
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2015

DIRECT: A scalable approach for route guidance in Selfish DIRECT: A scalable approach for route guidance in Selfish

Orienteering Problems Orienteering Problems

Pradeep VARAKANTHAM
Singapore Management University, pradeepv@smu.edu.sg

Hala MOSTAFA
Singapore Management University, halamostafa@smu.edu.sg

Na FU
Singapore Management University, nafu@smu.edu.sg

Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems

Engineering and Industrial Engineering Commons

Citation Citation
VARAKANTHAM, Pradeep; MOSTAFA, Hala; FU, Na; and LAU, Hoong Chuin. DIRECT: A scalable approach
for route guidance in Selfish Orienteering Problems. (2015). AAMAS '15: Proceedings of the 14th
International Conference on Autonomous Agents and Multiagent Systems: 4-8 May, Istanbul. 483-491.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2673

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2673&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

DIRECT: A Scalable Approach for Route Guidance in
Selfish Orienteering Problems

Pradeep Varakantham, Hala Mostafa, Na Fu, Hoong Chuin Lau
School of Information Systems

Singapore Management University
{pradeepv,halamostafa,nafu,hclau}@smu.edu.sg

ABSTRACT
We address the problem of crowd congestion at venues like
theme parks, museums and world expos by providing route
guidance to multiple selfish users (with budget constraints)
moving through the venue simultaneously. To represent
these settings, we introduce the Selfish Orienteering Problem
(SeOP) that combines two well studied problems from liter-
ature, namely Orienteering Problem (OP) and Selfish Rout-
ing (SR). OP is a single agent routing problem where the
goal is to minimize latency (or maximize reward) in travers-
ing a subset of nodes while respecting budget constraints.
SR is a game between selfish agents looking for minimum
latency routes from source to destination along edges of a
network available to all agents. Thus, SeOP is a multi-agent
planning problem where agents have selfish interests and in-
dividual budget constraints. As with Selfish Routing, we
employ Nash Equilibrium as the solution concept in solving
SeOP. A direct mathematical program formulation to find a
Nash equilibrium in SeOP cannot scale because the number
of constraints is quadratic in the number of paths, which it-
self is an exponential quantity. To address scalability issues,
we make two key contributions. First, we provide a compact
non-pairwise formulation with linear number of constraints
in the number of paths to enforce the equilibrium condition.
Second, we introduce DIRECT, an incremental and iter-
ative master-slave decomposition approach to compute an
approximate equilibrium solution. Similar to existing flow
based approaches, DIRECT is scale invariant in the number
of agents. We also provide a theoretical discussion of our
approximation quality and present extensive empirical re-
sults on synthetic and real-world graphs demonstrating the
scalability of combining DIRECT with our non-pairwise for-
mulation.

Categories and Subject Descriptors
J.m [Computing Application]: Game Theory

General Terms
Leisure and Entertainment, Decision Support

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright

c� 2015, International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
Game Theory; Selfish Routing; Orienteering; Network Con-
gestion Games, Constraint Generation

1. INTRODUCTION
A fundamental problem in the management of large-scale

transportation and communication networks is that of rout-
ing tra�c to optimize network performance, given that per-
formance degrades when network users act greedily and my-
opically. Game-theoretic equilibrium strategies are shown
to provide good performance [10], achieving more than 75%
of optimal social welfare in environments where the latency
on an edge is linear in the number of agents using it (also
referred to as flow). We therefore focus on the computation
of game-theoretic equilibrium strategies.
We consider the routing of selfish individuals each of whom

is interested in a set of nodes and is operating under a re-
source or time budget (minimum number of attractions to
visit or maximum time to spend). This problem arises in
crowd coordination for theme parks, museums and world
expos. For the operators of such facilities, one important
concern is the real-time coordination of visitors to provide
customized route guidance that reduces visitor wait times
while respecting their budgets. With the prevalence of smart
devices, this coordination is realizable by delivering guidance
to visitors’ mobile phones.
The computation of routes (sequence through all or a

subset of nodes of interest) in such scenarios has tradition-
ally been studied in the context of the Orienteering Prob-
lem (OP). OP is a generalization of the Traveling Salesman
Problem where the goal is to find a route that maximizes
utility (or minimizes latency) while respecting budget con-
straints on resources or time [13]. OP has been extensively
studied by the Operations Research and AI communities (a
survey of OP and its variants is given in [15]). While ef-
ficient algorithms for OP exist, the model and its solution
approaches are inapplicable in our setting because they do
not address or represent the e↵ects of interactions among
selfish agents traversing common edges whose latencies de-
pend on the number of agents using them, thereby linking
the decision problems of individual agents.
On the other hand, there are related multi agent mod-

els such as Network Congestion Games (NCG) and Self-
ish Routing (SR) [10, 9, 3] which consider the interactions
among selfish agents on a network. The goal for each agent
is to compute the minimum latency path from a designated
start node to a designated end node, where the latency of an
edge depends on the number of agents traversing it. How-

