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ABSTRACT
The accuracy and completeness of a digital map plays a criti-
cal role in determining the quality of most location-based ser-
vices. Unfortunately, road networks change frequently. Con-
sequently, we study the issue of automatic map update in this
paper. We propose a system called COBWEB which takes all
the unmatched trajectories as input and generates the missing
road segments with both the geometry properties and topolo-
gy features well preserved. We conduct a comprehensive ex-
perimental study via real trajectory data generated by roughly
15, 000 taxis in Singapore within a 5-month period. Com-
pared with existing work, COBWEB demonstrates a better and
more stable performance and a stronger resilience to various
sampling rates and data sizes.

Author Keywords
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ACM Classification Keywords
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INTRODUCTION
Thanks for the fast deployment of GPS devices in mobile
platforms, location-based services (LBSs) have been bloom-
ing in recent years. For most LBSs, the quality of service is
directly related to the accuracy and completeness of a digi-
tal map. Unfortunately, road networks change quickly. For
example, all the governments invest in transport infrastruc-
ture every year and part of the budget is for upgrading the
road networks. The Ministry of Transport of China report-
ed that 8,268 kilometers of new freeways were built in China
in 2013, which is about 8% of the total length. Thus, digi-
tal maps must keep up-to-date because of the fast change of
the road network. However, a large number of map providers
update their maps by investigating the real roads manually.
This approach consumes a significant amount of human and
financial resources and it is hard to update the maps timely.
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Consequently, here comes the appeal for developing an auto-
matic map update system.

Fortunately, with the fast development of GPS devices, large
collections of GPS trajectories are becoming widely avail-
able. A research problem, namely Map Inference that is based
on GPS trajectory data has attracted lots of attentions from a-
cademy recently. Map Inference aims to generate the skeleton
of the whole road network and it focuses on the main skele-
ton of the network. Although updating issue is not the real
focus of Map Inference, Map Inference does provide a pos-
sible solution as all the missing roads form a sub-map and
Map Inference can find the main skeleton of this sub-map by
mining GPS trajectories. However, if a detailed map that ac-
curately captures majority of, if not all, the roads (including
both major roads and minor roads) is required, map inference
approaches might not be suitable to address map update issue
as none of the map inference approaches can detect minor
missing roads.

On the other hand, to the best of our knowledge, there are
only one work which directly aims at Map Update problem
[24]. However, the proposed approach is very simple and
it fails to work well in the following situations which are,
unfortunately, very common in practice. These situations can
be regarded as the main challenges of the Map Update and
Map Inference problem.
• Low Sampling Rate: Most trajectory data are collected

in low sampling rate due to many limitations such as en-
ergy consumption and data storage. Approaches based on
trajectory clustering, including [4, 13, 16], will have poor
performance under this situation since trajectories become
hard to be clustered and cannot represent the exact shape
of roads.
• GPS Noise: It is a common observation that most GPS

data points are noisy. However, very few works can handle
the noise problem before recovering the map.
• Timely Responsiveness: For most related work, the big-

ger the trajectory dataset is, the better the performance will
be. They cannot supply satisfactory results using sparse
dataset, e.g. trajectories of a single day. However, most re-
lated work has to collect sufficient raw trajectories to sup-
port their computation in massive data consumption. In
another word, they show weaknesses to undertake the up-
dating tasks under the data restriction in short time.
• Segments Connection in Complex Road Networks:

Most existing work adopts a simple way to connect the



roads together, which will not work well when the road
structure is complex and will be affected by the shape of
the generated roads since the core idea of them is simply
stretching one side of the generated road till it crosses over
another road. This reckless method weakens the accuracy
of cross location and is likely to ruin the topological struc-
ture of road network.

To the best of our knowledge, no existing work can handle all
the challenges listed above concurrently. By considering all
the four challenges mentioned above, we intend to design a
map update approach that is robust, flexible and meanwhile
stable in different situations. Our approach consists of three
major steps, i.e., Preprocessing, Cobweb Processing, and Re-
fining. The Preprocessing step extracts the data that can help
to generate the missing roads; the Cobweb Processing step
organizes the trajectory data using a graph structure called
Cobweb and reduces the vertices and edges from the Cobweb
into a Road-Tree. Note that this step plays the key role of our
approach, thus we also name the system as COBWEB. Finally,
the Refining step constructs the Road-Graph which consists
of all the missing roads and merges the Road-Graph into the
original road network to finish map update. Notice that our
system is cyclic which means after one iteration of map up-
date, we can use the new-coming trajectory data and match
them onto the latest-updated road network to trigger the next
iteration to generate more new roads. The contributions of
our work are as follows:

• We propose a novel approach called COBWEB to implement
both Map Update and Map Inference effectively.

• We take GPS measurement error into consideration and
propose a filtering algorithm that can filter out noise G-
PS points effectively. The algorithm is self-adaptive and
can deal with regions with different point densities. In this
way, our approach overcomes the challenge of GPS Noise
automatically.

• We introduce a new graph structure called Cobweb with
several attractive properties. With the help of Cobwe-
b structure, challenges of Low Sampling Rate, Timely
Responsiveness and Segments Connection in Complex
Road Networks can be addressed perfectly.

• We conduct experiments using massive real data from Sin-
gapore. Trajectories of more than 15,000 taxis are used in
our experiments. Result shows that our approach outper-
forms other Map Update and Map Inference approaches
significantly and our approach is robust under different cir-
cumstances.

RELATED WORK
COBWEB has a close relationship with Map Update, Map In-
ference and Map Matching issues. Before COBWEB starts to
process GPS trajectories, some preprocessing works are nec-
essary. According to the instruction of [27], our system inte-
grates with components of map-matching and noise filtering.

Map Update
Map Update aims at updating the new roads based on the cur-
rent map. Map Inference technology can also be used in Map

Update problem by inferring the sub-graph of the map or re-
generating the whole map. To some degree, they share a high
similarity. However, they are still different. Although both
of them can solve the problem of each other, their emphases
are different. Map Inference lays emphasis on obtaining the
main roads of the city and does not care about the small/minor
roads. However, Map Update works in a more delicate man-
ner. It focuses on those small roads and tries its best to recov-
er all the missing roads as much as possible. It does not pay
much attention to the topology of the road since the missing
roads only cover a very small portion of the map.

