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ABSTRACT
Next generation WLANs (802.11ac) are undergoing a major shift in
their communication paradigm with the introduction of multi-user
MIMO (MU-MIMO), transitioning from single-user to multi-user
communications. We argue that the conventional AP deployment
model of co-located antennas as well as their PHY and MAC mech-
anisms are not designed to realize the complete potential of MU-
MIMO. We propose to leverage distributed antenna systems (DAS)
to empower next generation 802.11ac networks. We highlight the
multitude of benefits that DAS brings to MU-MIMO and 802.11ac in
general. However, several challenges arise in the process of realizing
these benefits in practice, where avoiding client modifications and
making only minimal software modifications to APs is important
to enable rapid adoption. Towards addressing these challenges, we
present the design and implementation of MIDAS, the Multiple-Input
Distributed Antenna System. MIDAS couples a DAS deployment of
AP antennas with a suite of novel yet standards-compatible mech-
anisms at the PHY and MAC layers that best leverage the DAS
deployment to maximize 802.11ac performance. Our WARP-based
experimental evaluation demonstrates MIDAS’s ability to signifi-
cantly boost the performance of current 802.11ac design, demon-
strating throughput gains over 802.11ac MU-MIMO for 100-200%,
while remaining amenable to commercial adoption.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design—Wireless communication

Keywords
MIDAS; Distributed antenna system; DAS; Multi-user MIMO; MU-
MIMO; 802.11ac; Multiple input

1. INTRODUCTION
Recently, wireless LAN (WLAN) designs are undergoing a paradigm
shift, evolving from single-client to multi-client communication pat-
terns with the introduction of the 802.11ac standard. One of the key
reasons behind this move is a form factor of smart devices that limits
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Figure 1: CAS vs DAS deployment.

the number of antennas to one or two, with a consequent limit on
the number of streams that the AP can send to a single client, even if
the AP has many more antennas available. Multi-user MIMO allows
the AP to use all its antennas to send multiple streams of data to
different clients simultaneously. Clients measure the channel to the
AP and feed this channel state information (CSI) back to the AP,
which in turn sends different data streams on the downlink such that
each client receives only the data stream it needs, while other un-
wanted (and otherwise interfering) data streams are suppressed (this
process is called precoding). A popular and lightweight precoding
scheme is called zero-forcing beamforming [27] (ZFBF), wherein
undesired data streams are nulled (forced to zero) at a client. MU-
MIMO thereby allows the AP to better leverage its spatial (antenna)
resources and achieve multiplicative throughput increases: this is
called multiplexing gain.

While the incorporation of MU-MIMO in 802.11ac is a welcome
step towards utilizing the AP’s radios and antennas effectively, the
current WLAN deployment model is to co-locate all an AP’s an-
tennas within a few wavelengths of the carrier frequency, as shown
in Figure 1(a); we refer to this as a co-located antenna system, or
CAS. In this work we show that spatially separating the antennas
of an 802.11ac AP via RF or optical cabling, and leveraging MU-
MIMO through a Distributed Antenna System (DAS), as shown in
Figure 1(b), is essential to getting the most out of MU-MIMO.

Specifically, a DAS design has the potential to improve WLAN
performance by means of three distinct mechanisms:
1. Spatial Diversity. As illustrated in Figure 1, distributing the AP’s
antennas helps a client find an AP antenna closer to it on average
compared to in a CAS. This reduces the path loss on average and
hence improves link SNR and capacity.
2. Cell Capacity. In MU-MIMO, when data streams are sent to
different clients simultaneously from the AP, they interfere with each
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Figure 2: DAS increases the signal strength but also decreases the
interference cancellation burden on precoding.

other. This mutual interference is addressed through data encoding
(precoding) at the AP. With DAS, a client will likely have a much
stronger signal (S′

A,1) and weaker interference (I′B,1) as shown in
Figure 2(b). With carefully-chosen precoding, this better isolates
desired and interfering streams compared to a CAS system, where
path loss from different antennas is almost the same, as illustrated
in Figure 2(a). The result is an improved effective SINR and hence
better network throughput.
3. Network Capacity. In a DAS, the channel states (busy or idle) at
different AP antennas can differ, unlike in an 802.11ac CAS. With
each of the antennas having the ability to sense and decouple the
channel states helps leverage spatial reuse with finer granularity.
This not only allows for packing more concurrent transmissions
in the network, resulting in improved network capacity, but also
alleviates the hidden terminal issue (exacerbated with multi-client
communication) and reduces the deadzones in the coverage area.
Challenges in realizing DAS. While DAS-based MU-MIMO sys-
tems might appear similar in effect to deploying multiple CAS APs
(in place of distributed antennas), there are several performance and
practical benefits to the former that directly cater to 802.11ac as we
discuss in Section 2. To realize DAS, three practical, yet technically
challenging issues arise:

Firstly, while a DAS’s distributed antennas can emphasize the
desired streams at closer clients more than the interfering streams,
a conventional MU-MIMO precoding scheme such as zero-forcing
beamforming (ZFBF) that splits the power equally across the streams
neither meets practical 802.11ac per-antenna power constraints in
a DAS nor leverages the inherent topology advantage of a DAS.
On the other hand, precoding schemes for distributed MU-MIMO
systems with a per-antenna power constraint are either too compu-
tationally complex to realize [11, 32] or require modifications to
client receivers, hindering adoption.

Secondly, since it is designed for a CAS, 802.11ac’s MAC keeps
a single medium access channel state (idle or busy) for the entire
AP, but a DAS’ antennas are distributed, hence have different true
channel states. This channel state coupling significantly limits the
AP’s ability to achieve fine-grained spatial reuse and alleviate hidden
terminals in the network.

Finally, the MAC in a CAS treats all antennas alike, employing
all during the downlink precoded transmission. But unlike in a CAS,
in a DAS there is a large disparity across the channel gains from
each antenna to a client. Hence, selecting clients intelligently based
on the set of available idle antennas for MU-MIMO has a much
larger impact in DAS and has to be carefully tailored.
MIDAS. In this paper we propose MIDAS (the Multiple Input Dis-
tributed Antenna System), a WLAN design that combines a DAS
deployment of antennas with several software mechanisms at the

PHY and MAC layer to leverage the full potential of MU-MIMO.
MIDAS is standards-compliant in that it does not require any modi-
fications to the PHY, requires minimal software modifications to the
AP’s MAC, while maintaining complete transparency to clients.

At the PHY layer, MIDAS’s design includes a novel, lightweight,
power-balancing mechanism for ZFBF-based precoding. It respects
802.11’s per-antenna power constraint, while leveraging the inherent
topology imbalance between desired and interfering data streams to
appropriately assign power to the different streams. This enables MI-
DAS to deliver near-optimal precoding performance. Its lightweight
nature is conducive for implementation especially for channels with
small channel coherence time, and transparency to clients fosters
easier deployment and adoption. Further, with topology imbalance
being an inherent challenge for distributed MU-MIMO systems in
general, our precoding scheme also improves upon those in the
literature [19, 32].

