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Abstract The Resource Constrained Project Schedul-
ing Problem with minimum and maximum time lags

(RCPSP/max) is a general model for resource schedul-
ing in many real-world problems (such as manufactur-
ing and construction engineering). We consider RCPSP/max

problems where the durations of activities are stochas-
tic and resources can have unforeseen breakdowns. Given
a level of allowable risk, α, our mechanisms aim to com-
pute the minimum robust makespan execution strat-

egy. Robust makespan for an execution strategy is any
makespan value that has a risk less than α. The risk
for a makespan value, M given an execution strategy

is the probability that a schedule instantiated from the
execution strategy will not finish before M given the
uncertainty over durations and resources.

We make three key contributions: (a) Firstly, we
provide an analytical evaluation of resource breakdowns
and repairs on executions of activities; (b) We then in-
corporate such information into a local search frame-
work and generate execution strategies that can absorb
resource and durational uncertainties; and (c) Finally,
to improve robustness of resulting strategies, we pro-
pose Resource Breakdown Aware Chaining procedure
with three different metrics. This chaining procedure
computes resource allocations by predicting the effect
of breakdowns on robustness of generated strategies.
Experiments show effectiveness of our proposed meth-
ods in providing more robust execution strategies under
uncertainty.

Na FU · Hoong Chuin LAU · Pradeep VARAKANTHAM
E-mail: nafu@smu.edu.sg E-mail: hclau@smu.edu.sg E-mail:
pradeepv@smu.edu.sg
School of Information Systems,
Singapore Management University,
80 Stamford Road, 178902 Singapore

Keywords Project scheduling · Risk management ·
Robustness and sensitivity analysis · Uncertainty

modeling

1 Introduction

Research on scheduling has typically considered prob-
lems with fixed resource capacities and deterministic

durations. However, in real-world environments, it is
difficult to stick to the baseline schedule due to external
uncontrollable events such as manpower unavailability,

machine breakdowns, weather changes, etc. Existing lit-
erature has referred to such external events as disrup-
tions. Broadly, this paper is motivated towards manag-
ing such disruptions in the context of project schedul-
ing problems. In disruption management for project
scheduling [38], there are three categories of disrup-
tions: project network disruptions, activity disruptions

and resource disruptions. Existing research in project
scheduling has individually considered activity disrup-
tions (durational variability for activities) [3,12,15,28,
35,37] and resource disruptions (due to breakdowns) [24–
27]. Research in this paper builds over this existing re-
search along two dimensions: (a) We solve RCPSP/max
where there exist both activity and resource disrup-

tions; and (b) We consider the more realistic risk aware
objective to hedge against uncertainty associated with
activity and resource disruptions.

A direct consequence of considering disruptions is a
delay in the scheduled completion time of the project. A
second consequence of stochasticity due to disruptions
is the additional computational complexity over and
above solving the underlying deterministic scheduling
problem. For example, in the infinite-resource project
scheduling problem where processing times have two
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possible discrete values, the problem of computing the

expected makespan (or any point on the cumulative

distribution of the optimal makespan), is #P-hard [18,

29]. It has also been shown that for the one-machine

scheduling problem with stochastic durations, the prob-

lem of computing a policy (i.e., execution strategy)

maximizing the probability that some job completes

exactly at the deadline is PSPACE-hard [10]. A one-

machine scheduling problem with probabilistic dura-

tions was also considered in [9], with an objective to

capture the likelihood that a schedule yields actual per-

formance no worse than a given target level. This has

been shown to be NP-hard even though the underly-

ing deterministic problem can be solved in polynomial

time.

In this paper, the deterministic problem of interest

is the Resource Constrained Project Scheduling Prob-

lem with minimum and maximum time lags (RCPSP/max).

It represents important scheduling problems in manu-

facturing, logistics and project management. Though

these problems have been shown to be NP-hard [2],

local search based techniques [13] have achieved great

success in solving these problems. Taking a cue from

this, Fu et al [15] combined techniques from robust op-

timization with local search and solved RCPSP/max

with durational uncertainty from a risk management

perspective to obtain a Partial Order Schedule (POS)

[32] (a type of execution strategy). More specifically,

given a level of risk 0 < ε ≤ 1, the goal is to obtain the

minimum robust makespan POS.

As indicated earlier, we consider RCPSP/max where

there are both activity and resource disruptions. Our

approach extends the robust local search mechanism

proposed for RCPSP/max with uncertain activity du-

rations [15]. Precisely, we are interested in the follow-

ing problem: given activity disruptions described by a

random variable with mild distributional support (such

as mean and variance) for each activity, and resource

breakdown described by exponential distributions for

the time between failure as well as repair time for each

resource, construct a minimum robust makespan POS.

Concretely, we make three key contributions over our

previous work in [15]: (a) We propose Resource Break-

down Aware Chaining procedure with three different

metrics to obtain execution strategies based on resource

breakdown and repair distributions; (b) We develop a

mechanism that translates resource breakdowns to (fur-

ther) duration variability of activities (extending on the

work of [26]); and (c) We extend the local search frame-

work from [15] for computing an execution strategy (us-

ing the chaining algorithm in (a)) that seeks to find the

minimum robust makespan, updated to account for the

further durational variability obtained in (b). It should

be noted that we have extended the work in our con-

ference paper [16] using the contribution in (a).

The rest of the paper is organized as follows. In the

next section, we present existing relevant research, fol-

lowed by a brief background and solution concepts re-

ferred to in this paper. We then present the mechanism

for mapping resource breakdown to duration variabil-

ity in Section 4. In Section 5, we describe the three

metrics that are used in the chaining procedure to im-

prove robustness of execution strategies. In Section 6,

we present the extended robust local search framework

that incorporates the chaining procedure and the mea-

surement of upper bound on robust makespan of execu-

tion strategies using the updated durational variability.

Finally, we describe our experimental setup and results

in Section 8.

2 Literature Review

In the recent decades, there has been a growing in-

terest to account for uncertainty in scheduling [1,3,5,

19,28,35]. Broadly, one may classify the techniques to

tackle scheduling with uncertainty into two categories:

Proactive Scheduling is to design a priori schedule or a

schedule policy (i.e. execution strategy) that take into

account the possible uncertainty that may occur; Re-

active Scheduling modifies or re-optimizes the baseline

schedule when an unexpected event occurs. This work

focuses on proactive scheduling, where the goal is to

compute an execution strategy that is robust to uncer-

tainties from different sources.

The main idea of proactive techniques is to build a

global solution which does not need to be revised dur-

ing execution. One line of work of proactive scheduling

is to consider design of good schedule policies (e.g. [30])

that provide online decision rules such that at time t,

the policy decides which task(s) may start and which re-

source(s) to assign. In [11], resource-based policies for

RCPSP with uncertain durations was applied, where

the decision times are determined by the realization of

durational uncertainty. The objective of that work is to

determine a project execution policy with minimized

execution cost. Another example is the notion of Par-

tial Order Schedule (POS) defined in [32] which seeks to

retain temporal flexibility whenever the problem con-

straints allow it and can often absorb unexpected de-

viation from predictive assumptions. They considered

robustness measures such as fluidity and flexibility. Dif-

ferent methods of generating POSs were compared in

the work of [33] with respect to robustness of resulting

schedules. In [17] , POS was adopted as an execution

strategy when addressing RCPSP/max with durational
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uncertainty. In this work, we solve a much more com-

plex problem, where both resource breakdowns and du-

rational uncertainty are present.