The CrowdAtlas approach proposed in [24] is the only piece
of systematical work related to Map Update. It takes tra-
jectory data as input, and matches them to a given map us-
ing map matching algorithm. The unmatched trajectories are
then clustered according to the Hausdorff distance. During
the clustering process, the size of each cluster increases as
more and more unmatched trajectories are clustered. Once
the size of one cluster reaches a predefined threshold, a new
road will be generated based on the trajectories within that
cluster.

CrowdAtlas performs well in high sampling rate data but has
a poor performance in low sampling rate data because the
shape of generated new roads could be wrong. In addition,
CrowdAtlas is only suitable for updating fragmentary parts
of road network because of its clustering operation. It shows
low effectiveness to produce an integrated and well-structured
road network for a missing region in existing map.

Map Inference
Map Inference is a technology to generate the whole map au-
tomatically. For k-means style algorithms [1, 9, 19, 26], they
perform a traditional k-means style clustering of GPS sam-
ples, where the distance measure may involve both the ge-
ometry distance to the cluster center as well as its GPS bear-
ing. Then, they link appropriate cluster centers to generate
roads according to the traces that pass through the clusters.
For Kernel Density Estimation (KDE) methods [6, 7, 20, 22],
they transform GPS points or trajectories into discretized im-
age representing the density of samples or segments at each
pixel. After that, a binary image of the roads in the region is
generated according to a binary threshold. Finally, the center-
lines could be extracted by a variety of methods, e.g., Voronoi
partitioning. For Trace Merging algorithms [4, 16], they ac-
cumulate traces into a growing road network, where each ad-
dition meets the location and meanwhile bears constraints of
existing roads. [3] makes some accurate conclusion for most
above algorithms.

[12] gives a thorough evaluation for most typical algorithms
in Map Inference. According to its overall comparison, Trace
Clustering Algorithm (TC1) [13] and Kernel Density Estima-
tion (KDE) [6, 7, 20, 22] are outstanding algorithms with
superior performance. TC1 decomposes each trajectory in-
to several small segments, then clusters remaining segments
using a single-linkage clustering-based method, and finally
extracts the centerline of each road from the clustering using
B-spline fitting. Nevertheless, TC1 also shows its weakness



(a) G (c) G+GRG(b) GRG

Figure 1. An example of the map update processing
in low sampling rate condition. In addition, it may experi-
ence low performance for generating the integrated and well-
structed road network because of the data loss in the decom-
position. KDE owns robustness in low sampling rate condi-
tion, however, it suffers a lot in data sparsity condition.

Map Matching
The target of Map matching technology is to reduce the influ-
ence of GPS error, and to match GPS points to roads correct-
ly. After Map Matching, we obtain a route sequence for each
trajectory, which indicates the object’s actual moving path.
There are three main categories of map matching technology,
including one based on the geometry of each road [18, 25],
one based on the topology of the road network [5, 17, 15],
and the other based on probability [14, 21]. The third one is
the most competitive because of its outstanding accuracy. In
ACM SIGSPATIAL Cup 2012 on Map matching contest, 4 of
top 5 winners used the improved Hidden Markov Model (H-
MM) [2]. Because [21] demonstrated the highest precision in
the contest (> 98.5%), it is employed as the map matching
algorithm to extract the unmatched trajectories from source
data.
PRELIMINARY
In this section, we first present some important concepts and
then describe the problem we are going to study in this paper.

Definition 1. Road Network. A road network is a direction-
al graph G(V,E), where V refers to the set of vertices and
E refers to the edge set. An edge e(vi, vj) ∈ E represents a
real road segment from vertex vi to vertex vj in reality.

Definition 2. GPS Trajectory. A GPS trajectory T is de-
fined as a sequence of n GPS points, i.e. T = {(x1, y1, t1),
(x2, y2, t2), . . . , (xn, yn, tn)}. Here, (xi, yi) refers to lon-
gitude and latitude of the i-th point at time stamp ti in the
trajectory.

Definition 3. Generated Road Graph. Given an original
road network G, let GRG represent the sub-network that is
not captured by G but generated by certain map update algo-
rithm. Then, G + GRG represents the updated version of G,
corresponding to a real road network Greal.

Take Figure 1 as an example. Map update algorithm recovers
the missing roadsGRG in Figure 1(b) using the GPS trajecto-
ries on the original road network G shown in Figure 1(a). Af-
ter that, it adds GRG to G to generate the new map G+GRG
shown in Figure 1(c).

COBWEB
In this section, we introduce a novel system as our solution to
handle the Map Update problem, namely COBWEB. COBWEB
consists of three components, as shown in Figure 2, Prepro-
cessing, Cobweb Processing, and Refining.

To be more specific, Preprocessing is to preprocess all the
GPS trajectories via Map Matching. GPS trajectories are
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Figure 2. System architecture of COBWEB

matched onto a given road network. When the map is in-
complete, some trajectories cannot be mapped as the corre-
sponding road segments are missing in the map. Our map
update algorithm only considers those GPS trajectories that
fail in the step of Map Matching. We design a cleaning pro-
cess to filter noisy GPS points that are generated because of
GPS errors. Finally, an R-tree index is constructed to index
the GPS trajectories which fail in the map-matching but pass
the cleaning process.

Cobweb Processing organizes the GPS points using a graph
structure called Cobweb and reduces the vertices and edges
from the Cobweb into a Road-Tree. Note that this componen-
t plays a key role in the system, which explains the reason
why we name our system as COBWEB. Refining recovers the
Road-Graph from Road-Tree with topological compensation
and merges the Road-Graph into the original road network to
finish map update. We detail the three components in the fol-
lowing. They also represent the three main steps of our map
update algorithm adopted by COBWEB.