At the MAC layer, MIDAS incorporates two novel mechanisms.
First, it re-designs the carrier sensing mechanism to allow for fine-
grained carrier sensing at each of the AP’s antennas by maintaining
multiple, independent medium occupancy states. With fine-grained
carrier sensing enabled, MIDAS allows for improved spatial reuse
and also alleviates hidden terminals. Second, it enables virtual
packet tagging, where each packet (of a client) is tagged with a
preferred list of antennas for transmission. The latter provides
a means to perform client filtering for MU-MIMO transmissions
that is tailored to the set of antennas available. This enhances
MU-MIMO performance considerably, while allowing the MAC to
leverage fine-grained spatial reuse opportunities.

We have implemented MIDAS on the Rice WARP [20] platform,
and deployed DAS with RF cables in two different indoor office
testbed environments. Experimental results demonstrate capacity
gains of around 30% from MIDAS’s precoding, 40% from DAS
deployment and 65% from its MAC mechanisms, to result in a
net gain of up to 200% over conventional 802.11ac MU-MIMO
systems. These results show that it is possible to significantly boost
the performance of MU-MIMO in next-generation WLANs while
being amenable to practical realization with off-the-shelf clients.

The rest of this paper is structured as follows. Following a quick
background on the most relevant technologies (§2), we present the
design of MIDAS in §3, highlighting the above novel contributions
and explaining how MIDAS addresses the above challenges. §4 de-
scribes our implementation of MIDAS. An experimental evaluation
(§5) follows, investigating how overcoming the above challenges
improves performance and why. §6 surveys the related work. §7
presents some additional discussion, and §8 concludes.

2. BACKGROUND
Conventional DAS. The distributed antennas of a DAS system
merely radiate the received RF signal (from the AP) within the AP’s
contention domain. WLAN [7] and mobile cellular networks [4, 29]
have long used conventional DASs to provide improved wireless
coverage indoors, especially in larger venues, such as convention
centers or stadiums. A conventional DAS simply broadcasts the
same signal from all antennas with some designs even using “leaky
feeder” coaxial cable that radiates RF energy continuously along
the length of the cable [21]. Thus conventional DASs preclude the
use of MU-MIMO and its associated spatial multiplexing gains. In
contrast, MIDAS is a true MU-MIMO DAS that can send different
RF signals to different antennas (i.e multiple input).
Multi-AP distributed MU-MIMO. Here transmitting antennas are
located at different APs, which run a fine-grained synchronization
protocol for phase-coherent transmissions. Considering the dif-
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ference between MIDAS and a multi-AP distributed MU-MIMO
system, there are several key differences. Distributed MIMO sys-
tems entail phase and time synchronizing all the APs and sharing
all their data on the wired backhaul network to enable distributed
MU-MIMO (e.g. MegaMIMO [19], AirSync [5]), which is a practi-
cal impediment to realization and deployment especially if different
organizations or people administer different APs. Even if feasible, it
would require a revamp of the 802.11ac protocol to allow multiple
802.11ac APs to share and jointly precode data to multiple clients.
In MIDAS, each 802.11ac AP serves as the central processing node
to realize MU-MIMO across its distributed antennas. Hence, phase
and time synchronization comes for free, and incurs no backhaul
overhead (RF signals are sent over DAS cables).
Deploy multiple conventional 802.11 CAS APs. Consider a Multi-
AP approach, where a CAS AP is deployed in place of each of the
antennas of a MIDAS deployment. Being logically similar, there are
several key differences in both practical realization and performance
between the two. Comparing MIDAS with Multi-AP, where each
of the CAS APs is a multiple antenna AP, is unfair to MIDAS in
terms of antenna and AP resources. However, even in this case,
MIDAS has an advantage over Multi-AP. Note that the antennas of
a MIDAS AP are distributed within the contention domain of the
AP. Deploying multiple APs within one content domain is ineffi-
cient. The counterpart CAS APs in Multi-AP are still restricted to
MU-MIMO transmissions from a single CAS AP since 802.11ac
does not allow for cooperation across APs. On the other hand, an
multiple stream transmission of higher aggregate rate is possible in
MIDAS due to the potentially higher rank channel matrix (due to
un-correlated channels) created by the distributed antennas. Further,
when each CAS AP consists of a single antenna in Multi-AP (for a
fair comparison), it would be restricted to a single stream within a
contention domain unlike MIDAS that can support multiple streams.

In essence, it is better to distribute the antenna resources of an
AP within a single contention domain for multi-user transmissions,
and DAS provides a practical primitive to realize this. DAS confers
the benefits of distributed MU-MIMO to a CAS-based MU-MIMO
system, while remaining compatible with 802.11ac, thereby fos-
tering easier adoption. However, it requires appropriate precoding
and MAC mechanisms to deliver its gains, which in turn forms the
objective for MIDAS.

3. DESIGN
In this section we describe the MIDAS design elements that com-
plement the DAS model with a suite of PHY- and MAC-layer mech-
anisms capable of delivering the most benefits out of a multi-user
communication system, while remaining standards-compliant. We
begin by considering how to precode transmissions at the AP’s dis-
tributed antennas while managing transmission power (§3.1). Next
we discuss MIDAS’s fine-grained channel sensing MAC (§3.2.2)
and client selection algorithms (§3.2.4, §3.2.5) that are tailored for
the DAS deployment. We put everything together in §3.2.1 and
conclude with a discussion of how the above design elements fit
readily into 802.11ac (§3.3), fostering easier adoption.

3.1 Pre-coding for MU-MIMO in MIDAS
To place MIDAS’s precoding algorithm into context, we begin with
a brief primer on conventional ZFBF, explaining the per-antenna
power constraint that 802.11ac places on each of the AP’s antennas
and the reasons behind this constraint.

3.1.1 Primer: Zero-forcing beamforming
ZFBF maximizes the SNR of each desired stream subject to the con-
straint that the interference each causes to other clients be completely

nulled. Such an approach is optimal for a total power constraint
[28] and can be formulated as an optimization problem to choose
precoding vectors �vj = {v1j · · · v|T |j}ᵀ for every client j in the set
of chosen clients C, where T is the set of transmit antennas.1 The
objective is to maximize the sum rate to the set of chosen clients C:

arg max
�vj

∑|C|
j=1 log(1 + ρj) (1)

where ρj =
|∑|T |

k=1 hjkvkj|2
No

(∀j ∈ C)

subject to the following two constraints:

|T |∑
k=1

|C|∑
j=1

|vkj|2 ≤ Ptot (∀k ∈ T ) (2a)

|T |∑
k=1

hikvkj = 0 (j ∈ C, i �= j) (2b)

where hjk is the complex channel gain from antenna k to client j.
Equation (2a) is the total power constraint, and (2b) is the precod-
ing constraint, i.e., precoded symbols should cancel each other at
client i while arriving at a desired client j (i �= j), resulting in an
SINR of ρj from desired stream j. This optimization problem in
fact has a closed-form solution: if the channel matrix is H, the best
precoder is the pseudoinverse of the channel matrix, H†. Subse-
quently splitting power among all data streams keeps the power
allocation process completely decoupled from precoding, making
ZFBF a highly lightweight, yet efficient solution that is attractive
for implementation.
The per-antenna power constraint. Since each antenna has its
own power amplifier, 802.11ac specifies a per-antenna power con-
straint P to replace the total power constraint (2a):

|C|∑
j=1

|vkj|2 ≤ P,∀k ∈ T (3)