The problem of minimizing schedule instability for

RCPSP with stochastic resource availability was con-

sidered in [24–27]. Schedule instability is defined as the

expected weighted deviation between the computed and

the realized schedules. In [25,26], the expected values

of durational extensions due to resource breakdowns

were calculated and used for allocating time buffer into

an initial, unbuffered schedule to absorb the impact of

breakdowns. Our work differs from this line of work in

two aspects. Firstly, as opposed to generating one base-

line schedule, we construct a POS that represents a set

of feasible schedules and hence is more flexible. Sec-

ondly, we compute both expected and variance values of

durational extensions due to resource breakdowns and

use them in designing chaining heuristics for improving

robustness of POS (instead of one schedule). In [27] ,

reactive scheduling procedures were described to make

feasible online choices that deviate as little as possi-

ble from the baseline schedule when disturbances occur.

In our work, we solve the project scheduling problems

under uncertainty proactively. In [24], proactive strate-

gies were proposed to generate baseline schedule with

or without resource or time buffers. A list scheduling

based reactive strategy and a tabu search based heuris-

tic were then applied to revert to a feasible schedule

online. In that work, the interrupted activity has to be

restarted from scratch each time it is interrupted, while

in our work, we assume a preempt-resume setting. A

possible extension of our work is to combine the online

techniques proposed in [24] and [27] with our methods,

thereby allowing us to implement proven robust execu-

tion strategies and good online behaviors.

3 Preliminaries

In this section, we briefly describe the notation, the

scheduling models and the solution concepts relevant

to this paper. A random variable will be denoted by

x̃ and bold face lower case letters such as x represent

vectors.

3.1 Deterministic RCPSP/max

The RCPSP/max [2] is defined as follows. There are

N activities {a1, a2..., aN}, where each activity ai (i =

1, ...N) is to be executed for a certain amount of time

units without preemption. Each activity ai has a fixed

duration or processing time di, which is assumed to be a

non-negative real number or non-negative integer num-

ber. In addition, “source” and “sink” activities a0 and

aN+1 with d0 = dN+1 = 0 are introduced to repre-

sent the beginning and the completion of the project,

respectively. A start time schedule ss is an assignment

of start times to all activities a1, a2..., aN , i.e. a vector

ss = (st(a1), st(a2), ...st(aN )) where st(ai) represents

the start time of activity ai and st(a0) is assumed to be

0. Let et(ai) be the end time of activity ai. Since dura-

tions are deterministic and preemption is not allowed,

we then have

st(ai) + di = et(ai) (1)

And the project makespan which is also the start time

of the final ”sink” activity st(aN+1) equals

st(aN+1) = maxiet(ai) (2)

Schedules are subject to two kinds of constraints,

temporal constraints and resource constraints.

Temporal constraints restrict the time lags between

activities. A minimum time lag Tminij between the start

time of two different activities ai and aj enforces the

following constraint:

st(aj)− st(ai) ≥ Tminij . (3)

Specially, Tminij = 0 means that activity aj cannot be

started before activity ai begins. A maximum time lag

Tmaxij between the start time of two different activities

ai and aj ensures that the following condition holds:

st(aj)− st(ai) ≤ Tmaxij . (4)

Tmaxij = 0 means that activity aj cannot be started after

activity ai begins. A schedule ss = (st(a1), ...st(aN )) is

time feasible, if all the time lag constraints are satisfied

at the start times st(ai) (i = 1, ...N).

A resource unit is reusable and available for another

activity once it is no longer used by the current activity.

Each type of resource, k (k = 1, 2...,K) has a limited

capacity, Ck. Each activity ai requires rik units of re-

source of type k. Let A(t) = {i ∈ {1, 2...N}|st(ai) ≤
t ≤ et(ai)} be the set of activities which are being pro-

cessed at time instant t. A schedule is resource feasible if

at each time instant t, the total demand for a resource

k does not exceed its capacity Ck, i.e.
∑
i∈A(t) rik ≤

Ck. A schedule ss is called feasible if it is both time

and resource feasible. The objective of the determinis-

tic RCPSP/max scheduling problem is to find a feasible

schedule so that the project makespan is minimized.
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3.2 RCPSP/max with Durational Uncertainty and

Robust Makespan

As for durational uncertainty, we follow the same rep-

resentation as in [15]: Irrespective of the distribution

type of the deviation, the duration of an activity can

be specified as a sum of its mean value, d0i and its de-

viation, z̃i with mean value as 0 (E[z̃i] = 0):

d̃i = d0i + z̃i, (5)

The random variables, {z̃i}, corresponding to deviation

are assumed to be independent of each other. This is a

standard assumption that has been employed and jus-

tified in existing work (e.g, [3] and [7]).

Similar to the deterministic setting, time lags in

the stochastic setting are also provided between start

times of activities (start-to-start) and they remain de-

terministic. Unlike the deterministic case, other types

of constraints (end-to-start etc.) cannot be converted

into deterministic start-to-start constraints. However, it

should be noted that our techniques will still be appli-

cable to all types of time lag constraints. In this paper,

for purposes of exposition, we present our techniques

assuming the temporal dependencies are provided as

start-to-start constraints.

In the deterministic setting, start time schedules

can be computed and values of makespan can be used

to evaluate the performance of the schedule. However,

when uncertainty is involved, the project makespan be-

comes a random variable and the schedule is replaced

by an execution strategy. Partial Order Schedule (POS)

[32] is used as an execution strategy for the scheduling

project under uncertainty.

Let S̃N+1(x, z̃) be the random variable used to rep-

resent the starting time of the sink activity, aN+1 given

a POS, x and stochasticity associated with durations

of random variables, z̃. Given a prescribed level of risk

0 < ε ≤ 1, we have the following key definitions relevant

to the objective of solving RCPSP/max with durational

uncertainty:

– Robust makespan of a POS x,Mx,z̃: (1−ε) quantile

of the cumulative distribution function for S̃N+1(x, z̃).

Formally:

P (S̃N+1(x, z̃) ≤Mx,z̃) ≥ (1− ε) or

P (S̃N+1(x, z̃) ≥Mx,z̃) ≤ ε (6)

– Upper bound on robust makespan of a POS x: Since,

there is no specific information regarding the distri-

butions of z̃ and there exist complex interdepen-

dencies between activities during execution, it is

not trivial to compute Mx,z̃ exactly. Hence, we use

Chebyshev inequality based upper bound that will

henceforth be represented as M̂x,z̃.

– Minimum robust makespan,M∗z̃: Lowest value of ro-

bust makespan for any POS for the given RCPSP/max

with durational uncertainty.

– Minimum upper bound on robust makespan: Given

the limitation with respect to computing exact ro-

bust makespan, we can only compute minimum up-

per bound on robust makespan, henceforth referred

to as , M̂∗z̃.

While the aim is to compute minimum robust makespan,

due to the lack of exact distributions of uncertainty,

the objective in solving a given RCPSP/max with du-

rational uncertainty is to find the POS that has the

minimum upper bound on robust makespan.

3.3 Partial Order Schedule

Partial Order Schedule (POS) was first proposed in [32].