483

ever, neither NCG nor SR considers each agent’s resource or
time budget constraints that limit the number of nodes this
agent can visit.
To fill this gap, we introduce the Selfish Orienteering Prob-

lem (SeOP) where we represent the problem of finding a path
(sequence of nodes) for each selfish agent to satisfy their re-
source and budget constraints as a game. An assignment
of paths to agents results in certain flows on the edges of
the graph. As in NCG and SR, the goal is to compute the
set of paths that give rise to flows describing an (approxi-
mate) Nash equilibrium where no agent can achieve lower la-
tency/higher reward by deviating from the prescribed (pos-
sibly non-deterministic) path strategies.
To that end, we first present a formulation for finding

a Nash equilibrium in SeOP as an optimization problem.
However, the resulting Mixed Integer Linear Program has
limited scalability because it enforces the equilibrium condi-
tion using a number of constraints quadratic in the number
of available paths. To address this, we make the following
contributions:
1. We provide a compact optimization formulation for SeOP
that enforces the equilibrium condition using a number of
constraints linear in the size of the path set.
2. We present DIRECT, an iterative master-slave decompo-
sition approach that computes an approximate equilibrium
in a scalable manner by incrementally growing the set of
paths that constitute the support set of mixed strategies for
each agent type. Since SeOP is a generalization of SR prob-
lems, our approach can also be used to solve SR problems
e�ciently.
We provide a theoretical discussion of our approximation

quality and present extensive empirical results demonstrat-
ing the scalability of combining DIRECT with our compact
formulation. We report results from both synthetic and real-
world graphs.

2. SELFISH ORIENTEERING PROBLEM
In the Selfish Orienteering Problem (SeOP), as with Self-

ish Routing (SR), each agent optimizes their individual ob-
jective (maximizing utility or minimizing latency). Orien-
teering problems of di↵erent agents are interdependent since
the reward or latency of an edge is a function of the number
of agents using that edge.
Formally, SeOP is a tuple: < �,N,V, E ,L,D,B >. � is

the set of agent types and N = {N ⌧}
⌧2� is a vector repre-

senting the number of agents of each type ⌧ . hV, Ei repre-
sents the underlying network graph with vertices/nodes V
and edges E . L = {L⌧

ij

}
⌧2�,ij2E is a vector of latency func-

tions, one per agent type and edge. The latency experienced
by type ⌧ on path p is the sum of latencies experienced on
each edge in the path:

L⌧

p

=
X

ij2p

L⌧

ij

(x
ij

)

where each edge latency is a function of the flow x

ij

on it. In
the context of guidance at theme parks, the latency function
for an agent type ⌧ on an edge captures the tolerance of ⌧ for
congestion on this edge; the higher the latency the lower the
tolerance. D = {D⌧}

⌧2� is a vector where each D⌧ is the
set of nodes that agents of type ⌧ want to visit and B⌧ 2 B
is the budget for each agent type. For example, B⌧ can be
the minimum number of nodes in D⌧ that type ⌧ wants to
visit.

The goal is for each agent of type ⌧ to find one or more
paths that have minimum total latency from a designated
start node to a designated end node and cover at least B⌧

nodes in D⌧ . SeOP di↵ers from network congestion games
in multiple respects, namely budget on nodes to be visited
and the path should cover a subset or all nodes in the list of
interested nodes.
A solution of SeOP is an assignment of flows of every

agent type to edges and, consequently, paths. We focus on
computing equilibrium solutions, i.e. the calculated agent
flows are such that each agent is prescribed a path with
minimum latency and thus has no incentive to deviate from
this path given the paths of other agents.

Example 1. To give a concrete example, we present SeOP
in the context of the problem of providing route guidance to
visitors at a theme park:

• Visitors to the theme park are the agents and examples
of agent types, �, are adults, families with kids, families
with senior citizens, etc.

• The nodes, V, are theme park attractions.

• Latencies, L, represent the wait times on edges1.

• B is the resource (maximum number of nodes in the final
path) or time (total time available to visit attractions)
budget for each visitor type.

• D is the set of interesting attractions for each visitor
type. For example, a family with children prefers child
rides and moderately thrill rides.

The goal is to compute a sequence of nodes (selected from
D⌧) for each agent type ⌧ such that no agent of any type
has incentive to deviate from the prescribed sequence, i.e.
the prescribed sequence has minimum latency in the context
of sequences prescribed to other types.

3. SEOP AS AN OPTIMIZATION PROBLEM
To formulate SeOP as an optimization problem, we use the

following observation, due to Wardrop [16], on equilibrium
flows in tra�c routing.

Observation 1. At equilibrium, if a path p has positive
flow, then no other path can have a strictly lower latency
than the latency on path p [16] .

3.1 Pairwise Formulation of SeOP
Based on Observation 1, we propose the optimization for-

mulation for calculating equilibrium flows for SeOPs2 given
in Table 1. x

⌧

p

and x

⌧

ij

are the flows of agents of type ⌧ on
path p and edge ij, respectively. x

ij

is the total flow of all
agent types on edge ij. Note that if we generate the path set
P⌧ for each agent type ⌧ to only contain paths that meet
the budget B⌧ , we do not have to include explicit budget
constraints.
Since our goal is to compute any equilibrium solution,

our optimization problem is essentially a feasibility prob-
lem, with an option to include an objective function that

1At a theme park wait times are at attractions. While we
consider wait times or latencies as being associated with
edges, our model and approach can easily be modified to
account for wait times at nodes as shown in Section 7.2.
2This is an extension of the SR formulation [10] to account
for budget constraints and agent types.