In the presence of this constraint, ZFBF may still distribute power
equally across data streams, the sum power from all streams on
one antenna might either exceed or fall short of the per-antenna
power constraint, since each antenna serves a combination of all the
data streams according to the precoding vectors {�vj}. Furthermore,
there is no closed-form solution to this challenging optimization
problem [28], and employing numerical techniques incurs signif-
icant complexity without guaranteeing to converge to an optimal
solution [11, 32]. Hence, the key challenge is to design a precoding
solution that is as lightweight as ZFBF for implementation pur-
poses but at the same time performs an intelligent power allocation
across the data streams to leverage the available per-antenna power
effectively and thus maximize performance.
Relating Precoding to SINR. Let V =

[
�v1 · · ·�v|C|

]
be the precod-

ing matrix applied at the AP and S be the matrix of resulting SINR
values at the clients. Entry sij ∈ S measures the power from stream
i received at client j, and so captures the interference power from
stream i at client j when i �= j. The SINR ρj for the desired stream
at client j is

ρj =
sjj

1 +
∑

i;i�=j sij
where sij =

|∑|T |
k=1 hjkvki|2

No
(4)

1The notation (·)ᵀ indicates transpose.
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Figure 3: Capacity drop due to naïve power scaling.

Since interference is completely nulled in the case of ZFBF, the
SINR matrix reduces to a diagonal SNR matrix.

While ZFBF equally distributes total power among the streams
it may not satisfy the per-antenna power constraint (3). One might
wonder if a simple power reduction of individual streams on just
the antennas that violate (3) would solve the problem. But note
that under such a scaling, S becomes non-diagonal and inter-stream
interference arises, significantly reducing performance.
Naïve power scaling. To preserve the ZFBF property, we might
apply a “global” power reduction, scaling all streams on all antennas
by the same value. This means that we would find the antenna k∗

that violates (3) by the greatest amount:

k∗ = arg max
k:
∑

j |vkj|2>P

∑
j

|vkj|2 (5)

and then scale all streams on all antennas by a factor of 1/
∑

j |vkj|2
so that (3) holds. Such an approach has the potential drawback that
the available power on some of the antennas may be significantly
underutilized in the process. While this may not be a big problem
for CAS, the inherent imbalance in the topology of the antennas and
clients in DAS results in a large deviation between the maximum
and minimum power allocation to antennas. To illustrate this effect,
Figure 3 shows the capacity drop with this naive extension of con-
ventional ZFBF solution to meet the per-antenna power constraint.
This trace-based simulation result (for details of testbed, see §5)
is for a setup with single four-antenna AP and four single-antenna
clients, and clearly indicates that the sub-optimality of a naive power
allocation scheme is much more in DAS than in CAS.

3.1.2 Power-balanced precoding
The challenge in designing a lightweight yet efficient precoder
for MIDAS is to address the tension between the need to provide
interference-free streams and the need to deliver higher power to
clients under the per-antenna power constraint. MIDAS balances
both these needs to deliver improved MU-MIMO performance. Note
that after ZFBF is applied, it is necessary to scale down certain rows
of the precoding matrix (corresponding to antennas) that violate
the per-antenna power constraint, but this raises the two following
problems. Firstly, while different elements in the row may be scaled
by different amounts, this must be carefully done as scaling each
element of the row directly reduces the SNR and hence rate of one
of the streams. Secondly, it is important to scale the elements in
the same column (corresponding to a client) by the same factor
in order to retain the interference-free property of ZFBF. Hence,
the challenge is to pick scaling weights wj (0 < wj ≤ 1) for each
client j to apply to the ZFBF precoding solution that will ensure
all rows satisfy the per-antenna power constraint, while at the same
time keeping the associated loss in power and hence in rate to a

⎡
⎢⎢⎣

w1v11 v12 v13 v14

w1v21 v22 v23 v24

w1v31 v32 v33 v34

w1v41 v42 v43 v44

⎤
⎥⎥⎦

︸ ︷︷ ︸
Scaled precoding matrix V

→

⎡
⎢⎢⎣

w2
1s11 0 0 0
0 s22 0 0
0 0 s33 0
0 0 0 s44

⎤
⎥⎥⎦

︸ ︷︷ ︸
SINR matrix S

Figure 4: SNR impact of scaling a client’s precoding in V.

minimum. MIDAS realizes this through following novel, iterative,
power-balancing mechanism:
• Step 1: Apply ZFBF to compute the precoding matrix V.
• Step 2: Normalize each of the columns (clients) of V, applying

equal power to each stream.
• Step 3: Pick the row (AP antenna) k∗ that violates the per-antenna

power constraint by the most. Determine the appropriate scaling
weight wj (0 < wj ≤ 1) for each element (client) in this row
through reverse water-filling to correct the violation.

• Step 4: Apply the scaling weight (wj) computed for each element
(vk∗ j) of this row (k∗) to the entire column corresponding to that
stream (i.e. vkj ← wjvkj, ∀k, j), thereby retaining the interference-
free property of ZFBF. With the updated precoding values, repeat
steps 3 and 4 till all rows satisfy the per-antenna power constraint.

Restoring the per-antenna power constraint (Step 3). We now
elaborate on the key and novel step of determining the right set of
weights wj to satisfy (3). The received SINR ρj in ZFBF is related
to the precoded values through (4), where ρj = sjj. Approximating∑

j log2(1 + ρj) ≈ ∑
j log2(ρj) for moderate to large ρj, we find

that when we scale a column of V by wj, the net rate decreases to

∑
j

log2

(
|∑|T |

k=1 hjkvkj|2
No

)
+

∑
j

log2(w
2
j ) (6)

A 4 × 4 MU-MIMO precoding matrix scaling is shown in Figure
4. Note that while the rate reduction due to a scaling factor wj is
constant (log2(w

2
j )) and independent of the precoding value to which

it was applied, the corresponding reduction in power allocated to
different streams in the same antenna (|wjvkj|2) does depend on that
precoding value. Scaling larger precoding values thus contributes
to a larger reduction in power, thereby helping meet the power
constraint on the antenna with less loss in rate. MIDAS leverages
this key observation in its precoding power allocation algorithm.