It is defined as a set of activities, which are partially or-

dered such that any schedule with total activity order

consistent with the partial order is resource and time

feasible. A POS is represented by a graph where a node

represents an activity and the edges represent prece-

dence constraints between the activities. Once an activ-

ity partial order is generated, scheduling policies (e.g.

ES-policy) [36] can help compute start-times by start-

ing the activities as early as possible w.r.t. to original

and partial order-based precedence constraints. Within

a POS, each activity retains a set of feasible start times,

which provide the flexibility to respond to unexpected

disruptions.

A POS can be constructed from a given schedule via

a chaining algorithm. Chaining is a procedure of dis-

patching activities to different resource units based on

temporal and resource feasibility. A chain is a sequence

of activities, which is associated with a single resource

unit. During the chaining process, each activity can be

allocated to one or more resource chains based on the

resource requirement of the activity. Once an activity

is scheduled to be executed on a resource unit, an addi-

tional edge (indicating precedence constraint) is added

between the last activity of the selected chain and this

activity so as to eliminate possible resource conflicts.

The basic chaining algorithm proposed in [32] can

be described as follows. A feasible schedule is first ob-

tained using a simple greedy heuristic. Consequently,

the POS can be constructed through a chaining method

as follows: First, the set of activities are sorted accord-

ing to their start times given in the feasible solution;

Then, all activities are allocated to different chains in

that order, where each chain corresponds to a unit of

a certain type of resource. A chain is called available

for an activity if the end time of the last activity allo-
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cated on this chain is no greater than the start time of

the activity in the feasible schedule. Once an activity is

allocated on a chain, a precedence constraint between

this activity and the last activity of the chain is posted.

For those activities that require more than one unit of

one or more types of resources, they will be allocated to

a number of chains with the number equal to the overall

number of resource units required by the activity.

To reduce inter-dependencies between activities as

much as possible during the chaining procedure, two

heuristics were developed in [31]: (a) Activities that re-

quire more than one resource units are allocated to the

same subset of chains. (b) Activities with a precedence

constraint defined in the original problem are allocated

to the same set of chains. One direct advantage of such

approaches is that synchronization points of a solution

can be reduced so that flexibility can be improved.

3.4 Decision Rule - Segregated Linear Approximation

(SLA)

In the context of project scheduling under uncertainty,

we define a decision rule as the quantitative dependence

of activity start times on uncertainty deviation in dura-

tions associated with other activities. As earlier, let the

random variable S̃v(x, z̃) denote the start time of ac-

tivity v, where x represents the POS, and z̃ represents

the deviation in durations of activities. Following the

linear decision rule framework in [4], variable S̃v(x, z̃)

is assumed to be affinely dependent on a subset of N

primitive random variables (in this case, deviations in

durations of activities) z̃k (k = 1, ...N):

S̃v(x, z̃) = c0v +
∑N

k=1
cv,k(x)z̃k, (7)

where c0v represents the earliest start time of activity v

under POS x, cv,k(x) encodes how activity k is related

to activity v in the POS.

In the work by Chen et al [8], each primitive ran-

dom variable z̃ is represented by two segregated random

variables z̃+ and z̃−:

z̃ = z̃+ − z̃−,
z̃+ = max{z̃, 0}, z̃− = max{−z̃, 0}. (8)

Thus, the segregated linear approximation has the fol-

lowing general form:

S̃v(x, z̃) = c0v +
∑N

k=1
{c+v,k(x)z̃+k + c−v,k(x)z̃−k }. (9)

The idea of adopting the linear bound expression as

an approximation technique in scheduling is to make

the computation of robust makespan efficient. During

the project execution, activities are either connected in

series or in parallel, and the start time of an activity

is only dependent on the starting times of all its pre-

ceding activities. Thus, all variables for modelling start

times of activities can be defined as functions of other

variables through the addition operator (to model se-

rial activities) and/or the maximum operator (to model

parallel activities).

We now formally describe the computation of S̃(x, z̃)

by first representing durational uncertainty using segre-

gated random variables and then deriving expressions

for both the sum and maximum of random variables

as linear approximation of segregated variables. Let d0

denote the mean processing time of uncertain duration

d̃, we can view the negative segregated random variable

z̃− = max{d0 − d̃, 0} as earliness, i.e., the difference of

its processing time from the mean time d0 when the

activity is completed no later than its mean time. Sim-

ilarly, we can represent the positive segregated random

variable z̃+ = max{d̃ − d0, 0} as lateness, i.e., the dif-

ference of its processing time from the mean time d0

when the activity is completed no earlier than its mean

time. The uncertain duration d̃ is thus composed of

three components: its mean d0, lateness z̃+, and earli-

ness z̃−,

d̃ = d0 + z̃+ − z̃−. (10)

For a normally distributed duration, i.e., z̃ ∼ N{0, σ},
the respective values of mean and variance for the seg-

regated variables can be summarized as:

E[z̃+] = E[z̃−] = σ/
√

2π,

V ar[z̃+] = V ar[z̃−] = (π − 1)σ2/2π.
(11)

The proof is provided in Appendix A.

In [21], a robust optimisation method for solving

short-term production scheduling problems where un-

certainty is characterised by specific probability distri-

butions was presented. However, there are significant

differences with out work: (a) Unlike their algorithms,

our mechanisms are applicable for any kind of probabil-

ity distribution as long as only the mean and variance

of distributions are known; (b) We focus on a softer ver-

sion of robustness, namely the alpha-robust makespan,

whereas they focus on optimizing for the worst setting

of uncertainty.

3.4.1 Serial Activities

ConsiderM activities connected serially, i.e., precedence

constraints (either input or due to competing for same

resource) across theM activities form a chain. The start

time of activity v starting after the M -activity project

can be expressed as:

S̃v(x, z̃) =
∑M

i=1
(d0i + z̃+i − z̃

−
i ). (12)
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Thus, the random variable S̃v(x, z̃) has a mean value

of
∑M
i=1 d

0
i and uncertainty captured by a random vari-

able, which has a positive segregated component of
∑M
i=1 z̃

+
i

and a negative segregated component of −
∑M
i=1 z̃

−
i .

3.4.2 Parallel Activities

Consider some set C of activities that are executed con-

currently, the SLA decision rule for representing the

start time of activity v that begins after those activi-

ties in set C is given by1

S̃v(x, z̃) ≤ max
i∈C
{d0i }+

∑
i∈C

z̃+i . (13)

Thus, the random variable S̃v has an upper bound with

mean value of maxi∈C{d0i } and uncertainty captured by

a random variable with positive segregated components

given by
∑
i∈C z̃

+
i and no negative segregated compo-

nent. By overlooking the earliness, we give a rough es-

timation with respect to the ending time of parallel ac-

tivities. Note that such approximation is only applied

in measuring the upper bound on robust makespan of

POS x and not in deciding the real start times of ac-

tivities when executing x online.

More specifically, the output of solving RCPSP/max

involves a POS that is represented as a graph with ac-

tivities as vertices and precedence constraints between

activities as the edges. Given a POS graph, x = (V,E),

where V is the set of activities and E is the set of tempo-

ral dependencies (an edge (u, v) represents a temporal

dependency that states that activity u has to be com-

pleted before activity v can be started). For any activity

v ∈ V , the decision rule for computing its start time is

defined recursively as follows:

S̃v(x, z̃) = max
(u,v)∈E

{d0u + z̃u + S̃u(x, z̃)}. (14)

Eqn 14 is a recursive expression that is defined as a

combination of sum and maximum on a set of random

variables. Note that our aim here is to compute a POS,

which is only an ordering of activities scheduled on vari-

ous resources, with the robust makespan defined in Sec-

tion 3.5. Through our work, we do not make any as-

sumption on online execution like the exact start time

of activities, as that can be quickly computed during

the execution of the POS.