Preprocessing
The Preprocessing in COBWEB mainly takes care of the pre-
processing of raw GPS trajectories, including map matching
and data cleaning. The former is to pick out the GPS tra-
jectories corresponding to unknown road segments that are
missing from the given road network; and the latter is to fil-
ter out the noisy GPS points that do not accurately record the
real positions of moving objects. We employ [21] as our map
matching algorithm to map GPS trajectories to road segments
because of its high precision. After that, all the unmatched
trajectory segments would be collected as the input data for
following step.

GPS technology has intrinsic errors mainly due to the com-
plexity of user environment. As the map update algorithm
tries to recover the missing roads based on the GPS trajec-
tories, the accuracy of the recovered road segments highly
depends on the quality of the input GPS trajectories. In other
words, an input set containing lots of noisy GPS data actual-
ly implies that the generated road segments are not accurate.
However, many existing works overlook the quality issue of
GPS trajectories. This reckless attitude explains why some
algorithms have very poor performance on certain datasets.

In COBWEB, we include a data cleaning sub-step which can
filter out GPS points with large errors. Intuitively, GPS points



with large GPS error are more likely to be far away from oth-
er points. As visualized in Figure 3, data cleaning step filters
out those GPS points far away from others. This phenomenon
suggests that a nearest neighbor-based approach may work
well. In other words, we can rely on the distance between a
point p and its kth nearest neighbor p.ok in the entire input
GPS trajectory set, denoted as d(p, p.ok) to judge whether p
should be filtered out or not. Using the distance to the k-
nearest neighbor as the criterion of detecting the noise is one
type of proximity-based outlier detection which is discussed
in [23]. An intuition is that the larger the distance d(p, p.ok)
is, the more likely that p is a large-error GPS point. We in-
troduce γ as the filtering threshold and filter out all the G-
PS points p with d(p, p.ok) > γ. Notice that γ should not
be a fixed value since the density of the GPS point distribu-
tion within one region is different from that in another region,
which means γ of a road with dense GPS points should be
smaller than the one with sparse points. In the following, we
introduce a heuristic based approach to adjust the value of γ.

(a) Original GPS points (b) De-noised GPS points
Figure 3. An example of data cleaning

Given a road segment seg, we represent it using a center line
Lseg with width 2Ld. Let Sseg(T ) represent a set of trajecto-
ries T that can be successfully mapped to seg. Then, for any
GPS point p on a trajectory T ∈ Sseg(T ), its vertical distance
to Lseg , denoted as p.η, follows the Gaussian distribution, ac-

cording to [8, 15]. In other words, p(η) = e−
(η−µ)2

2σ2 /
√
2πσ.

Without loss of generality, we assume µ = 0 and GPS points
mapped to different road segments share a common standard
deviation σ value. Consequently, we can use all the GPS tra-
jectories that are successfully mapped to existing road net-
work (i.e., those trajectories not considered by map update
algorithms) to derive σ value (e.g., 15.4307m in our experi-
ments).

N(pc, γ) = θ

∫∫
(x−pc.x)2+(y−pc.y)2≤γ2

p(x)dxdy (1)

Once the Gaussian Distribution p(η) is known, we form a
function N(pc, γ) to approximate the number of GPS points
that have their distances to a given point pc bounded by γ, as
shown in Eq. (1). Note, θ here is a density function which
represents the number of GPS points in a unit region, and
it can be approximated by the ratio of the total number of
points mapped to a road segment Lseg to the length of Lseg
(i.e., |Lseg|). As mentioned before, all the GPS points pc with
N(pc, γ) < k shall be filtered as the distance from pc to their
kth nearest neighbor d(pc, pc.ok) is definitely larger than γ.

In order to maximize γ value, we set N(pc, γ) to be k. Note
that as the road segment Lseg of missing road is unknown, we
rely on all the GPS points that can be successfully mapped to

existing road network to derive the value of γ. N(pc, γ) value
takes a density function θ as input and we notice the density
of different areas could be very different. Consequently, we
introduce a grid-based partitioning step to data cleaning, de-
noted as trajectory partition. We partition the whole road
network into small equal-sized grids, denoted as Pi, and then
map GPS points of GPS trajectories to grids. Those grids not
containing any GPS points are discarded as very likely they
do not cover any road segment. As the grids are small, we
can assume the density of GPS points within a grid is unifor-
m, and we can also use Pi.area

2Ld
to approximate the length of

road segment falling within Pi, where Pi.area refers to the
area size of a grid Pi and Ld is a system parameter. Mean-
while, we can count the number of points within each parti-
tion Pi, denoted as Pi.count. Thereafter, the density func-
tion θi corresponding to partition Pi can be approximated by
Pi.count
Pi.area

×2Ld. Although there are multiple points pc mapped
to each road, we take the boundary point pc with their dis-
tance to L being Ld as representative and rely on pc to derive
γ value.

As a summary, the Preprocessing step of COBWEB is respon-
sible for preprocessing the GPS trajectories. It employs exist-
ing map matching algorithm to separate the trajectories into
two sets, matched and unmatched. The set of unmatched tra-
jectories becomes the input of the map update algorithm, and
we propose a simple but effective filtering algorithm to re-
move noise GPS data to address the challenge of GPS Noise.
The set of matched trajectories is also utilized to understand
certain properties of the road network (e.g., density of GPS
points).

Cobweb Processing
After the Preprocessing step, GPS points are ready for map
update algorithm and then we move to the next step, name-
ly Cobweb Processing, that is handled by Cobweb Generator
and Cobweb Reducer. Before we present the details of this
step, we would like to first formally introduce a novel data
structure Cobweb in Definition 4. It tries to organize the set
of input GPS points using a graph structure C(V,E), under
three restrictions. Restriction i) is to guarantee that C(V,E)
only consists of the points of input set P ; restriction ii) is to
remove redundant GPS points that are very close to each oth-
er; and restriction iii) is to guarantee the topological structure
of missing roads is well captured.

