new best known solutions (BKs) obtained by ILS. We dis-
covered 8 new best known solution values for Solomon’s instances. Partial results
obtained by ILS on benchmark instances are reported in Table 3. We only report
the results of Solomon’s instances due to space constraints. The detailed results
can be found online at http://centres.smu.edu.sg/larc/Orienteering-Problem-
Library.

Table 3 consists of two identical structure parts. The first column contains
the instance name, the second column reports the best known solution value BK
from references. The following three columns show maximum, average and min-
imum solution values obtained by our ILS. The “BG (%)” column provides the
best relative percentage deviation, which refers to the percentage gap between
BK and the best solution obtained by ILS. “AG (%)” provides the average
relative percentage deviation, which refers to the percentage gap between BK
and the average solution obtained by ILS. Finally, the last three columns show
maximum, average and minimum computational times required to obtain the
best found.

Take note that the optimal value is indicated in italic and the new BK
obtained by ILS is indicated in bold. There are still 27 and 12 instances of
Solomon’s and Cordeau et al.’s instances where the optimal values are unknown.
ILS is able to obtain 41 out 56 (≈73.2 %) best known solutions (BKs) on
Solomon’s instances. It also improved the best known solutions of 8 out 27
instances (≈30.0 %). For Cordeau et al.’s instances, 12 out 20 (≈60.0 %) BKs
can be found by ILS.

Table 4 summarizes the results of IterLS, ACS∗, GVNS, SSA, I3CH and our
ILS results. The numb column provides the number of instances in a partic-
ular instance set. The table reports the average of AG for each instance set
(AG(%)). However, IterLS, SSA and I3CH only reported their best known solu-
tion obtained; therefore, we report the average of BG (BG(%)) as well. The
best known solutions (BKs) were collected from IterILS, ACS∗, SSA, GVNS
and I3CH results. The computational time (CPU) for ACS∗ and ILS for one
particular instance set reports the average of time spent to obtain the best

http://centres.smu.edu.sg/larc/Orienteering-Problem-Library
http://centres.smu.edu.sg/larc/Orienteering-Problem-Library

70 A. Gunawan et al.
T
a
b
le

3
.
D

et
a
il
ed

re
su

lt
s

o
f
IL

S
o
n

S
o
lo

m
o
n
’s

in
st

a
n
ce

s

In
st
an
ce

BK
IL
S

BG
(%

)
AG

(%
)
C
PU

(s
ec
on

ds
)
In
st
an
ce

BK
IL
S

BG
(%

)
AG

(%
)

C
PU

(s
ec
on
ds
)