1 It should be noted that we have used ≤ for comparing
two stochastic variables. We have overloaded the ≤ opera-
tor and when we have X ≤ Y , where X and Y are random
variables, for all realizations of uncertainty, the outcome as-
sociated with random variable X will always be less than that
of Y . Since the RHS ignores realizations of z̃−i , any realisation
of actual start time, LHS (which considers the same realisa-
tions of z̃+i ,∀i ∈ C as RHS along with a subtraction value in

the realisation of z̃−i , ∀i ∈ C) would be less than the RHS.

Since, in both cases (sum and max) the decision vari-

able S̃v(x, z̃) can be expressed linearly on a subset of

random segregated variables, the recursive computation

in Eqn 14 is straightforward.

3.5 Upper Bound on Robust Makespan

Since we do not assume any specific distribution in-

formation for activity durations, computing the precise

probability of successful execution of x is computation-

ally very difficult. Hence, we compute an upper bound

of the robust makespan for a given POS, x. S̃N+1(x, z̃)

is the random variable used to represent start time of

sink activity, aN+1, and z̃ represents the uncertainty

about activity durations. From one sided Chebyshev’s

Inequality, we have:

M̂x,z̃ ≥ E[S̃N+1(x, z̃)] +

√
1− ε
ε

√
V ar[S̃N+1(x, z̃)]

=⇒ P (S̃N+1(x, z̃) ≥ M̂x,z̃) ≤ ε
(15)

where E[·] and V ar[·] represent the expected value and

variance of the argument random variable/distribution

respectively. We use the following tightest value of up-

per bound when performing local search, i.e.,

M̂x,z̃ = E[S̃N+1(x, z̃)] +

√
1− ε
ε

√
V ar[S̃N+1(x, z̃)].

Thus, without knowing specific distribution, the ob-

jective of solving RCPSP/max with durational uncer-

tainty can be rephrased as:

x∗ = arg min
x
M̂x,z̃

3.6 Robust Local Search Algorithm

This section will present how the decision rule approx-

imation introduced by SLA is integrated with the ro-

bust makespan definition and local search mechanisms

to provide a solution for the problems represented by

RCPSP/max with durational uncertainty in [15]. Al-

gorithm 1 provides the robust local search algorithm

guided by decision rule using SLA. Given the RCPSP/max

with durational uncertainty and the level of risk (0 <

ε ≤ 1), the algorithm returns a locally minimal POS in

terms of upper bound on robust makespan.

Robust local search is performed on the neighbor-

hood set of activity lists. An activity list (al) is defined

as a precedence-constrained feasible sequence that is

used by heuristics to generate earliest start time sched-

ules in solving the standard RCPSP problem [22]. Dif-

ferent activity lists are explored by local moves. The set
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Algorithm 1 Robust Local Search
1: Generate an activity list al randomly
2: Find a start time schedule, ss randomly according to al

3: if al ∈ F then
4: POS ← chaining(ss)
5: Compute M̂now according POS
6: Update M̂∗min as M̂now

7: else

8: Record the first activity a which cannot be scheduled
9: end if

10: for i← 1 to Max Iteration do

11: if al ∈ I then
12: Shift activity a ahead in al randomly as al’
13: else

14: Select two activities b and c in al randomly
15: Swap b and c in al as al’
16: end if

17: Find randomized start time schedule ss′ according to
al’

18: if al′ ∈ F then

19: POS′ ← chaining(ss′)
20: Compute M̂upd according to POS′

21: if al ∈ I or M̂upd ≤ M̂now then

22: M̂now ← M̂upd

23: al← al′

24: if M̂upd ≤ M̂∗min then

25: M̂∗min ← M̂upd

26: end if
27: end if

28: else if al ∈ I then

29: al← al′

30: else

31: p← rand(0, 1)
32: if p < 0.01 then
33: al← al′

34: Record the first activity a which cannot be sched-
uled

35: end if

36: end if

37: end for

of activity lists which result in feasible (or infeasible)

schedules is defined as F (or I).

The procedure starts by randomly generating an ac-

tivity list al (Line 1), which is a sequence of activities.

In Line 2, a schedule ss is produced based on ordering

of activities in the activity list al. It should be noted

that in generating al, the order is derived from only

the minimum time lags. However, when we translate

RCPSP/max into a distance graph in schedule genera-

tion (Line 2), both minimum and maximum time lags

are taken into account. The schedule generation works

as follows: based on the activity list, we first perform do-

main reduction on the distance graph using the Floyd-

Warshall algorithm, so that the feasible range of the

start time for each activity based on the temporal con-

straints can be obtained. We then schedule each activity

sequentially based on the order position in the activity

list. For each activity, we first pick a start time ran-

domly from the feasible domain and evaluate resource

constraints for the duration of that activity (i.e. check

if the resource amount used by that activity exceeds

the current resource capacity). Once the start time for

an activity is set, we run the shortest path algorithm to

reduce domains for the remaining activities and update

current resource capacity. If the resource constraints

are not satisfied, we will try to set the start time ran-

domly again for a prescribed maximum numbers of re-

tries. Once the start time of current activity is set, we

proceed iteratively to the next activity according to the

activity list until the whole schedule is generated.

For addressing RCPSP/max with uncertainty, our

focus is on exploring POS which is chained from a de-

terministic schedule. In Line 4, chaining() is employed

to generate a POS from the generated baseline sched-

ule. Max Iteration refers to the maximum number of

iterations in the robust local search. Two different types

of local moves are applied here. To converge quickly to

an activity list in F , the first local move is designed

to schedule the activity that is causing a temporal or

resource conflict to an earlier time. It will randomly

shift ahead the first activity which cannot be scheduled

in the current activity list (Line 12). When an activity

list is in F , the second local move will randomly pick

two activities and swap them in the current activity

list, while satisfying the non-negative minimal time lag

constraints (Lines 14-15). The move will be accepted,

if it results in a smaller or equal M̂upd value (Lines

18-29). To explore different activity lists, a small prob-

ability will be included to accept the move which leads

to an infeasible schedule (Lines 31-35). The probability

to move from an activity list in F to one in I is set to

0.01. The minimal value will be saved as M̂∗min.

4 Accounting for Resource Breakdowns in

RCPSP/max

We extend the above local search framework with con-

siderations on the impact of unexpected resource break-

downs to the robust makespan of an execution strategy.

4.1 Representation of Resource Breakdowns

Similar to existing research on resource constrained schedul-

ing [26], we assume resources are renewable. Our ap-

proaches will compute a resource allocation for activi-

ties before project execution and this resource assign-

ment remains fixed until the project finishes.

For a resource unit j of resource type k, we model

the time between failures as a random variable Xjk and

the time needed to repair that unit as a random variable

Yjk. Suppose that both Xjk and Yjk are exponentially
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distributed. Then the corresponding cumulative distri-

butions FXjk
(x) and GYjk

(y) are given by:

FXjk
(x) = 1− e−λjkx, GYjk

(x) = 1− e−µjky, (16)

where 1/λjk and 1/µjk are expected values of Xjk and

Yjk, respectively.