Definition 4. Cobweb. Given a point set P and two bounds
Rv and Rc, a Connecting-On-Bounds (Cobweb) is an undi-
rected graph C(V,E) such that i) V ⊆ P ; ii) ∀vi, vj ∈ V ,
d(vi, vj) ≥ Rv; and iii) ∀e(vp, vq) ∈ E, d(vp, vq) ≤ Rc. In
other words, Rv is the lower bound of each edge’s length in
Cobweb and Rc is the upper bound of that.

We would like to highlight that the Cobweb structure is very
novel, and it has a few unique characteristics that will ben-
efit map update algorithms. First, our Cobweb structure is
based on GPS points instead of trajectories and hence the
sampling rate does not affect the performance of our Cobwe-
b-based map update algorithm, as long as we collect a large
number of trajectories. This can effectively address the chal-



lenge of Low Sampling Rate. Second, in this point-based s-
trategy, the distribution of points could be captured even with
sparse trajectory dataset. Thus, COBWEB is able to recover
roads effectively regardless of various data volume. In this
way, the challenge of Timely Responsiveness is addressed.
Third, Cobweb is a graph and it connects nearby GPS points
via edges which can help to preserve the topological struc-
ture of the underlying road network that is missing. As to be
demonstrated later, Cobweb can recover even complex road
structure to successfully address Segments Connection in
Complex Road Networks issue.

The generation of Cobweb is simple, with its pseudo code
listed in Algorithm 1. It randomly picks a point p in the input
GPS point set P and inserts it to V , and meanwhile removes
all the points with distances to p smaller than Rv (the set re-
turned via function RangeSearch(p, P , Rv)) from P . The
above process repeats until P is empty (i.e., points in P are
either removed or maintained by V ). Thereafter, for all the
pairs of vertices (vi, vj) in V with their Euclidean distances
bounded by Rc, we insert an edge e(vi, vj) to E accordingly.

After constructing Cobweb, we then try to locate the points
that are located on (or near to) the center of missing road seg-
ments or cross roads in order to recover the missing roads.
We achieve this goal via introducing a new structure name-
ly Road-Tree. Road-Tree is formed by generalizing Cobweb
C(V,E), with its pseudo code listed in Algorithm 2. The
main idea is to locate a set of points, denoted as S, that are
located near the same missing road/cross road, and then re-
place the set S with a vertex vc, namely key vertex, that is
closest to the center point of S. All the edges from a point
p ∈ V − S to a point s ∈ S are replaced by edges e(p, vc).

Algorithm 1 Gen-Cobweb(P ,Rc,Rv)
1: V ← ∅, E ← ∅;
2: while P is not empty do
3: p← a random point in P ;
4: V ← V ∪ {p}, P ← P − {p};
5: Vp ← RangeSearch(p, P , Rv);
6: P ← P − Vp;
7: for ∀vi, vj ∈ V do
8: if d(vi, vj) ≤ Rc then
9: E ← (vi, vj)

10: return C(V,E);

Now we explain how to find the set S, i.e., lines 5-25 in Al-
gorithm 2. The main idea is to reduce Cobweb from any seed
vertex seed ∈ V guided by a radius r via local Best-First
Search (BFS). Started from seed, we will reach all the ver-
tices that have not yet been visited and meanwhile have their
network distances to seed on Cobweb bounded by r. Take
Figure 4(a) as an example. The local BFS search initiated
from seed vertex a will reach all the vertices located within
the dot-line circle, denoted as Ea,r. Note our search is based
on network distances on Cobweb but not Euclidean distance
and all the vertices within the circle can be reached from a via
network distance bounded by r. The local BFS then resumes
at points l, g, and f , those points that are connected directly
to some points of Ea,r but have their network distances to a

beyond r. In other words, we will have another three sets,
i.e., El,r, Eg,r, and Ef,r.

After all the points in S are visited, we find a vertex in S that
is closed to the geo-center of S, namely key vertex (e.g., ver-
tex b in our example); we then replace S with the key vertex
to generalize the road segment/cross road where points in S
are located. Meanwhile, the edges from a point outside of S
to any point inside S are now connected to the key vertex,
e.g., edges e(l, c) and e(l, k) are replaced by e(l, b), edges
e(g, e) and e(g, h) are replaced by e(g, b), and edge e(f, d) is
replaced by e(f, b), as shown in Figure 4(b).

a

b d

e

f

gh
c

k
l

seed S

local BFS 
terminates here

(a) Local BFS initiated at a

f

g

l b

(b) Generalization
Figure 4. An example of Cobweb generalization

Algorithm 2 Form-RoadTree(C(V,E),r, δ)
1: s← a random point p in V , mark s;
2: Qg ← {s}, Ql ← ∅, count← 0, S ← ∅;
3: while Qg is not empty do
4: seed← de-queue(Qg);
5: for ∀e(seed, p) ∈ E do
6: if p is not marked then
7: mark p, en-queue(Ql, p, ||seed, p||C);
8: while Ql is not empty do
9: p← de-queue(Ql);

10: if ||p, seed||C < r then
11: count++, S ← S ∪ {p};
12: for ∀e(p, p′) ∈ E do
13: if p′ is not marked then
14: mark p′, en-queue(Ql, p′, ||seed, p′||C);
15: else
16: if count > δ then
17: vc ← GeoCenter(S);
18: V ′ ← AdjacentVertex(C, S);
19: V ← V − S + {vc};
20: E ← E − ∪si,sj∈Se(si, sj);
21: for each vertex v ∈ V ′ do
22: en-queue(Qg, v), E ← E ∪ {e(vc, v)};
23: count← 0, S ← ∅;
24: while Ql is not empty do
25: p← de-queue(Ql), unmark p;
26: return C(V,E);

Algorithm 2 takes search radius r and minimal queue size δ
as input, so we need to decide their values before we start
Algorithm 2. Here, we set minimal queue size δ as 5 direct-
ly. Because if δ < 5, the generalization quality would be
diminished by the shortage of data. At the same time, we use
several preliminary probe searches to compute the most ap-
propriate radius r. We initiate from point a to increase r step
by step (e.g., in our implementation we increase r by 5 meters
in each iteration until r exceeds 50 meters) until there are only



a small amount of unvisited and linked points outside the ex-
pansion circle or r exceeds a large threshold. In Figure 4(a),
only three points (i.e., points l, f , and g) are unvisited and
linked points, so we can make the judgement that g, l, f are
not located within the same road segment/road cross at the
position of S. The intuition behind is that for a given road
segment/cross road that has not yet been explored, the initial
few expansions will reach a large number of points located n-
earby. As the expansion continues, more and more sub-areas
within the road segment/cross road are explored and eventual-
ly the expansion will reach mainly the space outside the road
segment/cross road and hence the next expansion circle will
cover a very small number of, if not zero, unvisited points.