When the same scaling factor is applied to all the elements of
a row (antenna), this does not leverage the large variation in the
precoding values of the row. Given that the latter is typical of a
DAS deployment, this results in a large loss in rate. Hence, MIDAS
determines a separate scaling factor for each of the elements in
the row, taking into account their precoding values. It adopts an
approach similar in principle to the classic technique of waterfill-
ing [27], albeit tailored for our problem. In conventional waterfilling,
given some power values in different bins and a remaining power
budget, the goal is to find power allocations to the bins such that the
aggregate rate is maximized. We have two requirements specifically
for our problem: (i) we need to potentially re-allocate power in
all the rows and zero power allocation to any of the streams is not
allowed as it will eliminate the use of that stream all together, and
(ii) when replacing existing power allocations in a row, we don’t
allow a stream to receive more power than its current allocation
because this allocation increase will apply to the same stream in
other rows as well, thereby resulting in potential power violations in
other rows that were previously satisfied. This is particularly serious
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Figure 5: Reverse water-filling concept.

as it can result in oscillations and getting stuck in an infinite loop,
preventing convergence to a solution.
Reverse Waterfilling. For these reasons, we address the reverse
version of the waterfilling problem, wherein we compute the power
reductions for each stream in the row so as to satisfy the corre-
sponding antenna power constraint, while keeping the rate loss to
a minimum. We refer to this problem as reverse waterfilling. Let
k be the row in which power violation needs to be restored. The
goal is to now maximize the net rate, while ensuring that the power
reductions Pj (resulting from down-scaling the precoding values, i.e.
wjvkj) restore the per-antenna power constraint.

Maximize
∑

j

log2

(
1 + w

2
j ρj

)
subject to,

∑
j

(|vkj|2 − Pj) ≤ P (7)

where w2
j = 1 − Pj

|vkj|2
. The Lagrangian for the above problem with

respect to the vector of power reductions P is

L(P) =
∑

j

log2

(
1 + (1 − Pj

|vkj|2
)ρj

)
− λ(

∑
j

(|vkj|2 − Pj)) (8)

Applying KKT conditions, one can obtain the power reductions as

Pj =

[
(1 +

1
ρj
)|vkj|2 − 1

λ

]+

(9)

where [x]+ = max{x, 0}. We now compute λ by applying the {Pj}
in the power constraint in Eqn. 7. The resulting scaling weights are
wj =

√
1

(|vkj|2∗λ)
− 1

ρj
. An illustration of our reverse waterfilling

solution is shown in Figure 5. Note that by computing only posi-
tive power reductions, we ensure that prior rows for which power
violations have been restored are not affected (thereby ensuring
convergence). Zero power allocation is not allowed so none of the
streams are removed from transmission.

Knowledge of the precoding values allows our solution to lever-
age the topology imbalance in DAS, while keeping the rate loss
to a minimum. This results in a large improvement over applying
conventional ZFBF-based MU-MIMO solutions for DAS (see Sec-
tion 5). Further, computing the reverse waterfilling solution is a
lightweight operation, can be done in closed form and needs to be
run at most |T | times. This makes the proposed power-balanced
precoding highly amenable to real-time implementation.

3.2 DAS-aware MAC for MU-MIMO
We first provide an overview of the joint MAC and PHY operations
in MIDAS. Then, we discuss its various design elements that handle
the MAC challenges unique to executing MU-MIMO over a DAS
deployment in 802.11ac.

3.2.1 Overview
In MIDAS, each of the antennas at an AP competes for access to the
channel independently. The sequence of MU-MIMO operations at
each MIDAS AP is as follows:
Step 1: Opportunistic Antenna Selection - Once an antenna at an
AP gains channel access, the AP checks the channel status (network
allocation vector, NAV timers) of other antennas to see if more
antennas can be opportunistically added (§3.2.2, §3.2.3).
Step 2: Virtual Packet Tagging - Each of the packets in the AP’s
queues are tagged with a subset of the DAS antenna IDs as their
preferred antennas (based on channel strength) for transmission to
the respective clients (§3.2.4).
Step 3: Client Selection - For each of the available antennas (say
n antennas), the AP determines the packet (client) that needs to be
scheduled based on both its tag as well as its fairness counter. The
antennas are considered in order of their NAV timer expiration. Each
antenna chooses a different client, resulting in n potential clients
(§3.2.5) for MU-MIMO transmission.
Step 4: Channel Estimation - Once a subset of n clients are de-
termined for MU-MIMO, the AP initiates the channel estimation
procedure and obtains the channel state information necessary for
precoding (§3.3).
Step 5: Power-balanced Precoding - The AP applies the power-
balanced precoding solution to execute MU-MIMO from the avail-
able antennas to the selected clients (§3.1).
Step 6: Counter Updates: The fairness counters for all the clients
serviced are updated and the procedure repeats.

3.2.2 Channel access at antenna granularity
Challenge: While the ability to sense the channels around the
antennas independently allows for finer spatial reuse with DAS,
the legacy MAC design in 802.11ac cannot leverage MIDAS’s full
potential for spatial reuse. This is because 802.11ac’s MAC is
still designed from the perspective of a CAS, allowing for a single
channel state at the transmitter. The approximation of the channel
states at multiple antennas with a single channel state parameter
becomes highly sub-optimal in a DAS set-up, where the antennas
could sense highly disparate channel states (some being idle while
others are busy). Engaging all the DAS antennas using the single
channel state conservatively (busy even if one antenna busy) would
prevent us from leveraging the fine grained spatial reuse offered
by DAS, while using it aggressively (idle even if one antenna idle)
would exacerbate the hidden terminal problem in MU-MIMO. The
key challenge here is to instrument 802.11ac’s MAC to allow for
independent channel sensing at each of the antennas and leverage it
effectively to improve spatial reuse with DAS.

Virtual Carrier Sensing Per-antenna: In addition to physical
carrier sensing at each of the antennas, MIDAS allows for indepen-
dent virtual carrier sensing at each of the antennas by provisioning
as many network allocation vector (NAV) timers as antennas. Each
of these NAVs captures the duration for which the channel around
an antenna is busy (based on overhead data or RTS/CTS head-
ers), thereby indicating which antennas are actually available for a
MU-MIMO transmission at any given instant. As we will discuss
below in Section 3.3, none of the other MAC related parameters
in 802.11ac such as contention window, backoff mechanisms, etc.
need to change, making the modifications easier to effect.

3.2.3 Opportunistic antenna selection
Challenge: Since each distributed antenna can sense different chan-
nel states at the same time, it is possible that while one antenna
is available for transmission, another antenna may not. However,
the busy antenna may soon become available within a short dura-
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tion in the future (based on its NAV timer). An important question
arises here: is it better to wait for additional antennas to become
available for MU-MIMO transmission or go with current available
antennas? While waiting for more antennas to become available
will increase the number of streams that can be multiplexed in MU-
MIMO, thereby delivering better throughput, it could also waste
precious air-time in waiting and hence lose throughput.

Opportunistic Selection: To strike a balance, MIDAS opportuni-
stically picks antennas for MU-MIMO transmission. When one of
the antennas gain access to the channel, the AP checks the NAV
timers of the remaining antennas to see if any of them will expire
within a DIFS duration. If so, it will wait for those particular an-
tennas to become available and use them all towards MU-MIMO
transmission. MIDAS selects the DIFS to be its short waiting period
to accumulate antennas for MU-MIMO transmission for the follow-
ing reasons: (i) DIFS is the basic time unit that every AP needs to
check for an idle channel before proceeding with any transmission,
(ii) it gives reasonable room to accumulate more antennas for MU-
MIMO transmission, and (iii) is not too long to lose out channel
access that has been gained.