4.2 Analytical Effect of Resource Breakdown

Our approach is to increase durations of activities to

account for resource breakdowns. Extending on exist-

ing research [26], we will now analytically measure the

impact of resource breakdowns on an activity’s dura-

tion. Given that we have a fixed resource assignment

to each activity, we can precisely translate a resource

breakdown as delay in the activity currently using it.

Note that since we also consider the activity to already

have an innate duration variability, this adds further

variability to the activity. (We will consider both in

Section 6). Where we depart from [26] in our analysis

is that we also measure the variance in addition to the

mean values of the resulting duration variability.

We first assume that resource breakdowns can only

occur during activity execution. For simplicity, we as-

sume only one resource unit can break down at any

time. Whenever a resource unit breaks down, it will be

immediately sent for repair before it becomes available

again. In the meantime, the activity on executing with

a resource unit when it breaks down is interrupted and

has to wait for the resource to be repaired. It can re-

sume from the point where execution was interrupted.

Note that throughout the lifetime of an activity, there

may be multiple interruptions and we assume that any

two interruptions are independent from each other.

Based on duration representation of activity ai with

process time variability in Eqn 5, we now model activity

duration with the additional variability from resource

breakdowns as:

d̃i = d0i + z̃i + δ̃i, (17)

where d0i is the deterministic duration when no inter-

ruption occurs, z̃i being natural variability inherent in

natural process time, and δ̃i represents variability from

breakdowns. Thus, d̃i is the real duration of activity ai
under interruptions due to both natural variability and

variability from resource breakdowns.

Let Ni represent the number of interruptions due

to resource breakdowns during the execution of activ-

ity ai and Rij describe the time that activity ai waits

before it resumes at the jth interruption. According to

definitions, we have the following relationships:

δ̃i = ΣNi
j=0Rij , (18)

where δ̃i is the total delays due to resource breakdowns

and Ri0 equals to zero, which represents the case that

no resource breakdown occurs during the execution of

activity ai. For simplicity, due to the independence rela-

tionship we assumed before, we henceforth rewrite Rij
as Ri. Then, from Equation 18, we can calculate the

expected value of δ̃i as follows:

E[δ̃i] =
∑∞

j=0
jE[Ri]P (Ni = j) = E[Ri]E[Ni]. (19)

To further compute the variance of δ̃i, we need the fol-

lowing Lemma:

Lemma 41. [34] Let X1, X2, ...XN be independent and

identically distributed random variables with mean E[X]

and variance V ar[X]. The sum has the type

T =
∑N

i=1
Xi,

where N is a random variable with a finite mean and

variance and Xi are independent of N. Then the vari-

ance value of T is

V ar[T ] = [E[X]]2V ar[N ] + E[N ]V ar[X].

From Lemma 41, the variance of δ̃i can be calculated

as:

V ar[δ̃i] = [E[Ri]]
2V ar[Ni] + E[Ni]V ar[Ri]. (20)

From Eqns 19 and 20, mean and variance values

of δ̃i directly depend on mean and variance values Ni
and Ri. Appendix B provides the detailed calculation

of required probabilistic property on Ni and Ri. Based

on those information, values of E[δ̃i] and V ar[δ̃i] can

be determined as:

E[δ̃i] = d0i
K∑
k=1

rik∑
j=1

λjk

µjk
,

V ar[δ̃i] = d0i
K∑
k=1

rik∑
j=1

2λjk

(µjk)2
+ σ2

i (
K∑
k=1

rik∑
j=1

λjk

µjk
)2.

(21)

5 Resource Assignment Heuristics for Chaining

We provide a simplified overview of our robust local

search in Fig 1 to demonstrate the role of chaining pro-

cedure and resource assignments heuristics. Typically,

there exist multiple feasible resource allocations for ev-

ery activity during the chaining procedure (for con-

structing a POS). It should be noted that different as-

signments can lead to different execution strategies (or

POSs), each with a different level of robustness. Thus,

robust makespan may be affected with varying resource

assignments. In [16], resources are firstly ranked based

on the mean time to breakdown (1/λ) and activities are

greedily allocated to the first available resource based

on that order. However, such a greedy assignment is not
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Fig. 1 Overview of Local Search.

sensitive to resource repair distributions. Therefore, we

build on the latest chaining technique for POS [31] by

proposing heuristics for assigning activities to resource

chains (or units) based on both breakdown (λ) and re-

pair (µ) distribution parameters.

A key observation in this regard is the dependence

of Equation 21 on the terms λ/µ and λ/µ2. This implies

that expected value and variance of strategy robustness

are dependent directly on uncertainty parameters rel-

evant to resource breakdowns. Based on this observa-

tion, we propose our chaining algorithm called Resource

Breakdown Aware Chaining. Intuitively, we will assign

longer duration activities to less unreliable resources,

where the unreliability is characterized by any of the

three heuristics:

– Mean Heuristic (MH), where unreliability is defined

by λ/µ

– Variance Heuristic (VH), where unreliability is de-

fined by λ/µ2

– Mean and Variance Heuristic (MVH), where unreli-

ability is a combination of λ/µ and λ/µ2.

Algorithm 2 provides the pseudo code for resource

breakdown aware chaining. Lines 4 - 8 and Lines 20

- 29 constitute the chaining technique [31] introduced

in Section 3 that aims to improve the flexibility (or

parallelism). We improve this chaining procedure to in-

corporate sensitivity to resource breakdowns in Lines 9

- 18. Depending on the exact heuristic employed, the

last activity in a resource chain (or unit) is swapped so

that a longer duration activity is scheduled on a more

robust resource.

Algorithm 2 Resource Breakdown Aware Chaining,

RBAC (Activity a, Schedule ss, Heuristic h)

1: C(a) ← Find set of available chains, C(a) for activity a

based on S

2: U(a) ← Find set of unavailable chains, U(a) for activity
a based on S

3: P (a) ← Collect chains from C(a) with last activity of
chain preceding a in problem

4: if P (a) 6= φ then

5: k ← Get an available chain in P (a)
6: else

7: k ← Get an available chain in C(a)
8: end if
9: Let b denote the last activity of chain u

10: if ∃ u ∈ U(a), k ∈ C(b),dura > durb then

11: if h = ”MH”, λk/µk > λu/µu then
12: swap activity b onto chain k, k ← u

13: else if h = ”VH”, λk/µ2
k > λu/µ2

u then

14: swap activity b onto chain k, k ← u
15: else if h = ”MVH”,λk/µk > λu/µu, λk/µ2

k > λu/µ2
u

then

16: swap activity b onto chain k, k ← u
17: end if

18: end if
19: Post constraint between between last activity of chain k

(denoted as last(k)) and activity a

20: if a requires more than one resource unit then
21: C1(a) ← chains in C(a) which have last activity as

last(k)
22: C2(a)← C(a) \ C1(a)
23: for all resource units required by a do

24: choose an available chain belonging to C1(a)
25: if chain above is not feasible then
26: choose an available chain belonging to C2(a)
27: end if
28: end for
29: end if
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6 Extended Robust Local Search Framework

We now extend the robust local search framework with

additional considerations on the impact of resource break-

downs to the upper bound on robust makespan of a

given POS. First, we revise the segregated linear deci-

sion rules introduced in Section 3.4. The idea is to be

able to separate the effects of the innate duration vari-

ability and the delay due to resource breakdowns. For

this purpose, we introduce two notions: a real activity

and a dummy activity. For each activity ai, we divide it

into a “real” activity a′i and a “dummy” activity a′′i as

illustrated in Figure 2. Thus, duration of an activity is

tt
 {  { {

Fig. 2 “Real” Activity and “Dummy” Activity.

a sum of duration of its “real” part and the duration of

the “dummy” part. i.e. d̃i = d̃′i+ δ̃i, where the duration

of its dummy activity is modeled as δ̃i. We then model

the duration of the real part as:

d̃′i = d0i + z̃i = d0i + z̃+i − z̃
−
i , (22)

where the segregated random variables z̃+i and z̃−i rep-

resent lateness and earliness, respectively.