484

Table 1: Pairwise SeOP formulation

min 0 subject to

x

ij

=
X

⌧

x

⌧

ij

8(i, j) 2 E (1)

8⌧ 2 �;

x

⌧

ij

=
X

p2P⌧ |ij2p

x

⌧

p

8(i, j) 2 E (2)

X

j

x

⌧

0j =
X

j

x

⌧

j|V| = N ⌧ (3)

X

i

x

⌧

ij

=
X

k

x

⌧

jk

8j 2 V (4)

8p 2 P⌧ if x

⌧

p

> 0 :
X

ij2p

L⌧

ij

(x
ij

)
X

kl2p

0

L⌧

kl

(x
kl

) 8p0 2 P⌧ (5)

x

⌧

p

, x

⌧

ij

, x

ij

� 0 (6)

Table 2: Non-pairwise SeOP formulation

min 0 subject to

8⌧ 2 �, p 2 P⌧

flow conservation and identity constraints

y

⌧

p

·M � x

⌧

p

(7)

y

⌧

p

 x

⌧

p

·M (8)
X

ij2p

L⌧

ij

(x
ij

) � d

⌧ (9)

X

ij2p

L⌧

ij

(x
ij

)� d

⌧ u

⌧

p

·M (10)

y

⌧

p

 w

⌧

p

·M (11)

u

⌧

p

+ w

⌧

p

 1 (12)

x

⌧

ij

, x

ij

, x

⌧

p

, d

⌧ � 0

y

⌧

p

, u

⌧

p

, w

⌧

p

2 {0, 1}

measures the quality of an equilibrium solution (e.g. the so-
cial welfare of a solution). In Table 1, constraints 1 and 2 are
identity constraints to ensure that agent flows on edges and
paths are consistent. They specify that the flow on an edge
is the sum of flows on path that include this edge and define
edge flow as the sum of agents of all types that traverse this
edge.
Constraints 3 and 4 enforce flow conservation for each

type:

• Total flow out of the start node 0 equals total flow into
the end node |V| equals the number of agents of this
type.

• Total flow into a node equals total flow out of it.

Constraint 5 implements Observation 1 by enforcing a pair-
wise relation between the latencies of every pair of paths. It
states that the latency of a path with positive flow should be

no larger than the latency of any other path. Although con-
straint 5 is a logical constraint, it can easily be represented
as a set of linear constraints (similar to the complementarity
constraint in the next subsection).

3.2 Non-pairwise Formulation of SeOP
The formulation in Table 1 su↵ers from limited scalability

due to O(|P|2) latency equilibrium constraints (5). We now
propose a formulation that does not perform pairwise com-
parisons of path latencies and uses only O(|P|) constraints.
d

⌧ represents the minimum latency achieved by type ⌧ .
First, we rephrase the equilibrium condition: at equilib-

rium, if the minimum attainable latency for type ⌧ on any
path is d⌧ , then each path with positive flow of type ⌧ agents
must have latency d

⌧ . Table 2 shows our non-pairwise
(NPW) SeOP formulation as a feasibility problem.
For each path p, let the binary variable y⌧

p

indicate whether
there is positive flow of agents of type ⌧ on path p:

y

⌧

p

= 1 i ↵ x

⌧

p

> 0

The above relation can be enforced using the linear con-
straints (7) and (8), where M is a large positive number.
The constraint that each path with positive flow must

have minimum latency can be seen as a complementarity
constraint between the indicator y⌧

p

on the one hand and the
gap between a path’s latency L⌧

p

and the minimal latency
d

⌧ on the other hand. If there is a gap, the indicator must
be 0 (path must have zero flow), and if the path has positive
flow, the gap must be zero.

y

⌧

p

· (L⌧

p

� d

⌧

p

) = 0

A complementarity constraint pq = 0 can be expressed
using the linear constraints

p wM

q uM

u+ w 1

where M is again a large positive number and u and w are
binary variables. Constraints (10), (11) and (12) apply the
same linearization to enforce complementarity between y

⌧

p

and the gap L⌧

p

� d

⌧

p

. Constraint (9) ensures that d

⌧ is
indeed the minimum latency.

4. ITERATIVE DECOMPOSITION
Even though NPW reduces the number of constraints from

quadratic to linear in the number of paths, it is not enough
to ensure scalability, since the number of paths is itself expo-
nential in the number of nodes in D⌧ and the budget B⌧ . To
overcome this problem, we do not compute equilibria using
the entire support set P⌧ of each type. Instead, we propose
Deviation Incentive based Restricted dEComposiTion (DI-
RECT), an iterative master-slave decomposition approach
where the master computes equilibria over a relatively small
support set and the slave searches for better paths to be
included in the support set in the next iteration. DIRECT
computes ✏-equilibrium solutions where ✏ is controlled using
the input parameter � 2 [0, 1].

As shown in Table 3, we start by initializing a seed path
set for each type, for example by randomly choosing a prede-
fined number of paths that meet the budget, or incorporat-
ing domain knowledge to generate an initial set of promising

485

paths. In each iteration and for each type ⌧ , DIRECT per-
forms the following steps:

1. The master computes equilibrium flows for all agents
except for a fraction � of an agent of type ⌧ . Note
that � is not a fraction of all agents of type ⌧ . Instead,
it is a fraction of only one agent of type ⌧ .

2. The slave finds the minimum latency path for the re-
maining � of an agent given the other flows computed
by the master.