3.2.4 Filtering clients based on available antennas
Challenge: Unlike CAS, the large disparity in the channel gains
from different antennas to a client in a DAS, results in some antennas
(with high gains) being naturally preferred for transmission to a
client over other antennas. Further, when a antenna’s channel state
is busy, serving a client in its vicinity from another antenna that is
free but farther away, is highly in-efficient. First, the channel gain
and hence rate to the client from the farther antenna would be low.
More importantly, the channel state of the antenna close to the client
being busy should reflect the potential state of the client as well.
Hence, making transmissions to such a client might not just be futile
but might add to hidden terminals in the network.

Virtual Packet Tagging: Based on the average received signal
strength from the different antennas at each client, the MIDAS AP
orders the antennas in a decreasing order of preference with respect
to each client. It then (virtually) tags each packet meant for a client
with the two best antennas from the client’s preference list. In other
words, a packet for this client is considered for MU-MIMO trans-
mission only if at least one of the two antennas it has been tagged
to is available as illustrated in Figure 6. We can see that while A3
and A4 are busy, client 5 and 6 will not be tagged for transmission
this round. This not only provides higher transmission rates but
also leverages the independent channel sensing feature at antennas
effectively to alleviate hidden terminals. Tagging only a single an-
tenna per client can result in under-utilization in some scenarios (e.g.
clustered user distribution), where some antennas, albeit available,
are not leveraged since they have not been tagged by any packets
in the AP’s queue. Similarly, tagging all antennas per client can
result in inefficient topologies as antennas will choose the client far
away. With a medium client density, MIDAS tags two antennas per
client to ensure efficient utilization of AP’s antenna resources. This
number can be adjusted accordingly with different client densities.
Note that the goal of packet tagging is to aid client selection by
filtering out clients that are inappropriate for communication from
a given set of available antennas. Appropriate selection of clients
leads to higher overall capacity.

3.2.5 Antenna-specific client selection
Challenges: An important challenge closely tied to the MAC design
is the selection of clients for MU-MIMO transmissions. Once each
antenna has been tagged with clients, we need to select a set of
clients to receive packets. It is well known that the net rate of a

Figure 6: Virtual packet tagging enables more efficient precoding
which leads to higher capacity.

MU-MIMO transmission depends on this set of clients chosen for
the transmission. While client selection is important even for MU-
MIMO in CAS, its significance is amplified in DAS. Due to the
distributed topology of antennas, a large difference in the channel
gains from different antennas to a client in DAS (unlike in CAS)
can be leveraged to improve MU-MIMO performance. It can also
hurt performance if clients are not properly chosen. Hence, picking
the right set of clients for MU-MIMO has a much larger impact
on MU-MIMO performance in DAS than in CAS. Further, client
selection policies are implementation dependent and are typically
a function of either just fairness or both fairness and instantaneous
rate. Incorporating the latter for MU-MIMO is challenging because
selecting the best set of clients for a given MU-MIMO transmission
requires estimation and feedback of all clients’ channels to make
the decision. However, measuring CSI from all clients involves
not just the overhead of a CSI request (from AP) and response
(from all clients), but also significant latency before being able to
determine the best subset of clients. The latter potentially making
the estimates too stale to be useful in the first place due to small
channel coherence time indoors. One might wonder if prior channel
estimates can be used to perform client selection. For this to work,
the prior estimates must still be within the coherence time of the
clients’ channels, which is in the order of tens of milliseconds for a
day-time environment in enterprises, etc. [27].

Antenna-specific, Fairness-driven Selection: MIDAS leverages
the DAS topology to select clients purely based on their antenna
preference and fairness, thereby eliminating the associated chan-
nel estimation overhead. Based on opportunistic antenna selection,
MIDAS orders the antennas according to their NAV expiry (earli-
est being first). It then picks the first antenna (primary antenna)
that gained channel access and applies the scheduling policy only
among those packets in the queue that have been tagged (preferred)
to this antenna and picks a single packet. It then moves to the
next antenna (secondary antennas) in the list of available antennas
for MU-MIMO transmission and repeats this process to determine
packets for all available antennas. Here, since a client’s packet can
tag two antennas, a client selected for a prior antenna is excluded
from being re-considered for a later antenna. Once the set of clients
is selected, MU-MIMO transmission is executed jointly from the
available set of antennas using the precoding algorithm proposed.
Note that although one client is selected for each antenna, the data
streams are transmitted from all the antennas to all the clients with
precoding rather than each antenna transmitting to one client.

Also note that in CAS, since all antennas are similar to each client,
CSI estimation and scheduling are tightly coupled and all the clients
needs to be considered for the best subset for MU-MIMO. However,
due to the topology imbalance in DAS, picking clients based on their
antenna preference contributes to a large part of the client selection
gain. This in turn allows MIDAS to decouple CSI estimation from
scheduling without an appreciable loss in MU-MIMO performance.
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Scheduling Policy: In terms of the scheduling policy itself, one
can employ any desired scheduling policy ranging from simple
round-robin to more sophisticated weighted fair queuing schemes
with delay guarantees in MIDAS. In particular, deficit round robin
(DRR) is a type of weighted fair queuing that also incurs low com-
plexity and is hence conducive for implementation. MIDAS employs
DRR as its scheduling policy, albeit tailored for MU-MIMO, but
can easily accommodate other scheduling policies as well. Briefly,
a deficit counter is maintained for each client (in terms of number
of time slots), indicating a measure of pending service for the client
for fairness purposes. With each transmission opportunity (called
TXOP in 802.11) spanning a contiguous set of time slots (few mil-
liseconds, say T), once the primary antenna gains channel access,
the client with the largest deficit counter among those tagged for that
antenna is chosen for transmission. Similarly, clients for the other
secondary antennas are also chosen based on their deficit counters.
Then the deficit counters for all the chosen clients in MU-MIMO
transmission are decremented by T , while those that had outstanding
packets but did not get selected are incremented by nT

m
each, where n

is the number of antennas participating in MU-MIMO transmission
and m is the number of active clients not chosen for the transmis-
sion. In other words, the current service (nT) is distributed equally
among the non-scheduled clients to guide the schedule towards a
fair allocation.