In a scheduling context, an activity will start ei-

ther after the end of an activity (i.e. in series) or after

the end of multiple activities occurring simultaneously

(i.e. in parallel). Now we describe the computation of

S̃v(x, z̃, δ̃) (compared with S̃v(x, z̃) under only dura-

tional uncertainty in Section 3.4) by representing both

resource and durational uncertainties as follows.

– Serial Activities: The start time of activity v start-

ing after the M -activity project is expressed as:

S̃v(x, z̃, δ̃) =
∑M

i=1
(d0i + δ̃i + z̃+i − z̃

−
i ). (23)

Mean and variance of the segregated variables z̃+

and z̃− are known, and mean and variance of varia-

tion δ̃i can be computed according to Eqn 21, hence

mean and variance of S̃v can be easily computed.

– Parallel Activities: Consider some set C of activities

that are executed concurrently, the upper bound on

the start time of activity v starting after the parallel

project network is represented as follows:

S̃v(x, z̃, δ̃) ≤ max
i∈C
{d0i }+

∑
i∈C

z̃+i +
∑
i∈C

δ̃i. (24)

Note that by summing up delays, we are computing

an expression for upper bound of the ending time of

any parallel project networks. Similarly, mean and

variance of the segregated variables are known, and

mean and variance of variation δ̃i can be computed

according to Eqn 21, hence mean and variance val-

ues of S̃v are easy to compute.

Based on the segregated linear decision rule under

both resource and durational uncertainties, the upper

bound on robust makespan of POS x which will be used

in our local search framework is defined as follows:

Definition 1. Given 0 < ε ≤ 1 and the start time of

sink node given by S̃N+1(x, z̃, δ̃), the upper bound on

robust makespan, M̂x,z̃,δ̃(ε), is defined as

E[S̃N+1(x, z̃, δ̃)] +

√
1− ε
ε

√
V ar[S̃N+1(x, z̃, δ̃)]. (25)

We are now ready to present our improved Robust

Local Search which is capable of handling resource and

durational uncertainties. The goal of the local search

mechanism is to find a local minimum of upper bound

on robust makespan, M̂∗
z̃,δ̃

. The detailed description

of our Robust Local Search with Resource Breakdown

Aware Chaining and MVH heuristic (RLSMVH) is pre-

sented in Algorithm 3.

Algorithm 3 RLSMVH

1: rank resource units in non-increasing order of reliability
2: initialize activity list AL

3: set i← 0;M̂∗min ←∞
4: while i < Max Iteration do

5: generate baseline schedule ss according to AL

6: initialize the POS
7: for all i ≤ N do

8: call RBAC(ai, ss, ”MVH”) to add to POS

9: end for
10: calculate robust makespan M̂now according to POS

11: if M̂now < M̂∗min then

12: set M̂∗min ← M̂now

13: end if
14: i← i+ 1
15: apply local move on AL to generate new AL
16: end while

17: return M̂∗min

The worst-case complexity of the robust local search

algorithmRLSMVH is given as follows. The sorting pro-

cess for resources with respect to reliability costs O(K ·
Cmax · log(K ·Cmax)), where K is the number of types

of resources and Cmax is the maximum capacity among

all resources. At each iteration of local search, baseline

schedule generation costs O(N ·(N3 +H ·K ·L)), where

N is the number of activities to be scheduled, H is the

maximum planning horizon2, and L is the prescribed

2 Maximum planning horizon is typically computed by as-
suming activities will be executed in a series and is the sum
of durations of activities along with temporal lags
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maximum number of retries for each activity on setting

the randomized start time. The cost for constructing

and evaluating POS is O(N · logN + N · K · Cmax).

Thus, the worst-case complexity of RLSMVH is

O(K · Cmax · log(K · Cmax)+T ·N4 + T ·N ·H ·K · L
+T ·N ·K · Cmax), (26)

where T is the number of iterations in local search3.

7 Discussions on Infeasibility

In this section, we provide discussions on cases where

we encounter infeasibility due to uncertain durations

and/or unreliable resources.

Firstly, the maximum time lags between activities

can be violated for some of the realizations of activ-

ity durations and/or unreliable resources. For such re-

alizations, there exists no feasible schedule and hence

makespan is infinity. However, since we are interested in

robust makespan (a value of makespan that is greater

than (1− ε)*100 percentage of all instances), the value

robust makespan returned by our approach is correct

as long as the level of risk, ε includes the probability of

seeing infeasible instances.

Secondly, it is possible that the POS constructed

from a baseline schedule corresponding to RCPSP/max

with expected duration generates schedules that are

not executable. The inexecutability arises due to a bad

ordering of activities in the POS that violate maxi-

mum time lags (due to construction from expected du-

rations). This type of infeasibility was discussed in our

earlier work [15] in great detail.

To understand the impact of both these infeasibil-

ities, we simulated the execution of POS provided by

our approach 500 times and computed the probability

of encountering an infeasibility due to either one of the

two reasons described above. We did this for all 270

problem instances in each of our three benchmark sets

J10, J20 and J30. We observe that all benchmark prob-

lems have a very small set of infeasible instances: the

expected value and variance of the infeasibility proba-

bility over all instances in J10 were 0.0578 and 0.0075,

in J20 are 0.0506, 0.0059, in J30 are 0.0406 0.0047, re-

spectively. That is to say, only 4-6% of the instances

were infeasible and by including this in our risk value,

ε we are able to account for these infeasibilities.

3 Since the complexity is linear in H, in the worst case, our
algorithm has pseudo polynomial complexity. However, if H
is within a constant factor of N , the worst complexity will be
linear

8 Experimental Evaluation

In this section, we compare the quality of the execu-

tion strategies generated by our robust local search ap-

proach with the new chaining algorithms against robust

local search with existing chaining algorithms.

8.1 Experimental Setup

The instances considered for RCPSP/max with resource

and durational uncertainties were obtained by extend-

ing the three benchmark sets available for RCPSP/max,

J10, J20 and J30 as specified in PSPLib [23]. Each set

contains 270 instances with duration for each activity

ranging between 1 and 10. The maximum number of

activities for J10, J20 and J30 are 10, 20 and 30, re-

spectively. For each activity ai, we set the fixed part

d0i of the stochastic duration as the corresponding de-

terministic duration given by benchmarks, and assume

durational uncertainty is normally distributed, i.e. z̃i ∼
N(0, σ). We set σ = 0.1 and run algorithms on four in-

creasing levels of risk ε = {0.01, 0.05, 0.1, 0.2}. As for re-

source uncertainty, we set λ and µ each randomly picked

from one of the intervals, respectively: 1/λ ∈ {[5, 15],

[15, 25], [25, 35]}, 1/µ ∈ {[0.25, 0.33], [0.33, 0.5], [0.5, 1]}.
Intuitively, 1/λ and 1/µ represent a decent range of val-

ues for the expected value of the time between break-

downs and the time for repair.