3. If the slave path has lower latency than the minimum
latency for type ⌧ calculated by the master, the agent
has incentive to deviate and we need to add this path
to the support.

The algorithm converges when no more paths can be added
to the support. At convergence, we solve the master problem
with the final support set of paths for all N agents. The
resulting approximate equilibrium flows are such no agent
has incentive to deviate for more than fraction � of the time.

Example 2. Consider a problem with 10 agents all of one
type and � = 0.2. Consider an iteration where P̂⌧ = {p1, p2}
and the equilibrium flows returned by the master in this it-
eration are 6.3 agents on p1 and 3.5 agents on p2 for a total
of 9.8 (= 10 � �) agents. Let the latency of each of these
paths (which must be equal since they have positive flow) be
20. The slave then checks if � (= 0.2) fraction of one agent
has incentive to use a path other than p1 and p2. The slave
computes the shortest non-divisible flow path for � given the
flows computed for the other 9.8 agents. If this new shortest
path has latency 18, it is added to the support set and the
next iteration’s master uses the larger support to compute an
equilibrium with lower latency than the current iteration.

The example illustrates the following two key approxima-
tions we make in DIRECT:
1. Every call to the master computes equilibria using a

restricted set of paths P̂ rather than the full set P. As we
show empirically, |P̂| is typically orders of magnitude smaller
than |P|, leading to significant reductions in run times.
2. The second approximation allows the slave to check if

an agent has an incentive to deviate from the equilibrium
computed by the master in a scalable manner. This is done
by restricting the slave to only use binary flow variables x

ij

,
thereby finding the minimum latency path among the set of
deterministic paths only.
The master problem Master(P̂, � , ⌧) has the same form

as Table 2 with two key di↵erences; the path sets are P̂⌧

rather than P⌧ ; and the flow conservation constraints (3) are
modified such that the total flow for type ⌧ is only N ⌧ � �.
Table 4 provides the slave as an integer linear program. The
objective function is the latency over all edges given current

flows xP̂ from the master in addition to the planned flow for
� fraction of an agent of type ⌧ . Constraints (13) and (14)
ensure indivisible flow conservation for the � fraction of an
agent. Constraints (15) and (16) ensure that the returned
path only visits desirable nodes and satisfies the budget.
Ideally, we want to know if there is incentive for any one

agent to switch to any set of paths; i.e., search the space
of non-deterministic strategies. But this would require the
slave to allow fractional flows and the branching of flow
at some nodes. Expressing the overall latency experienced

Table 3: DIRECT (�)
//Initialize subset of paths for each type
P̂ = {P̂1

, P̂2
, .., P̂ |�|}

converged false
while !converged do

converged true
for all ⌧ 2 � do

< xP̂
, d

⌧

> Master(P̂, � , ⌧)

p

⌧ Slave(xP̂
, � , ⌧)

if p

⌧

/2 P̂⌧ and L⌧

p

⌧
< d

⌧ then

P̂⌧ P̂⌧[{p⌧}
converged false

return Master(P̂, 0,�1)

Table 4: Slave(xP̂
, � , ⌧)

min
x2{0,1}

X

(ij)

x

ij

· L⌧

ij

(xP̂
ij

+ �)

X

j

x0j =
X

i

x

i|V| = 1 (13)

X

i

x

ij

=
X

k

x

jk

8j (14)

X

i

x

⌧

ij

= 0 8j /2 D⌧ (15)

X

i,j2D⌧

x

⌧

ij

� B⌧ (16)

by the agent would then require an indicator variable for
each possible path and the slave problem would have the
same complexity as the original master over the full set of
paths. Therefore, instead of computing fractional flows for
one agent, we compute non-divisible flow for a fraction � of
an agent, thereby avoiding the exponential enumeration of
paths at the expense of introducing the approximation error
discussed in the next section.
While we consider latency (reward) functions to be linear,

as long as they are convex, our decomposition approach can
use o↵-the-shelf solvers to obtain a solution. For non-convex
and non-linear latency (or reward) functions, we can em-
ploy piecewise constant or piecewise linear approximations.
Extending DIRECT to these function classes is a topic for
future research.

5. THEORETICAL RESULTS
In this section, we provide an a posteriori (after comput-

ing the solution) bound on the approximation error, ✏ for a
given value of � with our DIRECT algorithm.

Proposition 1. DIRECT(�) converges to an ✏ equilib-
rium with

✏ � ·max
⌧

⇣
L⌧,#(�)� L⌧,#(0)

⌘
(17)

where L⌧,#(�) and L⌧,#(0) are the latency values obtained

by solving Slave(xP̂
, � , ⌧) and Slave(xP̂

, 0, ⌧) respectively

at convergence. x

P̂ is the flow obtained by solving the master
at the last iteration for N � � agents, with � representing a
fraction of type ⌧ agent.