3.3 Realizing MIDAS within 802.11 ac
MU-MIMO Precoding: 802.11ac provides the framework (chan-
nel estimation, precoding, etc.) to realize MU-MIMO. The determi-
nation of the specific precoder to apply is implementation dependent.
However, since each antenna has its own power amplifier, the pre-
coder needs to satisfy the per-antenna power constraint. Given that
the power-balanced precoding in MIDAS is specifically designed
to address the per-antenna power constraint and leverage the DAS
deployment, it can be easily realized with 802.11ac.
MU-MIMO MAC: 802.11ac adopts a version of 802.11e’s MAC
and re-purposes it for MU-MIMO. 802.11e was introduced to pro-
vide quality of service (QoS) and service differentiation between dif-
ferent traffic classes. It employs four different transmission queues
to account for four traffic classes, namely video, voice, best effort
and background traffic. Different contention window and timing val-
ues are used for the different classes to explicitly prioritize between
the classes in their access mechanism. Each of these traffic classes
contend internally at the AP, while the AP contends externally with
other APs. When the AP gains channel access, only one of the traf-
fic classes gains access. 802.11ac re-purposes these four different
queues to enable MU-MIMO transmissions. When one of the traffic
classes gains channel access, it is made the primary access class. If
sufficient clients (data) are not available in the primary class, clients
from secondary traffic classes can be chosen.

MIDAS’s MAC operations were explained with respect to a single
traffic class. Being designed with 802.11ac in mind, it is easy to
see it will readily fit in 802.11ac’s MAC. The explicit priorities and
channel access procedure for the traffic classes will determine the
primary access class as before. Once the primary and secondary traf-
fic classes are determined, MIDAS’s client selection and scheduling
procedure can be readily applied within each of the traffic classes.
Channel Estimation: Finally, 802.11ac provides complete and
elaborate support for channel estimation (through a process called
sounding with the help of null data packets) and feedback that are
critical for MU-MIMO precoding. However, such estimation is
invoked only after an AP gains channel access and hence only CSI
of those clients chosen for MU-MIMO transmission will be available
to the AP. Note that, MIDAS employs an antenna-specific, fairness-

based client selection process that selects efficient client topologies
for MU-MIMO without relying on CSI estimates. This makes it
well-aligned with the support provided by 802.11ac.

4. IMPLEMENTATION
Testbed and Deployment: Our goal is to realize MIDAS with off-
the-shelf 802.11ac APs and clients. However, the current 802.11ac
APs do not implement MU-MIMO yet, which is expected to be a
part of the next release, scheduled for the end of this year. Hence,
we implement MIDAS on the WARP [20] platform using a rep-
resentative version of the relevant PHY and MAC mechanisms in
802.11ac that we need for our purpose. Each WARP board can
support up to four RF front-ends and is connected to a host PC. The
host PC performs the (de-) construction and processing of baseband
waveforms to and from the FPGA board with the RF front-ends. The
WARP board along with the host PC serves as the AP itself, with
its four RF boards connected with four antennas. Single antenna
WARP boards are used for the clients. To realize a DAS set-up, the
four antennas are distributed around the AP with the help of RF
coaxial cables.
PHY/MAC Implementation: All the baseband processing happens
on the main board. With the host PC processing the transmitted
(received) data, our power-balanced precoding mechanism is im-
plemented in the host PC and applied to the data streams that are
transmitted through the RF front-ends. The precoding is performed
while adhering to the constraints imposed by 802.11ac’s PHY spec-
ification. With each of the RF front-ends having their own power
amplifiers, this incorporates the per-antenna power constraint im-
posed by the 802.11ac specification. We significantly instrument
the basic CSMA MAC in WARP to realize the DAS-aware MAC in
MIDAS. We start with a basic implementation of 802.11g for WARP
and then incorporate the relevant MAC features from 802.11ac that
are needed for our purpose. Specifically, we provision individual
MAC states, i.e. the virtual carrier sensing parameter (network allo-
cation vector, NAV) and enable packet detection for each of the DAS
antennas. We implement multiple NAV states, individual packet
detection and opportunistic antenna selection along with the notion
of virtual packet tagging. We also implement the deficit round robin
policy for scheduling multiple clients tagged to an antenna. Because
of the large delay of WARP platform, we are still not able to realize
a close-loop MAC. Thus we implement the MAC schemes on top of
the latest WARP 802.11 Reference Design with Xilinx XPS 13.4 and
feed the MAC layer decision into the PHY layer implementation,
in which we implement the channel estimation, power-balanced
precoding and upto 4x4 MU-MIMO on WARPLab reference design.

5. EVALUATION
We break down our experimental evaluation of MIDAS into three
parts: (i) PHY layer precoding, (ii) MAC layer features, and (iii)
end-end PHY+MAC. We also evaluate MIDAS in larger topologies
through simulations using channel traces.

5.1 Methodology, Baseline & Metrics
We deploy our testbed in both indoor enterprise and academic lab
environments. We consider up to three APs, each with at most four
antennas and capable of performing upto 4 × 4 MU-MIMO. APs
are deployed with an inter-AP distance of around 15 m, while the
WARP client boards are located in offices/rooms as well as in the
corridor. The antennas are co-located at the AP in CAS with a half-
wavelength distance in-between, while they are distributed around
the AP in DAS with a distance of 5 -10 m from the AP. Each antenna
has its own power amplifier in both CAS and DAS. We run our
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experiments by sending back to back packets for 10 seconds from
the AP to clients and recording the results by averaging over multiple
runs for each topology and over 50 to 100 different topologies.

We evaluate the benefits from MIDAS’s precoding and MAC
mechanism against several baselines. For precoding, we evaluate
our power-balanced precoding against both the optimal precoding
through the MATLAB numerical toolbox as well as a simple exten-
sion to conventional ZFBF precoding. The latter first splits power
equally to all the streams, then scales the power of all the antennas
by a common factor in order to satisfy the per-antenna power con-
straints. For MAC, we evaluate our proposed MAC against a CAS
system with a conventional CSMA MAC.

We translate measured SINR for the data streams at different
clients into network capacity using the Shannon capacity formula.
Note that, unlike for open-loop MIMO schemes, where rate adapta-
tion is needed, for closed-loop MIMO schemes like MU-MIMO, the
CSI information is directly used to determine the appropriate rate
(modulation and coding) that must be applied for a stream, eliminat-
ing the need for an explicit rate adaptation process. Hence, measured
SINR from experiments would directly translate to capacity as well.

5.2 Power-balanced Precoding in MIDAS

5.2.1 Benchmarking link gain from DAS
The CDF curves of link layer SNR for CAS and DAS during SISO
transmissions from a single AP are shown in Figure 7. The CAS
antenna positions are fixed while DAS antennas and clients are
randomly deployed in 60 different topologies. Each AP has four
antennas attached. The SNR value is measured when only one
antenna transmits to the client. Each client is mapped to one antenna
in a greedy way: the client with the strongest signal is chosen and
this mapped antenna-client pair is excluded for next round mapping.
It can be seen that the shorter DAS links to clients provide a median
link gain of 5 dB with four antennas. This gain keeps increasing
with more clients and antennas.
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Figure 7: Distribution (across clients) of link layer SNR.