M
ax

Av
g

M
in

M
ax

Av
g
M
in

M
ax

Av
g

M
in

M
ax

Av
g

M
in

c1
01

32
0

32
0

32
0.
0
32
0

0.
0

0.
0

0.
5

0.
2

0.
0

c2
01

87
0

87
0

87
0.
0

87
0

0.
0

0.
0

15
7.
8

36
.7

1.
6

c1
02

36
0

36
0

36
0.
0
36
0

0.
0

0.
0

0.
8

0.
3

0.
0

c2
02

93
0

93
0

93
0.
0

93
0

0.
0

0.
0

18
5.
0

59
.0

20
.8

c1
03

40
0

40
0

40
0.
0
40
0

0.
0

0.
0

0.
4

0.
2

0.
1

c2
03

96
0

96
0

96
0.
0

96
0

0.
0

0.
0

24
7.
9
13
7.
2

20
.8

c1
04

42
0

42
0

42
0.
0
42
0

0.
0

0.
0

1.
0

0.
4

0.
1

c2
04

98
0

98
0

97
4.
0

97
0

0.
0

0.
6

24
6.
5
21
7.
6
10
4.
9

c1
05

34
0

34
0

34
0.
0
34
0

0.
0

0.
0

1.
3

0.
4

0.
1

c2
05

91
0

91
0

90
8.
0

90
0

0.
0

0.
2

24
9.
3

56
.2

11
.8

c1
06

34
0

34
0

34
0.
0
34
0

0.
0

0.
0

0.
9

0.
5

0.
1

c2
06

93
0

93
0

92
7.
0

92
0

0.
0

0.
3

21
9.
8
11
1.
5

5.
8

c1
07

37
0

37
0

37
0.
0
37
0

0.
0

0.
0

0.
4

0.
1

0.
0

c2
07

93
0

93
0

93
0.
0

93
0

0.
0

0.
0

14
1.
5

68
.1

12
.5

c1
08

37
0

37
0

37
0.
0
37
0

0.
0

0.
0

0.
9

0.
5

0.
1

c2
08

95
0

95
0

95
0.
0

95
0

0.
0

0.
0

68
.3

33
.3

4.
9

c1
09

38
0

38
0

38
0.
0
38
0

0.
0

0.
0

25
.4

6.
8

0.
6

r1
01

19
8

19
8

19
8.
0
19
8

0.
0

0.
0

0.
4

0.
1

0.
0

r2
01

79
7

79
4

78
8.
7

78
4

0.
4

1.
0

24
3.
4
13
3.
7

34
.4

r1
02

28
6

28
6

28
6.
0
28
6

0.
0

0.
0

0.
5

0.
2

0.
0

r2
02

93
0

92
1

91
0.
3

89
6

1.
0

2.
1

26
9.
8
16
5.
6

25
.4

r1
03

29
3

29
3

29
3.
0
29
3

0.
0

0.
0

3.
9

1.
4

0.
2

r2
03

10
21

10
26

10
11

.3
99

6
-0
.5

1.
0

26
8.
7
21
3.
5
14
8.
1

r1
04

30
3

30
3

30
3.
0
30
3

0.
0

0.
0

6.
2

1.
5

0.
1

r2
04

10
86

10
93

10
82

.8
10

71
-0
.6

0.
3

26
6.
9
17
1.
0

56
.6

r1
05

24
7

24
7

24
7.
0
24
7

0.
0

0.
0

1.
3

0.
7

0.
0

r2
05

95
3

95
3

94
8.
4

94
2

0.
0

0.
5

25
3.
2
16
9.
9

28
.8

r1
06

29
3

29
3

29
3.
0
29
3

0.
0

0.
0

0.
6

0.
2

0.
0

r2
06

10
29

10
22

10
12

.4
10

02
0.
7

1.
6

24
6.
4
12
6.
5

34
.2

r1
07

29
9

29
9

29
9.
0
29
9

0.
0

0.
0

1.
5

0.
5

0.
0

r2
07

10
72

10
67

10
59

.5
10

49
0.
5

1.
2

24
8.
3
17
4.
0

77
.1

r1
08

30
8

30
8

30
8.
0
30
8

0.
0

0.
0

2.
4

0.
9

0.
1

r2
08

11
12

11
13

11
07

.6
11

00
-0
.1

0.
4

26
7.
9
16
5.
6

47
.6

r1
09

27
7

27
7

27
7.
0
27
7

0.
0

0.
0

0.
4

0.
2

0.
0

r2
09

95
0

95
6

94
9.
7

93
8

-0
.6

0.
0

23
1.
6
14
5.
8

76
.3

r1
10

28
4

28
4

28
4.
0
28
4

0.
0

0.
0

3.
8

1.
3

0.
0

r2
10

98
7

97
8

97
0.
8

96
2

0.
9

1.
6

26
3.
0
17
1.
8

14
.5

r1
11

29
7

29
7

29
7.
0
29
7

0.
0

0.
0

50
.3

10
.9

0.
4

r2
11

10
46

10
49

10
40

.4
10

25
-0
.3

0.
5

25
6.
0
14
5.
7

3.
3

r1
12

29
8

29
8

29
8.
0
29
8

0.
0

0.
0

10
.6

3.
3

0.
0

rc
10

1
21
9

21
9

21
9.
0
21
9

0.
0

0.
0

0.
5

0.
2

0.
0

rc
20

1
79

5
79

5
79

5.
0

79
5

0.
0

0.
0

13
2.
1

63
.5

9.
0

rc
10
2

26
6

26
6

26
6.
0
26
6

0.
0

0.
0

1.
7

0.
4

0.
0

rc
20

2
93

6
93

8
92

9.
0

91
8

-0
.2

0.
7

26
2.
1
15
6.
2

31
.1

rc
10
3

26
6

26
6

26
6.
0
26
6

0.
0

0.
0

9.
6

2.
0

0.
1

rc
20

3
10

03
99

9
98

9.
8

96
9

0.
4

1.
3

24
3.
9
11
1.
5

27
.2

rc
10

4
30
1

30
1

30
1.
0
30
1

0.
0

0.
0

0.
7

0.
3

0.
2

rc
20

4
11

40
11

36
11

31
.3

11
28

0.
4

0.
8

26
3.
4
16
5.
0

16