Refining
When the Road-Tree from a Cobweb is ready, the Refining
step starts which consists of two sub-steps, namely Road-
Graph Generating and Graph Merging. The former is to re-
cover the missing roads from Road-Tree and the latter is to
connect the recovered missing roads to the original map to
complete the Map Update.

Road-Tree constructed in previous step actually captures the
main structure of the missing roads. However, because of the
construction algorithm adopted in this paper, Road-Tree is
free of any circuit while circuits do exist in real road network.
Consequently, Road-Graph Generating based on Road-Tree
is to recover those circuits by checking each pair of non-
adjacent nodes (vi, vj) in the Road-Tree. Our judgement on
whether vi and vj shall be connected directly in Road-Graph
is based on two distance metrics, i.e., their network distance
on Cobweb C(V,E) denoted as |vi, vj |C and their distance
on Road-Tree denoted as |vi, vj |T . If |vi, vj |C ≤ θC and
|vi, vj |T ≥ θT , vi and vj shall be linked directly in Road-
Graph. Here, the configuration of parameters θC and θT im-
plements the avoidance of the duplicated edges and circuit
recovering in road network.

An example partial Road-Tree is plotted in Figure 5(a), where
the solid lines are from Road-Tree and dashed lines are from
Cobweb. Take two vertex pairs (b, d) and (e, g) as examples,
under the assumption that θC = 50m and θT = 100m. Giv-
en the fact that |b, d|C = 40m and |b, d|T = 35m, b and d
will not be connected; on the other hand, as |g, e|C = 30m
and |g, e|T = 150m, g and e are connected on Road-Graph,
as shown in Figure 5(b). When Road-Graph is generat-
ed from Road-Tree, we try to eliminate spur road segments
from Road-Graph. Pair i and k is the example of spur road
segments. The real distance between i and k is very short
(|i, k|T = 15m) and hence below the minimum length of any
real road segment (e.g., 25 meters in our experiments), so ver-
tex k and edge (i, k) are deleted from the Road-Graph.
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Figure 5. Circuit recovering and spur elimination

Once Road-Graph is ready, we can start the last sub-step to
map the recovered missing roads back to the original map.
To achieve this goal, we first re-position the vertices of Road-
Graph, i.e., all the key vertices identified in above Road-
Graph Generating step, to accurate map locations. As shown
in Figure 6, we plot four key vertices b, m, i and h, and
their corresponding sets S (i.e., those points located within
the dash line circles centered at key vertices). Take road seg-
ments formed by i and b as an example. The points having
their projection on line segment (i, b) are original GPS points
corresponding to this road segment. If (i, b) has been accu-
rately mapped to the exact position in reality, the summation
of the distances from those GPS points to the segment (i, b)
shall be minimized. In other words, we can re-locate i and b to
their accurate positions by minimizing the distance summa-
tion. We utilize gradient descending mechanism to approach
the best location gradually.
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Figure 6. Key vertex relocation by gradient descending mechanism

For the merging sub-step, we propose a new approach. Recall
that in the Preprocessing step, we only extract those trajecto-
ries which cannot be matched to the original map. Here, we
make a small change. For each unmatched trajectory collect-
ed in the Preprocessing step, we extend both sides and extrac-
t those successfully matched GPS points, namely interface
points in this work. Based on unmatched GPS points and the
set of interface points, following steps find not only the miss-
ing roads but also the road segments adjacent to those missing
roads, which are named as interface roads in this work. Since
we can match those interface roads to the original map, at the
same time Cobweb well preserves the topological structure of
all the generated roads, it is feasible to connect each missing
road to the original map by figuring out corresponding part of
original road network for each interface road.

EXPERIMENTS
Recall and precision are often employed as the metrics to
quantify the effectiveness of a map inference or map update
approach. With the help of Definition 3, precision ρ is defined
as |(GRG∩Greal).E||GRG.E| and recall β is defined as |(GRG∩Greal).E||(Greal−G).E| ,
withGreal representing the road network in reality. However,
it is hard to make a judgment whether an algorithm with high
precision and low recall is better than another one with low
precision but high recall. Thus, we adopt the comprehensive
metric F-Score (the harmonic-mean of recall and precision)
to make an overall comparison among various algorithms [3,
12]. F-Score α is defined as 2×ρ×β

ρ+β . In the following, we
conduct our evaluation via F-Score, because a higher F-Score
implies a better performance in both recall and precision.

In this section, we conduct two sets of experiments, parame-
ter experiments and comparison experiments. The former is
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Figure 7. Performance under various parameters

to evaluate the impact of different parameters, including RC ,
RV , θC , and θT , on the performance of COBWEB and also to
figure out a proper setting for those parameters. The latter
is to compare COBWEB against other existing algorithms, in-
cluding TC1, KDE and CrowdAtlas, on map update and map
inference. As we know most map inference applications con-
sider concentrated trajectory data while map update applica-
tions focus on discrete trajectory data, we consider both types
of trajectory datasets in our experiments in order to provide a
complete view on the performance of different algorithms.

A collection of massive raw taxi trajectories in Singapore sup-
ports all the experiments above. It contains 1,550,000 trajec-
tories (20 billions GPS points), collected within a 5-month
period. For ground-truth, we select Singapore road network
data from OpenStreetMap (OSM) to check the results of TC1,
CrowdAtlas, KDE and COBWEB.