We compare robust local search with different chain-

ing procedures: a) (RLSMH) is the robust local search

with mean heuristic chaining ; b) (RLSV H) is the ro-

bust local search with variance heuristic chaining; c)

(RLSMVH) is the robust local search with combined

mean variance chaining; d) (RLSFBC) refers to the ro-

bust local search with Forward-Backward Chaining in

[16].

The number of local search iterations for robust lo-

cal search was set to 1000. To reduce the stochasticity

effects of robust local search, we average over 10 random

executions for each problem instance. Our code was im-

plemented in C++ and executed on a Core(TM)2 Duo

CPU 2.33GHz processor under FedoraCore 11 (Kernel

Linux 2.6.29.4-167.fc11.i586).

8.2 Comparisons between Chaining Procedures

To test the performance of our proposed chaining pro-

cedures, we compare the average robust makespans of

270 problem instances under different levels of risk. Ta-

ble 1 shows how different chaining procedures and risk

levels ε affect robust makespan over different data sets,

each of which are generated randomly with 1/λ and 1/µ
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set to [5,15] and [0.5,1], respectively. While we consid-

ered one set of values for µ and λ, we observed similar

results for other range of values. All runs on all in-

stances of J10, J20 and J30 completed in the less than

10 seconds each. Hence, we do not provide a detailed

comparison with respect to run-times. Here are the key

conclusions:

– Irrespective of problem scale, as the level of risk ε

increases, the value of robust makespan decreases

with all four algorithms. This is an expected result,

where the lower risk that the scheduler is willing

to take, the higher is the robust value of generated

execution strategy;

– Irrespective of problem scale and the level of risk,

our proposed methods (RLSMH ,RLSV H andRLSMVH)

can provide better robust makespan than results re-

ported in [16]. This indicates that considering ro-

bustness chaining helps improving robustness of gen-

erated execution strategy;

– Irrespective of problem scale and the level of risk,

RLSMVH performs better thanRLSMHandRLSV H ,

but we do not see any superiority between RLSMH

and RLSV H .

Prob Algo ε = 0.2 ε = 0.1 ε = 0.05 ε = 0.01

J10

RLSMH 86.13 90.47 96.36 120.55
RLSVH 87.28 91.68 97.65 122.22
RLSMVH 84.43 88.76 94.65 118.83
RLSFBC 90.13 94.60 100.68 125.67

J20

RLSMH 274.02 280.17 288.54 322.92
RLSVH 255.76 261.86 270.15 304.26
RLSMVH 241.03 247.16 255.5 289.74
RLSFBC 328.68 334.93 343.42 378.27

J30

RLSMH 337.44 344.7 354.55 395.1
RLSVH 331.12 338.36 348.2 388.68
RLSMVH 309.78 317.03 326.89 367.43
RLSFBC 353.58 360.97 371.01 412.21

Table 1 Comparison of RLSMH , RLSVH , RLSMVH against
RLSFBC .

8.2.1 Effect of Breakdown Parameters on Robustness

We now show the effect of different breakdown param-

eters on robustness of generated POSs. We consider all

the values of µ and λ shown in Table 2. While the risk

value ε is set to 0.2 for these results, similar results were

observed for other epsilon values as well.

The key conclusion is that the minimum robust makespan

increases when λ increases, and it decreases when µ in-

creases, as mean and variance parts of durational ex-

tension due to resource breakdowns increase when λ in-

creases according to Eqn 21, while the values decrease

when µ increases.

Prob 1/µ ∈ [0.25,0.33] [0.33,0.5] [0.5,1]

J10

[5,15] 57.37 63.4 84.43
1/λ ∈ [15,25] 49.82 52.18 58.1

[25,35] 48.33 50.1 54.43

J20

[5,15] 95.86 123.08 241.03
1/λ ∈ [15,25] 81.99 85.61 96.48

[25,35] 79.55 82.31 89.41

J30

[5,15] 143.8 187.26 309.78
1/λ ∈ [15,25] 106.41 111.11 143.58

[25,35] 103.71 107.14 116.41

Table 2 Minimum Robust Makespan with Different Break-
down Parameters.

8.3 Simulation

Next, we evaluate the quality of obtained execution

strategies with respect to the difference between ro-

bust makespans calculated by our approach and the

makespans that are actually achieved when executing

the schedules obtained from our execution strategies.

For this purpose, we first generate 100 scenarios of du-

rational variability (normally distributed with mean 0

and standard deviation 0.1) and resource breakdowns.

Each scenario of resource uncertainty corresponds to

the pair of time between breakdowns and repair time

exponentially distributed with with 1/λ and 1/µ set

to [15,25] and [0.5,1], respectively. We test all 270 in-

stances of each benchmark set with the level of risk

ε = 0.2 and obtain the respective POSs. Then we com-

pute the actual makespans of schedules derived from

the respective POSs under the given realization sam-

ples.

Figure 3 provides the simulation results for three

randomly chosen instances from J10, J20 and J30 bench-

mark sets and similar results can also be obtained from

other instances. In each graph, we provide three lines:

computed f ′∗, actual f ′∗ by simulation and determinis-

tic makespan; and the actual realization for each of the

100 uncertainty realizations. It should be noted that

even in the case with a variance of 0.1, the worst case

gap between calculated and actual makespans is not

significant.

9 Conclusion

In this paper, we provided a scalable architecture for

solving RCPSP/max with stochastic durations and un-

reliable resources. The major contribution of the paper

is the Resource Breakdown Aware Chaining procedure

with three different metrics (MH, VH and MVH) to

obtain execution strategies based on resource break-

down and repair distributions. Furthermore, we have

provided formal mechanisms for (i) predicting the effect

of resource breakdowns and repairs on the minimum ro-
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(a) J10 Instance. (b) J20 Instance. (c) J30 Instance.

Fig. 3 Comparison of Gap between Actual Minimum Robust Makespan and Minimum Robust Makespan Calculated from
Robust Local Search RLSMVH . The cross marks indicate the Actual Makespans for different scenarios of durational and
resource uncertainty. Various lines starting from the top indicate: Computed f ′∗, Actual f ′∗ by Simulation, and Deterministic
Makespan.

bust makespan; (ii) suggesting more robust resource al-

locations. Experimental results illustrate improved ro-

bustness of execution strategies with the new chaining

technique.

There are two key assumptions in this research that

we hope to relax in the future:

– Firstly, we have assumed exponential distributions

for times between resource breakdowns and repair

times once resources break down. An immediate re-

laxation of this assumption would be to address

RCPSP/max with only mean and variance of re-

source uncertainty (rather than any specific distri-

bution). Furthermore, different decision rules con-

tributed by [15] for computing schedules with re-

spect to execution strategy and realizations of un-

certainty would also be applied for generating ro-

bust execution strategies.

– While we consider different resource allocations dur-

ing the chaining procedure, the resource assignment

will remain fixed during execution once it is gen-

erated. We hope to relax this using the online ap-

proaches contributed in [24] and [27].