486

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 25 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

attractions

tim
e(

s)

DIRECT−NPW
DIRECT−PW

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 25 40 45 50
0

1

2

3

4

5

6

7

8

9

10

attractions

tim
e(

s)

DIRECT−NPW
DIRECT−PW

Figure 1: E↵ect of number of attractions |V| on runtime for 1 (L) and 2 (R) types. � = 0.5

Proof. There is an approximation error with DIRECT for
an input parameter of �, because potentially less than � frac-
tion of an agent can find a path that has lower latency value
given the flows for the rest of the agents. A lower bound
on the lowest latency value for a type ⌧ agent is obtained
by solving the shortest path problem given flow for N � �

agents (equivalent to Slave(xP̂
, 0, ⌧)) and considering that

� agents do not contribute to the flow on paths. This is a
lower bound because latency without adding � fraction of
the agent will only be smaller than the latency obtained by
adding the � fraction of the agent. Therefore for agent of
type ⌧ , the error would be given by:

✏

⌧

 � ·
⇣
L⌧,#(�)� L⌧,#(0)

⌘

We multiply by the � factor because 1 � � fraction of the
agent remains the same in both components of the di↵erence.
Approximation error over all types is the maximum over the
error for each individual type and hence the bound on error
given in Equation 17. ⌅

6. EXPERIMENTAL RESULTS
We now compare 3 approaches for solving SeOP. Full-

NPW formulates SeOP as the non-pairwise feasibility prob-
lem in Table 2 using the full path set and no decomposition3.
DIRECT-PW uses master-slave decomposition with pair-
wise formulation in the master (Table 1). DIRECT-NPW
combines decomposition with the compact non-pairwise for-
mulation in Table 24.

We change 3 parameters: � 2 {0.2, 0.5, 0.9} changes the
tightness of the approximate equilibrium while the number
of attractions in the theme park |V| and the number of agent
types |�| change the size of the problem. For the di↵erent
approaches, we compare 1) runtime; 2) latency of the (ap-
proximate) equilibria; and 3) number of paths in the support
set.

6.1 Synthetic graphs
For each parameter combination, we generate 10 instances

that vary in the latency functions of their edges, which have
3We were only able to run Full-PW on very small problems
and hence is not described in experimental results.
4Using a Mac with 3.4 GHz Intel Core i7, 32 GB 1600 MHz
DDR3. All optimization problems were solved using IBM
ILOG CPLEX Optimization Studio V12.4.

the form ax + b where a, b are randomly drawn from the
range 1 to 10. Unless stated otherwise, we set the budget
B⌧ of each type to be |V|, so the full set of possible paths is
the set of permutations of all attractions. In DIRECT-PW
and DIRECT-NPW, the set P̂⌧ for each type is initialized
with a single path traversing all nodes in order.

Impact of number of attractions |V|
We first consider the e↵ect of the number of attractions on
runtime. Figure 1 shows run times for 1 and 2 agent types
and � = 0.5. With 1 type, Full-NPW is faster only for very
small problems (up to |V| = 8) that do not need decompo-
sition. For |V| = 9, 10, Full-NPW takes 17 and 401 seconds,
respectively and runs out of time (aborted after 1 hour)
and/or memory while generating the full set of paths for
larger problems. For 2 types, Full-NPW could only handle
5 and 6 attractions. For the rather large value of 0.5 for �,
both DIRECT approaches scale very well with |V|, handling
up to 50 attractions in a few seconds.
The figures clearly show the significant impact of the num-

ber of types on runtime. To understand the e↵ects of |V|
and |�|, note that DIRECT’s gradual increase of the sup-
port size largely mitigates the main challenge posed by a
large set of attractions, namely the exponential explosion
of the set of paths. Increasing the number of types, how-
ever, increases the number of times the master and slave
problems are solved in each iteration of DIRECT, in addi-
tion to each master problem being larger, since we have a
set of variables per type per path. Moreover, a path intro-
duced by 1 type’s slave can give all other types incentives to
deviate, upon which paths are added to their respective sets.

Impact of input parameter �

Tables 5 and 6 show the e↵ect of � (� = 0 refers to Full-
NPW) on the latency of the equilibrium paths L and the
size of the support set |P̂| (for DIRECT-*, this is also the
number of iterations). As explained earlier, lower values of �
result in tighter approximations. Entries marked ‘-’ indicate
running out of time/memory. To have a meaningful compar-
ison of these quantities, Table 5 is for |�|=1. DIRECT-PW
and DIRECT-NPW have the same L and |P̂|, which con-
firms that the pairwise and non-pairwise constraints enforce
the same semantics on flows. As expected, higher � leads
to fewer iterations (thus smaller path sets) because given

487

Table 5: E↵ect of � on latency at equilibrium and
support size. |�| = 1

|V|=8 |V|=10 |V|=20

� L |P̂| L |P̂| L |P̂|
0 91.8 720 100.9 40,320 - -
0.2 92 12.7 101.2 15.7 143.6 20.6
0.5 93.3 8.6 103.7 10 153.1 12
0.9 97.8 6.2 110.5 7.5 169.3 7.8

Table 6: E↵ect of � on runtime (seconds). |�| = 2
|V|=10 |V|=20

� NPW PW NPW PW
0 - - - -
0.2 25 108 90 496
0.5 1.0 2.6 2.0 4.5
0.9 0.3 0.5 0.8 0.9

Table 7: Tightness of error bound
|V| Upper bound on ✏ Observed ✏ Final

(Proposition 1) Latency
8 1.212 0.15 91.84
9 1.416 0.37 95.58
10 1.802 0.31 100.89

flows for other agents, an agent can have no incentive to
deviate 0.9 of the time, but have incentive to deviate 0.2 of
the time, so the slave can find a path to add to the support
with � = 0.2, but not with � = 0.9. Table 5 also shows the
increasing approximation gap between L of Full-NPW and
the DIRECT approaches as � and |V| increase5. Noting how
little the support size changes as |V| increases explains the
scalability of DIRECT demonstrated in Figure 1. The tim-
ing results in Table 6 show that DIRECT-PW takes much
longer to achieve the same result as DIRECT-NPW, with
the di↵erence in runtime growing with |V|.