.4

rc
10

5
24
4

24
4

24
4.
0
24
4

0.
0

0.
0

10
.0

4.
3

0.
2

rc
20

5
85

9
85

9
85

4.
7

84
9

0.
0

0.
5

21
9.
0
10
0.
5

11
.4

rc
10
6

25
2

25
2

25
2.
0
25
2

0.
0

0.
0

1.
0

0.
3

0.
0

rc
20

6
89

5
89

9
89

4.
1

88
3

-0
.4

0.
1

25
5.
9
15
2.
0

52
.1

rc
10
7

27
7

27
7

27
7.
0
27
7

0.
0

0.
0

0.
9

0.
3

0.
0

rc
20

7
98

3
98

3
95

2.
1

94
1

0.
0

3.
1

25
2.
9
12
9.
9

14
.7

rc
10
8

29
8

29
8

29
8.
0
29
8

0.
0

0.
0

0.
2

0.
1

0.
0

rc
20

8
10

53
10

57
10

40
.7

10
20

-0
.4

1.
2

15
8.
9

85
.6

15
.0

An Iterated Local Search Algorithm for Solving the Orienteering Problem 71

Table 4. Overall “Average” Comparison of ILS to the state-of-the-art methods.

Instance Set Numb
IterLS ACS∗ SSA GVNS I3CH ILS

BG(%) CPU AG(%) CPU
‡
BG(%) CPU AG(%) CPU BG(%) CPU AG(%) CPU

‡

c100 9 1.11 0.2 0.00 1.4 0.00 11.1 1.22 36.8 0.00 16.8 0.00 1.0
r100 12 1.90 0.1 0.24 84.8 0.11 12.3 2.68 6.5 0.56 19.1 0.00 1.8
rc100 8 2.92 0.1 0.00 31.7 0.00 11.7 3.51 2.2 1.66 17.0 0.00 1.0
c200 8 2.28 0.9 0.58 75.8 0.13 19.8 1.11 42.6 0.40 56.3 0.14 90.0
r200 11 2.90 0.9 3.17 344.4 1.30 24.1 3.38 7.5 1.05 117.4 0.93 162.1
rc200 8 3.43 0.9 2.04 341.7 0.96 26.5 3.96 3.5 2.68 79.6 0.97 120.5
pr01-10 10 4.74 0.9 1.22 359.8 0.98 59.1 1.62 2.7 1.07 72.7 0.74 50.4
pr11-20 10 9.56 1.0 11.87 196.4 3.71 85.6 4.26 5.4 4.28 86.8 2.12 97.9

Grand mean 3.64 0.6 2.49 183.9 0.94 31.9 2.73 12.6 1.44 59.1 0.63 65.6
‡ Average computation time to obtain the best found

found BK (in seconds) from all runs since the experiments were based on the
computational time. On the other hand, IterLS, SSA, GVNS and I3CH report
the average of the computational time for solving each instance (in seconds).
The computational time of all approaches were adjusted according the their
computer’s speed as summarized in Table 1.

From Table 4, we observe that ILS can produce better solutions against those
of ACS∗ and GVNS. The AG’s grand mean of ILS is only 0.63 %, whereas those
of ACS∗ and GVNS are 2.49 % and 0.94 %, respectively. In terms of the compu-
tational time required to obtain the best found, ILS is much faster than ACS∗.
ILS only requires 65.6 s while ACS∗ requires 183.9 s, on average. Comparing
against SSA, ILS finds better solutions at the expense of more computational
time. IterLS is the fastest algorithm but the reported grand mean of BG is the
largest.

Table 5 reports the best solutions obtained for each algorithm. ILS is the best
compared against other methods. The grand mean of BG is only 0.23 %. The
BGs of ILS ranges from −0.04% to 1.33 %, while the ones of IterLS and I3CH
have wider ranges from 1.11 % to 9.56 % and 0.00 % to 4.28 %, respectively. ILS

Table 5. Overall “Best” Comparison of ILS to the state-of-the-art methods.

Instance set Numb IterLS ACS∗ SSA GVNS I3CH ILS

BG(%) BG(%) BG(%) BG(%) BG(%) BG(%)

c100 9 1.11 0.00 0.00 0.56 0.00 0.00

r100 12 1.90 0.00 0.11 1.72 0.56 0.00

rc100 8 2.92 0.00 0.00 1.88 1.66 0.00

c200 8 2.28 0.40 0.13 0.55 0.40 0.00

r200 11 2.90 2.19 1.30 2.45 1.05 0.11

rc200 8 3.43 1.23 0.96 2.53 2.68 −0.04

pr01–10 10 4.74 1.06 0.98 0.56 1.07 0.34

pr11–20 10 9.56 11.13 3.71 3.17 4.28 1.33

Grand mean 3.64 2.09 0.94 1.71 1.44 0.23

72 A. Gunawan et al.

Table 6. Comparison with the same computational time.