5.2.2 MU-MIMO capacity increase
In order to evaluate the MU-MIMO capacity increase, we fix the
CAS antenna positions of a single AP and randomly deploy the
clients and DAS antennas. We present the overall capacity (cal-
culated from measured SINR) of MIDAS and CAS with 2x2 MU-
MIMO and 4x4 MU-MIMO in Figure 8 and Figure 9. Here, while
CAS employs the baseline precoding mechanism, MIDAS employs
our power-balanced precoding. We carry out experiments in two
different indoor office environments: an enterprise (Office A) and
a graduate student lab (Office B), which is more crowded. We can
see that MIDAS has a median gain of 40-67% over CAS for two
antennas, that increases to 45-80% with higher number (four) of

antennas. The gains are contributed both by the link gain from DAS
as well as the power-balanced precoding in MIDAS.

5.2.3 Impact of power-balanced precoding
We isolate the impact of our smart, power-balanced precoding
scheme in Figure 10 for the four antenna case (Office B). We com-
pare the performance of DAS and CAS when applying our power-
balanced precoding respectively. While our smart precoding also
helps CAS improve its median capacity by 12% (11.5 to 13 bits/s/Hz),
the improvement is much greater for DAS (about 30%). Thus, the
benefits of the power-balanced precoding are more pronounced for
DAS than for CAS. This also corroborates our intuition that a naive
power allocation scheme (like the baseline), albeit fine for CAS, is
not sufficient for DAS due to its inherent topology imbalance.

We also compare our smart precoding scheme and the optimal
precoder obtained from solving the precoding optimization problem
through the MATLAB numerical solver/toolbox in Figure 11. The
evaluation is conducted on both the testbed as well as through
traces. In trace-based simulations, we see that our precoding in
MIDAS performs efficiently within 99% of the optimal, while not
incurring the complexity or processing latency of the latter. In the
experiments, interestingly, in a few of the topologies, the MIDAS
precoding scheme even outperforms the optimal precoder. One
possible reason for this is that it takes a couple of seconds for the
optimization toolbox to calculate the optimal precoder. By the time
the precoder is determined, the channel could have changed (even
slightly), resulting in the precoder being no longer optimal. This also
reinforces our claim that a fast, light weight precoding algorithm
is essential for MU-MIMO given the short coherence time of the
wireless channel.
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Figure 8: MIDAS capacity increase (Office A).

5.3 DAS-aware MAC in MIDAS
We evaluate in this section MIDAS’ MAC described in §3.2.
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Figure 9: MIDAS capacity increase (Office B).

5.3.1 Number of Simultaneous Transmissions
We first evaluate the total number of simultaneous transmissions
(spatial reuse) that can be supported by the MAC. We deploy three
APs that can overhear each other. For CAS setup, one AP can be
activated at a time to support four simultaneous transmissions. As
the antennas are distributed at different locations in MIDAS, the
NAV values and channel sensing results are different at each DAS
antenna. The channel is thus utilized more efficiently in a finer
manner. To evaluate the number of simultaneous transmissions
can be supported at the MIDAS APs, we randomly enable one to
four transmissions at the first AP A and then check the number
of transmissions can be supported simultaneously at the second
AP B based on its NAVs and channel sensing results. Next, we
enable all the transmissions supported at both A and B and similarly
evaluate the number of transmissions that can be simultaneously
supported at AP C. Note that more simultaneous transmissions does
not necessarily mean higher overall capacity. The overall capacity
also depends on the capacity of each transmission. We show the
end-to-end capacity evaluation in Section 5.4. We run experiments
for 30 topologies generated by random antenna deployments. In
order to avoid bias in results, for each deployment, the following
requirement is satisfied: any two antennas from the same AP cannot
be deployed within a 60-degree sector measured with respect to
the AP. This ensures that antennas are not clustered at the far end
with respect to the other two APs to favor the results. Our testbed
results in Figure 12 show that among all the 30 topologies, only
two MIDAS deployments support less transmissions compared to
CAS. The median improvement in the total number of transmissions
is around 50%, while 90% improvement can be achieved for some
topologies. This can be directly attributed to the fine grained spatial
reuse enabled in MIDAS to leverage the DAS deployment. Note that
with the same number of transmissions in Section 5.2.2, MIDAS
already outperforms CAS.
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Figure 10: Impact of Smart Precoding in CAS and DAS.

5.3.2 Significance of virtual packet tagging
We consider a scenario where two antennas (out of four) at a MIDAS
AP are available at the MAC layer, while there are a total of four
clients to be selected for transmission. With virtual packet tagging,
MIDAS chooses a more appropriate group of two clients. We also
assume there are always packets for all the four clients in the queue.
We present the results in Figure 14 and compare this scheme against
a scheme that chooses two clients randomly. We can clearly observe
a 50% increase in median capacity that results from picking clients
intelligently to aid in better MU-MIMO transmissions.

5.3.3 Deadzone reduction
We now show that a MIDAS deployment can help alleviate the prob-
lem of signal deadzones. We deploy the AP in both MIDAS and
CAS modes, with the DAS antennas randomly deployed surround-
ing the AP. Then we carry out measurements within the coverage
area for deadspots and one measurement is taken every 0.5 m. We
show one typical MIDAS/CAS deadzone comparison map in Figure
13. The gray small squares indicate the deadspots identified. We can
clearly see that deadzone spots are much fewer in MIDAS. On aver-
age of 10 different random antenna deployments, DAS deployment
helps provide more effective client coverage,resulting in a significant
reduction of deadspots by about 91% compared to CAS.

5.3.4 Alleviating hidden terminals
We setup two APs, AP1 and AP2. They are separated far enough
that they cannot overhear each other but not too far to eliminate
hidden terminals. We distribute the DAS antennas randomly around
APs within a distance of 50%-75% of the CAS AP’s transmission
range from the original AP. We then measure the number of hidden
terminal spots in the area with a distance of one meter between
each measured spots in 10 random antenna deployment topologies.
We found that, on average DAS has 94% hidden terminal spots
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Figure 11: Comparing MIDAS vs optimal precoding.
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removed compared with CAS, thereby alleviating hidden terminals
significantly. This can be attributed to two reasons: (i) distributed
antennas in MIDAS are able to sense a larger region compared to
collocated antennas in CAS, and (ii) while the transmission power
is maximal at the AP and decreases with distance in CAS, it is
more evenly distributed around the AP in DAS, allowing for better
detection by other DAS/CAS APs.

5.4 End-End Evaluation of MIDAS
The setup consists of a three-AP network. Each of the APs is
capable of up to 4 × 4 MU-MIMO transmissions. Each AP has
four randomly deployed clients around it. The CAS APs employ
the traditional CSMA MAC with the baseline precoding scheme
while the MIDAS APs employ the DAS-aware MAC coupled with
our power-balanced precoding described in Sections 3.2 and 3.1
respectively. The overall capacity performance between CAS and
MIDAS is shown in Figure 15. The CDF is measured over 60
different topologies. MIDAS achieves a significant improvement of

CAS deadzone MIDAS deadzone
Figure 13: Comparing deadzones in MIDAS and CAS

200% in capacity gain over CAS. The substantial PHY+MAC gain in
MIDAS is the culmination of three factors: (i) For the same number
of streams, MIDAS outperforms CAS in MU-MIMO performance;
(ii) For the same number of APs, more simultaneous streams are
enabled in MIDAS due to its DAS-aware channel-sensing MAC;
and (iii) Virtual packet tagging in MIDAS takes advantage of the
DAS topology to further increase MU-MIMO performance through
intelligent client selection.