To investigate how the quest for tighter approximation af-
fects the scalability of DIRECT approaches, we set � = 0.2
to generate Figure 2(a) which strongly suggests that if the
goal is better approximate equilibria, the pairwise formula-
tion can get prohibitively expensive while the non-pairwise
formulation continues to scale very well with |V|.

Impact of number of types |�|
We next investigate the scalability of our approaches with
the number of types |�|. Based on our observations from
a real life theme park, patrons of di↵erent types (e.g., age,
nationality) are interested in di↵erent subsets of attractions.
We experiment with 16 attractions and for each type, gen-
erate a set of 8 random attraction that agents of this type
want to visit, so |D|⌧ = B⌧ = 8 8⌧ . Figure 2(b) again
exhibits the observation from Figure 1 that the number of
types has a strong impact on runtime, and shows the limi-
tation of DIRECT-PW as |�| increases.

Tightness of error bound
We now demonstrate the tightness of the error bound on ✏

5We assume the all 3 approaches are converging to the same
equilibrium.

Table 8: Real Network: Runtime and support size

� DIRECT-NPW DIRECT-PW |P̂|
Runtime Runtime /type

|�| = 1
0.2 22.1354 22.6016 13.1
0.5 9.545 10.0806 8.4
0.9 4.1876 4.3091 5.9

|�| = 2
0.2 53.4626 80.0936 9.4
0.5 21.329 26.081 6.85
0.9 10.7274 11.7274 5.1

Table 9: Real Network: Impact of initial path set.
|�| = 1

Initial Path Set Final Latency Support Set Size
1 121.31 9
2 121.16 9
3 121.16 10
4 121.22 10
5 120.04 9
6 119.18 10
7 120.31 10
8 122.26 8
9 120.50 9
10 119.99 11

by providing the di↵erence in observed value of ✏ and upper
bound on ✏ computed using Propostion 1. Since, we can
only run Full-NPW for small problems, we consider |�| = 1
and |V| = {8, 9, 10}. As can be noted from Table 7, the
predicted upper bound on ✏ using Proposition 1 is a tight
bound and the di↵erence in predicted and observed is less
than 1.5% of the final latency (last column).

6.2 Graph of a real-world theme park
To demonstrate the applicability of our approach to real

networks, we present results of running our formulations us-
ing graphs obtained from a major theme park in Singapore
with 12 attractions/nodes. The graph is based on analysing
movement dynamics of visitors among attractions over a
one year period. Although this graph is not a complete
graph, the comparison results between DIRECT-PW and
DIRECT-NPW with respect to runtime are qualitatively the
same as those obtained on complete synthetic graphs.
As can be noted from Table 8, the runtime results are

similar to the ones obtained for synthetic graphs. We have
also considered benchmarks for single and team orienteering
problems [14] from literature. All these problems are fully
connected graphs with 21 and 32 nodes. Since we show re-
sults on problems with up to 50 nodes that have randomly
generated latency functions, we do not explicitly provide re-
sults on these benchmark instances.

Impact of initial path set
As explained earlier, DIRECT-* approaches rely on an ini-
tial path set that is incrementally expanded at each iter-
ation. Here, we experiment with DIRECT-NPW using 10
di↵erent initial path sets for � = 0.5 on both the real theme
park graph introduced earlier and a fully connected syn-

488

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 25 40 45 50
0

100

200

300

400

500

600

700

attractions

tim
e(s

)

DIRECT−NPW
DIRECT−PW

(a) E↵ect of number of attractions |V| on runtime for |�|=2
� = 0.2

1 2 3 4 5 6
0

200

400

600

800

1000

1200

types

tim
e(

s)

DIRECT−NPW
DIRECT−PW

(b) E↵ect of number of types |�| on runtime for |V|=16 � =
0.5 and B⌧=8

Figure 2: DIRECT-NPW vs DIRECT-PW

Table 10: Real Network: Impact of Initial Path Set.
|�| = 2

Initial Path Set Final Latencies Support Set Sizes
1 195.82 ; 155.82 6 ; 6
2 192.79 ; 158.47 7 ; 8
3 195.66 ; 155.61 7 ; 7
4 199.48 ; 152.52 5 ; 7
5 194.59 ; 152.85 6 ; 8
6 196.04 ; 157.08 7 ; 7
7 198.86 ; 151.65 8 ; 8
8 197.70 ; 151.37 7 ; 7
9 193.69 ; 156.99 6 ; 8
10 197.35 ; 155.29 7 ; 7

thetic graph, both of which have 12 nodes. Tables 9, 10, 11
and 12 show the results on one and two types of agents. As
can be seen, di↵erences in the final latencies for both real
and synthetic examples are minimal. The run-time results
are also very similar for di↵erent initial path sets, which is
to be expected, since the final support set size are similar.
It is interesting to note that we converge to a very similar

equilibrium even though we start from vastly di↵erent path
sets. While we cannot make general claims from this result,
it potentially suggests a low price of anarchy for SeOPs. We
leave the study of price of anarchy in SeOPs for future work.