Instance set Numb I3CH ILS CPU(s)

BG(%) BG(%) AG(%)

c100 9 0.00 0.00 0.00 16.8

r100 12 0.56 0.00 0.00 19.1

rc100 8 1.66 0.00 0.03 17.0

c200 8 0.40 0.00 0.29 56.3

r200 11 1.05 0.36 1.24 117.4

rc200 8 2.68 0.20 1.30 79.6

pr01–10 10 1.07 0.30 0.80 72.7

pr11–20 10 4.28 1.29 2.30 86.8

Grand mean 1.44 0.28 0.76 59.1

obtains best known solutions for all instances of the first four instances sets. For
rc200 instance set, a negative value of BG represents the improvement of some
BKs.

I3CH outperforms SSA when using the same computational time that had
been adjusted by their computers’ speed [13]. We also compare the performance
of ILS againts I3CH. As shown in Table 6, we found that the BG’s grand mean
of ILS is 1.16 % better than that of I3CH. ILS is able to obtain 0.00 % of BG
for 4 out of 8 instance sets. In terms of AG, ILS can reduce the grand mean of
AG by almost 50 % compared against the one of BG of I3CH.

5 Conclusion

In this paper, we study the Orienteering Problem with Time Windows (OPTW).
An algorithm based on Iterated Local Search (ILS) is proposed to solve the prob-
lem. Computational results have shown that the proposed algorithm is an effec-
tive algorithm. The algorithm has been able to improve 8 best known solution
values of benchmark instances.

Other various mechanisms of ILS could be investigated. For instance, using
other construction heuristics and restarting the algorithm from a new initial
solution. It would also be interesting to consider applying ILS to other variants
of the OP, e.g. the Team Orienteering Problem with Time Windows (TOPTW),
the Time Dependent Orienteering Problem (TDOP) and the Tourist Trip Design
Problem (TTDP).

Acknowledgements. This research is supported by Singapore National Research
Foundation under its International Research Centre @ Singapore Funding Initiative and
administered by the IDM Programme Office, Media Development Authority (MDA).

An Iterated Local Search Algorithm for Solving the Orienteering Problem 73

References

1. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9),
797–809 (1984)

2. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem:
a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

3. Labadie, N., Mansini, R., Melechovskỳ, J., Calvo, R.W.: The team orienteering
problem with time windows: an LP-based granular variable neighborhood search.
Eur. J. Oper. Res. 220(1), 15–27 (2012)

4. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Iter-
ated local search for the team orienteering problem with time windows. Comput.
Operat. Res. 36(12), 3281–3290 (2009)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading (1989)

6. Kantor, M.G., Rosenwein, M.B.: The orienteering problem with time windows.
J. Oper. Res. Soc. 43(6), 629–635 (1992)

7. Righini, G., Salani, M.: Decremental state space relaxation strategies and initial-
ization heuristics for solving the orienteering problem with time windows with
dynamic programming. Comput. Oper. Res. 36(4), 1191–1203 (2009)

8. Boland, N., Dethridge, J., Dumitrescu, I.: Accelerated label setting algorithms for
the elementary resource constrained shortest path. Oper. Res. Lett. 34(1), 58–68
(2006)

9. Montemanni, R., Gambardella, L.M.: Ant colony system for team orienteering
problem with time windows. Found. Comput. Decis. Sci. 34(4), 287–306 (2009)

10. Labadie, N., Mansini, R., Melechovskỳ, J., Calvo, R.W.: Hybridized evolution-
ary local search algorithm for the team orienteering problem with time windows.
J. Heuristics 17(6), 729–753 (2011)

11. Montemanni, R., Weyland, D., Gambardella, L.M.: An enhanced ant colony system
for the team orienteering problem with time windows. In: Proceedings of 2011
International Symposium on Computer Science and Society (ISCCS), pp. 381–384
(2011)

12. Lin, S.W., Yu, V.F.: A simulated annealing heuristic for the team orienteering
problem with time windows. Eur. J. Oper. Res. 217(1), 94–107 (2012)

13. Hu, Q., Lim, A.: An iterative three-component heuristic for the team orienteering
problem with time windows. Eur. J. Oper. Res. 232(2), 276–286 (2014)

14. Solomon, M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

15. Cordeau, J.F., Grendreau, M., Laporte, G.: A tabu search heuristic for periodic
and multi-depot vehicle routing problems. Networks 30(2), 105–119 (1997)

	An iterated local search algorithm for solving the Orienteering Problem with Time Windows
	Citation

	An Iterated Local Search Algorithm for Solving the Orienteering Problem with Time Windows
	1 Introduction
	2 Problem Description and Literature Review
	3 Proposed Algorithm
	3.1 Greedy Construction Heuristic
	3.2 Iterated Local Search

	4 Computational Experiments
	4.1 Benchmarks and Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	References