Parameter Experiments
Our COBWEB relies on many parameters, and our first set of
experiments is to evaluate the impact of different parameters,
including RC , RV , θC , and θT , on the performance of COB-
WEB. We conduct our evaluations with F-score, recall and
precision. Performance of these parameters is derived based
on geometrical shape and location of road segments. For each
road segment in generated road graph GRG, we decompose it
into 20 pieces uniformly. Then, each piece is compared with
ground-truth Greal − G. If this piece matches certain road
segment nearby and is parallel in the ground-truth (maximal
distance between generated pieces and ground-truth roads is
20m and maximal deviation angle of direction is 15◦), it is an
element of GRG ∩Greal. In this way, the F-Score, recall and
precision could be derived.

We select a portion of road network located in the downtown
of Singapore with complicated geometrical shape and topo-
logical relationship as the focused region. The dataset in-
cludes 31, 708 trajectories (i.e., 200, 009 GPS points) in this
1.5km × 3km rectangle region. Figure 7 plots the perfor-
mance of COBWEB under different parameters. It can be ob-
served that the best configuration for geometry isRC = 11m,
RV = 2m, θT = 120m, and θC = 30m.

First, we study the impact of RC , the maximum distance
threshold to decide whether two vertices in Cobweb shall be
connected. As shown in Figure 7(a), the performance is first
improved as RC increases its value and achieves the best per-
formance when RC = 11m. After that, the performance
drops slowly as RC further increases its value. A low val-
ue of RC makes the distribution of edges in Cobweb sparse,
thus performance is improved with increase of RC at first.

However, if the value exceeds the average distance between
two parallel roads, GPS points on two roads may be linked
directly. Consequently, some parts of Cobweb become vague
and chaos. This phenomenon explains the descending trend
after the highest point.

Second, we study the impact of RV , the distance threshold to
decide whether nearby points of a vertex v in all unmatched
trajectories shall be included into Cobweb. As observed in
Figure 7(b), with the increase of RV , the recall performance
decreases gradually and precision performance maintains at a
high level initially and then drops dramatically. The high val-
ue of RV raises up the sampling threshold of Cobweb Gener-
ator and decreases the volume of Cobweb, and hence under-
mines the recall metric. Before RV exceeds a certain thresh-
old, the high value could simplify Cobweb so as to gener-
ate some major roads more accurately. When it exceeds that
threshold (around 8m in our experiments), Cobweb becomes
so sparse that Cobweb Reducer could not generate proper
Road-Tree for most parts of the road network, which destroys
the precision performance suddenly. In summary, F-Score
performance only maintains a high level at the initial range.

Third, we study the impact of θC and θT , two distance thresh-
olds used to decide whether two vertices shall be connected
directly in Road-Graph. As shown in Figure 7(c), the com-
prehensive performance maintains a high level at first and
then declines gradually as θC changes. A large θC would
introduce too many duplicated edges to Road-Graph and thus
deteriorates the quality of generated roads. On the other hand,
θT demonstrates a different impact. As shown in Figure 7(d),
a small θT shows a weak status at first. After θT falls into
an appropriate range, it can effectively avoid the generation
of duplicated edges and meanwhile recover circuits. Conse-
quently, the metrics score higher and higher. In summary, we
can conclude that the best configuration complies with fol-
lowing rules in most times, RC ≥ 2RV , 2m ≤ RV ≤ 10m,
30m ≤ θC ≤ 50m, and 60m ≤ θT ≤ 120m.

Comparison Experiments
In our second set of experiments, we compare the perfor-
mance of COBWEB with three competitors. As explained
before, we conduct this set of experiments on two types of
dataset, namely concentrated dataset and discrete dataset. In
order to check the robustness of different algorithms in vari-
ous sampling intervals, we further partition both datasets in-
to four groups, according to their average sampling interval,
i.e., 30s, 60s, 90s, and 120s. Note that 30s (i.e., update per
30 seconds) refers to an example of high sampling rate while
120s refers to an example of low sampling rate. We visual-
ize generated roads of two types of datasets in Figure 12 and
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Figure 8. Performance under various sampling intervals using concentrated dataset

30s 60s 90s 120s
0.0

0.2

0.4

0.6

 CrowdAtlas
 Cobweb
 KDE
 TC1

 

 
(a) F-Score

30s 60s 90s 120s
0.0

0.2

0.4

0.6

 CrowdAtlas
 Cobweb
 KDE
 TC1

 

 
(b) Recall

30s 60s 90s 120s
0.0

0.2

0.4

0.6

0.8

1.0

 CrowdAtlas
 Cobweb
 KDE
 TC1

 

 
(c) Precision

Figure 9. Performance under various sampling intervals using discrete dataset
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Figure 10. Performance under various data volume using concentrated dataset
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Figure 11. Performance under various data volume using discrete dataset

Figure 13 respectively, under the sampling rate of 30s and
120s. From the figures, we can observe that trajectories are
distributed intensively in concentrated dataset and discretely
in the other dataset. Besides, in order to check the robustness
of several algorithms in various data volume, we divide both
datasets into four different sizes respectively, i.e., 1 day size,
5 days size, 10 days size and 15 days size. The variety of
performance in different data size reflects the scalability and
robustness of different algorithms.

Concentrated dataset consists of 169, 858 trajectories of 15
days (600, 001 GPS points) in a 3km × 4km rectangle re-
gion. In this dataset, all the trajectories are located in sever-
al highways intensively, so this data represents the common
statement of map inference application. After several train-
ing detection, the parameter configuration of KDE, TC1 and
CrowdAtlas is set in best range. For COBWEB, the parame-

ter setting is that RC = 15m, Rv = 7m, θC = 30m, and
θT = 60m.