7. DISCUSSION
In this section, we discuss variants and extensions of our

model and approach.

7.1 Maximizing Reward with Time Budget
It should be noted that while we have described SeOP

in terms of minimizing latency constrained by a resource
budget on nodes to be visited, our optimization approach
and its enhancement are directly applicable to the following
variants of SeOP:

• The budget for each agent type ⌧ is on the maximum
time available to visit the nodes in D⌧ .

Table 11: Synthetic Network: Impact of initial path
set. |�| = 1

Initial Path Set Final Latency Support Set Size
1 106.70 11
2 106.86 10
3 107.00 11
4 107.02 11
5 106.71 11
6 107.70 11
7 108.14 9
8 106.98 11
9 107.36 10
10 107.25 10

• Each agent maximizes the reward accumulated (instead
of minimizing latency) in visiting a subset of attrac-
tions/nodes within the given time budget.

Table 1 can be modified as follows when each agent max-
imizes a reward function R instead of minimizing latency
L and budget constraints are on the maximum time avail-
able instead of the minimum number of desirable nodes to
visit:
• We replace the latency constraint 5 with the reward con-

straint

if x

p

> 0 :
X

ij2p

R⌧

ij

(x
ij

) �
X

(kl)2p

0
R⌧

kl

(x
kl

), 8⌧ 2 �, p, p0 2 P⌧

Similar to the latency functions, R⌧

ij

(x
ij

) is the reward
obtained by agents of type ⌧ for travelling on edge ij

when the flow on this edge is x

ij

. The path sets P⌧

are no longer computed from the budget, and include all
possible paths for agents of type ⌧ .

• Unlike the budget constraint on resources which is im-
plicit in the set of available paths, the budget constraint
on time requires the following new constraint:

if x

p

> 0 :
X

ij2p

L⌧

ij

(x
ij

) B⌧

489

Table 12: Synthetic Network: Impact of initial path
set. |�| = 2

Initial Path Set Final Latencies Support Set Sizes
1 135.00 ; 118.02 10 ; 10
2 135.32 ; 117.32 9 ; 10
3 134.97 ; 119.11 10 ; 10
4 133.5 ; 118.78 9 ; 10
5 136.88 ; 118.89 9 ; 9
6 134.34 ; 117.54 10 ; 11
7 133.46 ; 121.88 9 ; 8
8 135.53 ; 118.46 10 ; 9
9 134.6 ; 118.8 10 ; 10
10 133.73 ; 118.72 10 ; 10

7.2 Wait Times at Nodes Instead of Edges
To accurately represent the theme park setting, we need

to consider wait times at nodes instead of at edges. For this,
the key change is in the computation of latency for any path,
p. Instead of summing over all edges in the path, we sum
over latencies at all nodes in the path, i.e.,

P
i2p

L⌧

i

(
P

j

x

ij

).
It should be noted that the latency for a node, i will be calcu-
lated based on the incoming flow into that node i.e.,

P
j

x

ij

and not on x

ij

. All other constraints in the optimization
problems (Table 1 and Table 2) remain the same. In fact,
considering latency at nodes may be an easier problem than
considering latency on edges.

8. RELATED WORK
The Team Orienteering Problem (TOP) [1, 6, 14, 11] rep-

resents OP for teams of agents and is di↵erent from the work
in this paper due to selfishness of our agents.
The optimization formulation for Selfish Routing by Rough-

garden et al. [10] is the closest work to this paper. How-
ever, we address budget constraints (additional knapsack
constraints) and use decomposition to handle larger SeOP
instances. While decomposition approaches such as column
generation for optimizing social welfare in tra�c routing [12]
exist, it is non-trivial to adapt these approaches to account
for equilibrium constraints since a column refers to a path
and two paths with overlapping edges are not completely
independent of each other as these approaches assume.
Although the master-slave decomposition in DIRECT has

an iterative best response (IBR) flavor, we cannot use IBR
as a baseline since 1) at each iteration IBR needs to com-
pute best response and as we have shown (with the perfor-
mance of centralised optimization formulations) optimising
even for a single agent over the entire path set becomes
practically infeasible very quickly; and 2) iterating to com-
pute pure strategies for individual agents is expensive (as we
consider domains with thousands and thousands of agents),
while iterating at the level of types can be easily shown to
not converge to strategies that are stable at the individual
agent level. DIRECT addresses both issues: 1) the master
incrementally builds the support set and 2) the slave finds
candidate paths by trying to route a fraction of an agent,
guaranteeing at convergence that no agent prefers to deviate
more than � of the time.