Appendix

A Proof of Eqn 11

From Eqn 8,we can express z̃+ and z̃− by the following set
of equations:

z̃+ = (z̃ + |z̃|)/2, z̃− = (|z̃| − z̃)/2. (27)

As z̃ ∼ N{0, σ}, |z̃| follows half-normal distribution with
the expected value and variance given by,

E[|z̃|] = 2σ/
√

2π, var[|z̃|] = σ2(1− 2/π). (28)

From definitions of z̃+, z̃− and Equation 28, we have,

E[z̃+] = E[z̃−] = σ/
√

2π,
V ar[z̃+] = E[(z̃+)2]− (E[z̃+])2 = (π − 1)σ2/2π.

(29)

Similarly, V ar[z̃−] = (π − 1)σ2/2π.

B Proof of Eqn 21

To determine values of E[δ̃i] and V ar[δ̃i], we need to calculate
mean and variance values of Ni and Ri. The detailed mathe-
matical derivation will be shown in the following subsections.

B.1 Number of Interruptions.

In this subsection, we analyze random variable Ni describing
the total number of interruptions due to resource breakdowns
experienced by activity throughout its execution.

Lemma B1. [20] Let X1, X2, ...Xn be independent exponen-
tial random variables with parameters λ1, λ2, ...λn, respectively.

Then the minimum of these random variables follows an expo-

nential distribution; that is,

min{X1, X2, ...Xn} ∼ EXP (
∑n

i=1
λi).

During execution, activity ai would be interrupted as soon
as one of these resource units allocated to ai breaks down.
Suppose Ti is a random variable representing the minimum
time to failure over all resource units allocated to activity ai.
We can represent Ti as follows.

Ti = min{X11, ..., Xri11, ..., X1K , ..., XriKK}. (30)

We then rewrite Ti as:

Ti = min{M1,M2, ...,MK}, (31)

where Mk is a random variable representing the minimum
time to breakdown of all resource units of resource type k
needed by activity ai, and Mk = min{X1k, X2k, ...Xrikk}.

Since Xjk ∼ EXP (λjk), using Lemma B1, we have,

Mk ∼ EXP (
∑rik
j=1 λjk). (32)

Similarly, following Eqns 31, 32 and Lemma B1, we can
see that Ti is also exponentially distributed with the param-
eter

∑K
k=1

∑rik
j=1 λjk, so that

E[Ti] = 1/
∑K
k=1

∑rik
j=1 λjk. (33)
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Without consideration of resource variability, duration of
activity i is represented as the sum of its mean d0i and natural
variability z̃i with zero mean, i.e.,

E[z̃i] = 0. (34)

Let {zi} denote the realization set of durational variability
z̃i. Thus, for a certain realization zi, duration of activity ai is
a deterministic value, i.e., d0 + zi.

Lemma B2. [20] Suppose the time between consecutive occur-

rences of arrivals follows an exponential distribution with param-
eter λ. Let X(t) be the number of occurrences by time t, then

X(t) follows a Poisson distribution with parameter λ ∗ t.

Using Lemma B2 by Hillier and Lieberman [20], the num-
ber of interruptions of activity ai during its execution d0i +zi,
follows a Poisson distribution with the mean number of oc-
currences given by (d0i + zi)/E[Ti]. In other words, mean and
variance values for the number of interruptions for the real-
ization are:

E[Ni|zi] = V ar[Ni|zi] = (d0 + zi)
∑K
k=1

∑rik
j=1 λjk. (35)

The above shows the analysis on the number of inter-
ruptions for fixed duration, now we extend that with con-
sideration of stochastic duration. According to Law of Total
Expectation [6], the expected value of Ni is the same as the
conditional expected value of Ni given z̃i, i.e.,

E[Ni] = Ez̃i [ENi|z̃i [Ni|z̃i]]. (36)

Based on the representation of the mean number of in-
terruptions for the deterministic case in Eqn 35 and Eqn 34,
mean of Ni can be calculated as:

E[Ni] = Ez̃i [ENi|z̃i [Ni|z̃i]]
= Ez̃i [(d

0 + z̃i)
∑K
k=1

∑rik
j=1 λjk]

= d0
∑K
k=1

∑rik
j=1 λjk.

(37)

According to Law of Total Variance [6], variance of the
number of interruptions of activity ai can be represented as:

V ar[Ni] = E[V ar[Ni|z̃i]] + V ar[E[Ni|z̃i]]. (38)

According to our analysis for the variance representation
of the deterministic case in Eqn 35, we have,

E[V ar[Ni|z̃i]] = E[(d0 + z̃i)
∑K
k=1

∑rik
j=1 λjk]

= d0
∑K
k=1

∑rik
j=1 λjk,

(39)

and

V ar[E[Ni|z̃i]] = V ar[(d0 + z̃i)
∑K
k=1

∑rik
j=1 λjk]

= σ2
i (
∑K
k=1

∑rik
j=1 λjk)2.

(40)

Thus, the variance value of the number of interruptions
can be represented by:

V ar[Ni] = d0
K∑
k=1

rik∑
j=1

λjk + σ2
i (

K∑
k=1

rik∑
j=1

λjk)2. (41)

B.2 Total Vacancy Time.

Lemma B3. [26] Let X and Y be independent random variables
that are both exponentially distributed, respectively with param-

eter λ and µ. The probability that X will be smaller than Y is

then:

P (X < Y ) = λ/(λ+ µ).

Let Pjk denote the probability that the interruption for
activity ai is caused by the resource unit j of resource type
k. That is, among all resource units used by activity ai, this
resource unit has the smallest time to breakdown. Then Pjk
can be calculated as:

Pjk = P (Xjk < min
l=1,...K;i=1,...ril;(i,l)6=(j.k)

Xil). (42)

From Eqn 42 and Lemma B3, we can rewrite Pjk as:

Pjk = λjk/(λjk +
∑

l=1,...K;i=1,...ril;(i,l)6=(j.k)

λil)

= λjk/
K∑
l=1

ril∑
i=1

λil.
(43)

Since we assume that only one unit of resource is allowed
to break down at a time, we can calculate the mean and
variance values of Ri describing the vacancy time for ai to
wait once interrupted as:

E[Ri] =
K∑
k=1

rik∑
j=1

PjkE[Yjk].

V ar[Ri] = E[R2
i ]− E2[Ri]

=
K∑
k=1

rik∑
j=1

PjkE[Y 2
jk]− E2[Ri]

=
K∑
k=1

rik∑
j=1

Pjk(V ar[Yjk] + E2[Yjk])− E2[Ri].

(44)

Here, random variable Yjk represents the time needed to
repair the resource unit j of resource type k once broken.
Since we assume that Yjk ∼ EXP (µjk), then we can obtain:

E[Yjk] = 1/µjk, V ar[Yjk] = 1/(µjk)2. (45)

Therefore, from Eqns 19, 20, 37, 41, 44 and 45, mean and
variance values of the stochastic part of processing time can
be derived as:

E[δ̃i] = d0i

K∑
k=1

rik∑
j=1

λjk

µjk
,

V ar[δ̃i] = d0i

K∑
k=1

rik∑
j=1

2λjk

(µjk)2
+ σ2

i (
K∑
k=1

rik∑
j=1

λjk

µjk
)2.

(46)
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