We plot the shapes of road segments generated by different al-
gorithms under two sampling intervals (30s and 120s) in Fig-
ure 12, and report the performance of different algorithms un-
der various sampling intervals in Figure 8. As observed, the
shape of trajectories is distorted more and more as the sam-
pling interval becomes longer and longer. For CorwdAtals,
the distortion of trajectories undermines the performance of
both recall and precision. TC1 decomposes the original tra-
jectories into short well-shaped segments, and uses these seg-
ments to generate roads. Hence, the precision of TC1 is robust
to the change of sampling interval. However, when the inter-
val is very high, original trajectories are split into too many
fragmental pieces which causes the loss of lots of geometry
and topology information. Consequently, the recall perfor-
mance deteriorates with the rise of interval. On the contrary,



COBWEB only uses GPS points to generate Cobweb which
well preserves the geometry and topology information. Thus,
COBWEB demonstrates a superior performance under differ-
ent sampling intervals. Like COBWEB, KDE transforms GPS
points into a discretized image and then uses the pixels of this
image to generate road network. Thus, the variety of sam-
pling interval has a very limited impact on its performance.

Discrete dataset consists of 365, 243 trajectories (1, 045, 342
GPS points) in 11km × 14km rectangle region. In this
dataset, all the trajectories are distributed in entire Singapore
City downtown region discretely. This kind of dataset com-
monly exists in map update application. By training detec-

(a) COBWEB - 30s (b) COBWEB - 120s

(c) CrowdAtlas - 30s (d) CrowdAtlas - 120s

(e) TC1 - 30s (f) TC1 - 120s

(g) KDE - 30s (h) KDE - 120s
Figure 12. Visualization of generated roads using concentrated dataset

tion, the parameter configuration of TC1, KDE and CrowdAt-
las stays at best position. For COBWEB, the parameter setting
is that RC = 10m, Rv = 5m, θC = 25m, and θT = 100m.
Similar as the previous dataset, we plot the shapes of gener-
ated road segments corresponding to two different sampling
intervals in Figure 13. We also report the performance of
different algorithms under various sampling intervals for dis-
crete dataset in Figure 9. In this map update dataset envi-
ronment, TC1 shows a poor recall performance in each inter-
val. Because in this discrete type, the average length of each
trajectory is shorter (30m∼50m), and the decomposition pro-
cess of TC1 causes the loss of geometry information. This
explains why the recall curve remains in low position. On the

(a) COBWEB - 30s (b) COBWEB - 120s

(c) CrowdAtlas - 30s (d) CrowdAtlas - 120s

(e) TC1 - 30s (f) TC1 - 120s

(g) KDE - 30s (h) KDE - 120s
Figure 13. Visualization of generated roads using discrete dataset
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Figure 14. Visualization of recovered roads

other hand, CrowdAtlas performs better in discrete dataset.
This is because it collects each trajectory in each road po-
sition until the amount of collection is sufficient, and then
clusters these trajectories into a new road. This strategy elim-
inates the large loss of geometry information, thus CrowdAt-
las maintains a stable recall performance. As for the preci-
sion, CrowdAtlas shows a fluctuation in 30s and 60s interval
because some noise data exists in these two parts. COBWEB
uses denoiser to eliminate most noise data. Consequently, it
shows robustness on recall and precision performance again.
KDE demonstrates a similar performance as COBWEB.

Figure 10 and Figure 11 report the robustness comparison of
four algorithms under different data sizes based on concen-
trated dataset and discrete dataset, respectively. As data size
becomes smaller, the clustering effectiveness in CrowdAtlas
becomes less effective, which explains why recall falls grad-
ually. For KDE, the data sparsity exposes its weakness. The
drain of data eliminates more and more valid pixels in dis-

cretized image, and hence the structure of road network suf-
fers significantly. For TC1, we witness an obvious drop trend
in both recall and F-Score metrics. It means that the low data
volume ruins the feasibility of TC1 as it cannot get sufficien-
t trajectories to support its clustering. Although the failure
(empty results) of TC1 in 1 day data size causes the sudden
drop of precision, all four algorithms achieve relatively high
precision in most cases. When considering the comprehen-
sive metric F-Score, COBWEB is the most stable one in both
datasets.

Demonstration
In our last set of experiments, we demonstrate the perfor-
mance of COBWEB in terms of map update for the entire Sin-
gapore City. We use the trajectory data reported by 15, 000
taxis in Singapore within a 5-month period to update the road
network from OpenStreetMap(OSM). OSM supplies a free
access to use and edit map data to public. However, the up-
date of new submission map data is implemented by organiz-
ing informal and small meetings to manually complete miss-
ing features (according to [11, 10]). Original dataset contains
1, 550, 000 trajectories (20 billions GPS points). After map
matching, 2, 571, 750 trajectory segments (21, 713, 000 GPS
points) remain unmatched and are collected as the input for
map update. After the filtering of denoiser, 15, 392, 700 GPS
points remain. Finally, the total length of generated roads is
around 108km. We visualize the roads recovered by COBWEB
using white lines in Figure 14.

In Figure 14(a) and 14(b), we only plot the generated roads.
In Figure 14(c) and 14(d), we plot generated roads togeth-
er with the shorter interface roads via expanding each un-
matched trajectory with 2 GPS points in both directions in
the pre-processing step. In Figure 14(e) and 14(f) we plot
the generated roads with longer interface roads via expanding
each unmatched trajectory with 5 GPS points in both direc-
tions. More than 90% of interface roads overlap with the cor-
responding parts of the road network accurately, which means
COBWEB scores a perfect precision rate in graph merging. All
the red regions in Figures 14(b), 14(d), and 14(f) stand for
those denoised GPS points. Note in Figure 14, we plot our
recovered road segments using Google Earth satellite image
and road network from OpenStreetMap as backgrounds.

CONCLUSION
COBWEB is proved to be a robust map update system. The
robustness reflects in three aspects. First, it is robust to poor
data quality. COBWEB expertises at recovering complex road
networks from poor trajectory dataset with low sampling rate
and remarkable GPS noise. Second, it is robust to sparse
dataset. COBWEB is able to recover roads effectively regard-
less of the data volume. Third, it is robust to variety of roads
absence. COBWEB outperforms the current best algorithms of
both Map Update and Map Inference significantly. We de-
sire to implement the road-deletion update ability as the next
work, although the abandoned roads are extremely rare in the
real world. In the future, we plan to publish COBWEB as an
open source in order to maximize its usage.