Fictitious play [2] and other adaptive learning approaches
can potentially be used to solve SeOPs. However, they also
run into the same issues as IBR and furthermore, with multi-

ple agent types, they do not guarantee convergence because
the game becomes atomic. Hence there is no guarantee on
the existence of a potential function [7]. Since there exists an
equilibrium for every finite game and our approach is based
in optimization, we do not have issues with convergence.
In contrast to variational inequality models [4] commonly
used for tra�c equilibrium problems in transportation net-
works, our approach is much more scalable computationally
as demonstrated in the experimental results.
While SeOP is similar to network congestion games (NCGs),

it has the following complicating requirements: 1) an agent
needs to visit a given set of nodes and 2) di↵erent agent
types have di↵erent latency functions (cost vectors) for a
given edge. As such, the proof of existence of pure NE that
holds for NCGs [9, 3] does not necessarily hold in SeOP.
Unlike symmetric NCGs where agents have the same strat-
egy spaces and for which a polynomial time algorithm exists
[3], asymmetric NCGs are PLS-complete. So even if SeOPs
have pure NE, because each agent in SeOP must visit cer-
tain nodes (and thus has a di↵erent set of valid strategies),
SeOP is likely to be PLS-complete or harder. Another com-
plexity argument is that OP is NP-hard [5], so our multi-
agent version is at least in this complexity class. Milchtaich
[8] considered congestion games with player-specific utilities,
but each player selects exactly one resource and the game is
not networked.
DIRECT is similar to column generation in that we gradu-

ally increase the size of the support set. In order to compute
reduced cost of adding a column (a path in this case), column
generation needs to have columns that are independent of
each other. However, because multiple paths (columns) can
share edges, the independence assumption does not hold.

9. CONCLUSION
This paper proposes a new model for the Selfish Orienteer-

ing Problem (SeOP) to combine the Orienteering Problem
and Selfish Routing/network congestion games. We first give
a direct formulation of finding a Nash equilibrium in SeOP
as an optimization problem and address its limited scalabil-
ity through two main contributions: a compact formulation
with a linear number of constraints to enforce the equilib-
rium condition without pairwise comparisons of path laten-
cies and DIRECT, an iterative master-slave decomposition
approach that incrementally grows the set of paths to com-
pute an approximate equilibrium. We provide a theoretical
discussion of our approximation quality and present experi-
mental results clearly showing that 1) our non-pairwise for-
mulation achieves the same solution quality as the pairwise
one using a fraction of the number of constraints; and 2)
our master-slave decomposition achieves solutions with ad-
justable approximation gap using a fraction of the full path
set. Together, these two contributions form an approach to
solving SeOP that is highly scalable in the number of attrac-
tions and types of agents, while also being scale invariant in
number of agents of each type.

Acknowledgements This research is supported by the Sin-
gapore National Research Foundation under its International
Research Centre @ Singapore Funding Initiative and admin-
istered by the IDM Programme O�ce, Media Development
Authority (MDA).

490

REFERENCES
[1] C. Archetti, A. Hertz, and M. G. Speranza.

Metaheuristics for the team orienteering problem.
Journal of Heuristics, 13(1):49–76, 2007.

[2] G. W. Brown. Iterative solution of games by fictitious
play. Activity Analysis of Production and Allocation,
13(1):374–376, 1951.

[3] A. Fabrikant, C. Papadimitriou, and K. Talwar. The
complexity of pure nash equilibria. In Proc. of STOC,
2004.

[4] T. L. Friesz, D. Bernstein, T. E. Smith, R. L. Tobin,
and B. W. Wie. A variational inequality formulation
of the dynamic network user equilibrium problem.
Operations Research, 41(1):179–191, 1993.

[5] B. L. Golden, L. Levy, and R. Vohra. The orienteering
problem. Naval Research Logistics (NRL),
34(3):307–318, 1987.

[6] L. Ke, C. Archetti, and Z. Feng. Ants can solve the
team orienteering problem. Computers & Industrial
Engineering, 54(3):648–665, 2008.

[7] K. Kollias and T. Roughgarden. Restoring pure
equilibria to weighted congestion games. In
Proceedings of the 38th international conference on
Automata, languages and programming - Volume Part
II, ICALP’11, pages 539–551, Berlin, Heidelberg,
2011. Springer-Verlag.

[8] I. Milchtaich. Congestion games with player-specific
payo↵ functions. Games and Economic Behavior,
13:111–124, 1996.

[9] R. W. Rosenthal. A class of games possessing
pure-strategy nash equilibria. International Journal of
Game Theory, 2:65–67, 1973.

[10] T. Roughgarden and E. Tardos. How bad is selfish
routing? Journal of the ACM, 49(2):236–259, Mar.
2002.

[11] W. Sou↵riau, P. Vansteenwegen, G. Vanden Berghe,
and D. Van Oudheusden. A path relinking approach
for the team orienteering problem. Computers &
Operations Research, 37(11):1853–1859, 2010.

[12] G. N. T. Leventhal and L. Trotter. A column
generation algorithm for optimal tra�c assignment.
Transportation Science, 7(2):168–176, 1973.

[13] T. Tsiligirides. Heuristic methods applied to
orienteering. The Journal of the Operational Research
Society, 35(9):797–809, 1984.

[14] P. Vansteenwegen, W. Sou↵riau, G. V. Berghe, and
D. V. Oudheusden. A guided local search
metaheuristic for the team orienteering problem.
European Journal of Operational Research,
196(1):118–127, 2009.

[15] P. Vansteenwegen, W. Sou↵riau, and D. V.
Oudheusden. The orienteering problem: A survey.
European Journal of Operational Research, 209(1):1 –
10, 2011.

[16] J. G. Wardrop and J. I. Whitehead. Correspondence.
some theoretical aspects of road tra�c research. ICE
Proceedings: Engineering Divisions, 1, 1952.

491

	DIRECT: A scalable approach for route guidance in Selfish Orienteering Problems
	Citation

	seopAAAI