5.5 Large Scale Trace-based Simulations
We carried out trace-based simulation to verify MIDAS end-to-end
performance in a large scale setup. We randomly deploy eight APs
in a 60 × 60 m region. All the APs are capable of performing up to
4×4 MU-MIMO transmission. We make sure none of the CAS APs
can overhear more than three other APs for each deployment. For
the DAS antenna deployment, none of the antennas can be deployed
out of the original AP coverage area and no two antennas can be
deployed within 5 m of distance. We measure the CSI and the
interference level between AP antennas and clients and feedback
the traces to the simulation. The overall result is shown in Figure 16.
We can see that the large scale simulation result follows the trend
we obtain in testbed: DAS outperforms CAS by more than 150%.

6. RELATED WORK
MIDAS makes contributions in the areas of MU-MIMO precoding
power allocation and medium access control. In this section we sur-
vey the related work in each area and place MIDAS’s contributions
into context. We close with a review of other DAS systems and
theoretical proposals.
MU-MIMO precoding. Several systems have taken multi-user
MIMO [3, 26], interference alignment [8, 15] and distributed MU-
MIMO [19, 5, 13, 30] from theory to practice. Falling under the
multi-AP deployment model discussed in Section 2, their precoding
solutions are neither designed to leverage the topology imbalance
in DAS, nor satisfy the per-antenna power constraint imposed by
802.11ac in an lightweight manner. Other precoders specifically
designed for DAS systems [14] are designed only for a sum-power
constraint (§3.1) while [25] is designed for large number of users
and high mobility users. On the other hand, prior precoders designed
with the per-antenna power constraint in mind are unfortunately too
complex to realize in practice [11, 18, 32] (and references therein).
Waterfilling is a popular technique used to allocate a fixed power
budget to orthogonal channels of varying gains, such as OFDM
subcarriers. It has been extensively studied, both for Gaussian [27]
as well as arbitrary input distributions for SISO and MIMO systems
[17]. Prior work in power allocation for DAS systems either focus on
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Figure 14: Virtual packet tagging effect
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Figure 16: 8-AP simulation.

single-user communications [12, 31], or operates under a sum power
constraint instead of a per-antenna power constraint [9]. The nature
of the practical constraints to our MU-MIMO precoding problem
over DAS prevents MIDAS from employing these solutions. Being
specifically designed for the dual challenges of the per-antenna
power constraint and a DAS deployment model, the lightweight
precoder advances the state-of-the-art in this area.
Medium access control & rate adaptation. The MAC in MIDAS
is also concerned with a virtual selection and tagging of antennas to
aid client selection for MU-MIMO. This is different from conven-
tional antenna selection [16], which arises because antennas used
for communication are limited by the available RF chains. Recently,
NEMOx [32] designed a random access MAC for distributed MU-
MIMO systems. However, being designed from scratch, it does not
directly lend itself to 802.11ac systems that in turn form our focus.
Other work [24] focuses on rate adaption for MU-MIMO.
Other DAS systems. Serving as a simple broadcast medium, DAS
has traditionally been used to provide coverage and handle mo-
bility in WiFi and cellular systems [1, 2]. Recent proposals [33,
34] have combined DAS with frequency or spatial reuse to enable
multi-user transmissions, albeit still operating under SISO. Other
theoretical work [6, 23, 22, 10] has studied the benefits of applying
MU-MIMO techniques over DAS, albeit using conventional MIMO
precoding solutions that limit their potential to leverage DAS for
reasons explained in §3.1.

7. DISCUSSION
Deployment. In most enterprises, APs are attached to walls/ce-
ilings and wired over the ceilings for safety and aesthetics. A similar
approach can be adopted in deploying the MIDAS antennas. The RF
extension cables can be run over the ceiling, thereby incurring very
little additional effort and expense. Deploying DAS antennas too
close to the AP makes the system tend to a CAS, leading to reduced
channel utilization. On the other hand, positioning too far from
the AP may have an adverse impact on links and the MU-MIMO
performance. From experience, a good distance is 50-75% of the
AP’s CAS coverage range. We leave the problem of optimizing
placement of antennas open for future work.
Beamforming. While employing multiple antennas to send multi-
ple streams to different clients would leverage multiplexing (MU-
MIMO), using all them to alternatively send a single stream to a
single client would leverage beamforming. However, beamforming
(SNR) gain is logarithmic unlike the multiplexing gain (that is lin-
ear). Due to the decoupled nature of the antennas in MIDAS, when
all antennas at an AP are leveraged for beamforming, this would not
only come at the expense of multiplexing gain but would also silence
other antennas (of other APs) in the neighborhood, thereby limiting
the potential for improved spatial reuse from MIDAS. Hence, in

low client densities, when an AP is restricted to beamforming to
a single client, it is important to leverage only the antennas in the
neighborhood of the client for beamforming in MIDAS, thereby not
affecting spatial reuse by antennas of other nearby APs.
Co-located antennas in a DAS topology. In this work we deploy
DAS antennas separately, but one might wonder whether it would be
beneficial to co-locate more antennas, especially if clients have mul-
tiple antennas. We argue, however, that deploying non-co-located
DAS antennas is still the right approach. If a client had more an-
tennas (say m), and we also deploy m AP antennas at each location,
which in turn would reduce the number of DAS deployment loca-
tions possible, degrading the DAS deployment advantage. Having
more deployment locations (with a single antenna) and allowing
them to cooperate still leverage all the multiplexing gain possible,
while catering to more clients associated with the AP.
SVD precoding. SVD is employed as a precoding scheme in
802.11n, when multiple streams are sent to a single client with
multiple antennas. However, due to the distributed nature of clients
in 802.11ac, SVD is not suited because the clients do not share
streams with each other in 802.11ac. Even with MIMO transmis-
sions to a single client with multiple antennas in 802.11ac, SVD is
still not a good candidate for MIDAS because of the imbalanced
topology in DAS and the (equal) power allocation nature of SVD.

8. CONCLUSION
With next generation wireless local area networks moving to multi-
user MIMO communication, we argue that the conventional co-
located AP antenna topology is inefficient from both physical-
and MAC-layer perspectives. Towards helping wireless service
providers leverage the most out of 802.11ac APs, we have presented
the design and implementation of MIDAS, a multiple input dis-
tributed antenna system, that migrates an 802.11ac AP to a DAS
topology, supplementing it with a suite of novel PHY and MAC
mechanisms to maximize network performance. We have shown that
MIDAS’s mechanisms are lightweight additions to an AP’s software
device driver, not requiring any changes to 802.11ac’s hardware.
We have described our WARP radio implementation and presented
results from our experimental testbed that demonstrate MIDAS’s
techniques will significantly increase the capacity of tomorrow’s
802.11ac networks.
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