ACKNOWLEDGMENTS



This research is supported in part by Microsoft Research A-
sia Collaborative Research Project, National Natural Science
Foundation of China (NSFC) under grant 61073001, Shang-
hai Natural Science Foundation under grant 14ZR1403100,
Shanghai Science and Technology Development Funds
(13dz2260200, 13511504300) and Student Scientific Innova-
tion Act of Fudan University.

REFERENCES
1. Agamennoni, G., Nieto, J. I., and Nebot, E. M. Robust

inference of principal road paths for intelligent
transportation systems. IEEE Transactions on Intelligent
Transportation Systems 12, 1 (2011), 298–308.

2. Ali, M., Krumm, J., Rautman, T., and Teredesai, A.
ACM SIGSPATIAL GIS Cup 2012. In Proc. ACM
SIGSPATIAL GIS 2012 (2012), 597–600.

3. Biagioni, J., and Eriksson, J. Inferring road maps from
gps traces: Survey and comparative evaluation. In Proc.
TRB 2012, Citeseer (2012).

4. Cao, L., and Krumm, J. From GPS traces to a routable
road map. In Proc. ACM SIGSPATIAL GIS 2009 (2009),
3–12.

5. Chang, B.-J. Vehicle location and navigation systems.
Telematics Communication Technologies and Vehicular
Networks: Wireless Architectures and Applications:
Wireless Architectures and Applications (2009), 119.

6. Chen, C., and Cheng, Y. Roads digital map generation
with multi-track GPS data. In Proc. ETT and GRS 2008,
vol. 1 (2008), 508–511.

7. Davies, J. J., Beresford, A. R., and Hopper, A. Scalable,
distributed, real-time map generation. IEEE Pervasive
Computing 5, 4 (2006), 47–54.

8. Diggelen, F. v. Gnss accuracy-lies, damn lies, and
statistics. GPS World 18, 1 (2007), 26–33.

9. Edelkamp, S., and Schrödl, S. Route planning and map
inference with global positioning traces. In Computer
Science in Perspective. Springer, 2003, 128–151.

10. Haklay, M., et al. How good is volunteered geographical
information? a comparative study of openstreetmap and
ordnance survey datasets. Environment and planning. B,
Planning & design 37, 4 (2010), 682.

11. Haklay, M., and Weber, P. Openstreetmap:
User-generated street maps. Pervasive Computing, IEEE
7, 4 (2008), 12–18.

12. Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G.,
and Zhu, Y. Mining large-scale, sparse GPS traces for
map inference: comparison of approaches. In Proc.
ACM SIGKDD 2012 (2012), 669–677.

13. Liu, X., Zhu, Y., Wang, Y., Forman, G., Lionel, M. N.,
Fang, Y., and Li, M. Road recognition using

coarse-grained vehicular traces. Tech. rep., Technical
Report HPL-2012-26, HP Labs, 2012.

14. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., and
Huang, Y. Map-matching for low-sampling-rate GPS
trajectories. In Proc. ACM SIGSPATIAL GIS 2009
(2009), 352–361.

15. Newson, P., and Krumm, J. Hidden markov map
matching through noise and sparseness. In Proc. ACM
SIGSPATIAL GIS 2009 (2009), 336–343.

16. Niehoefer, B., Burda, R., Wietfeld, C., Bauer, F., and
Lueert, O. GPS community map generation for
enhanced routing methods based on trace-collection by
mobile phones. In Proc. SPACOMM 2009 (2009),
156–161.

17. Ochieng, W. Y., Quddus, M., and Noland, R. B.
Map-matching in complex urban road networks. Revista
Brasileira de Cartografia 2, 55 (2003).

18. Phuyal, and Bishnu, P. Method and use of aggregated
dead reckoning sensor and gps data for map matching.
In Proc. ION GPS 2002 (2001), 430–437.

19. Schroedl, S., Wagstaff, K., Rogers, S., Langley, P., and
Wilson, C. Mining GPS traces for map refinement. Data
mining and knowledge Discovery 9, 1 (2004), 59–87.

20. Shi, W., Shen, S., and Liu, Y. Automatic generation of
road network map from massive GPS, vehicle
trajectories. In Proc. ITSC 2009 (2009), 1–6.

21. Song, R., Lu, W., Sun, W., Huang, Y., and Chen, C.
Quick map matching using multi-core cpus. In Proc.
ACM SIGSPATIAL GIS 2012 (2012), 605–608.

22. Steiner, A., and Leonhardt, A. A map generation
algorithm using low frequency vehicle position data.
Transportation Research Board, 90th Annual (2011).

23. Tan, P.-N., Michael, S., and Vipin, K. Introduction to
data mining. 666–667.

24. Wang, Y., Liu, X., Wei, H., Forman, G., Chen, C., and
Zhu, Y. Crowdatlas: self-updating maps for cloud and
personal use. In Proc. MobiSys 2013 (2013), 27–40.

25. White, C. E., Bernstein, D., and Kornhauser, A. L. Some
map matching algorithms for personal navigation
assistants. Transportation Research Part C: Emerging
Technologies 8, 1 (2000), 91–108.

26. Worrall, S., and Nebot, E. Automated process for
generating digitised maps through gps data compression.
In Australasian Conference on Robotics and Automation
(2007).

27. Zheng, Y. Trajectory data mining: an overview. ACM
Transactions on Intelligent Systems and Technology
(TIST) 6, 3 (2015), 29.


	COBWEB: A Robust Map Update System using GPS Trajectories
	Citation

	Introduction
	Related Work
	Map Update
	Map Inference
	Map Matching

	Preliminary
	COBWEB
	Preprocessing
	Cobweb Processing
	Refining

	Experiments
	Parameter Experiments
	Comparison Experiments
	Demonstration

	Conclusion
	Acknowledgments
	REFERENCES 

