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ABSTRACT
Memetic search is well known as one of the state-of-the-art
metaheuristics for finding high-quality solutions to NP-hard
problems. Its performance is often attributable to appro-
priate design, including the choice of its operators. In this
paper, we propose a Markov Decision Process model for the
selection of crossover operators in the course of the evolu-
tionary search. We solve the proposed model by a Q-learning
method. We experimentally verify the efficacy of our pro-
posed approach on the benchmark instances of Quadratic
Assignment Problem.

1. INTRODUCTION
Evolutionary search has been widely used to find solutions

to many NP-hard problems [1]. Rudimentarily, it evolves
population of individuals which represent the candidate so-
lutions to some problem. Central to the evolution of these
individuals are variation operators and selection processes.
The former enables search method to sample various regions
of the search space to escape from some local optima. The
latter biases the evolution towards some promising regions
where fitter individuals may be identified. These evolution-
ary operators therefore constitute the algorithmic core of
an evolutionary search technique. The quality of the evolu-
tionary operators is thus critical for the performance of the
search algorithm. While the efficiency of a specific evolution-
ary search method may be well-established on a number of
problem instances, its performance normally depends on the
correct settings of its components; and domain knowledge is
often essential to good performance.
The No Free Lunch theorem [2] suggests that it is difficult

to anticipate the efficiency of an algorithm on any instances
of a wide class of problems without preliminary experiment
or learning process. Some off-line tuning algorithms [3] may
be used to adjust parameters by running the search on train-
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ing instances prior to using it for solving new problems. This
does not, however, exploit the fact that the usefulness of the
operators often varies during the course of evolution. Ad-
ditionally, dependencies between operators may exist and
hence multiple operators may provide better results through
interactions rather than when they are applied individually.
Setting the application rates of the variation operators can
be achieved by using methods that control—in the course of
searching for the solution to the problem—which variation
operator should be applied based on the recent performance
of all available operators. Commonly referred to as Adaptive
Operator Selection (AOS) [4], such control provides some
adaptive mechanism for selecting one suitable operator for
each iteration of the evolutionary search. Recent approaches
[5, 6] have proposed such adaptive mechanisms for general
evolutionary search with possibly many variation operators
whose behavior may be unknown, giving rise to uncertainty.
Our recent study [7] has confirmed that adapting operator
choices well in accordance with the different search stages
of an algorithm is important for the effectiveness of an AOS
method. Herein, we propose to formulate the AOS problem
as a Markov Decision Process (MDP) [8] by automatically
mapping search stages into states and solve the MDP by
means of reinforcement learning.

2. ADAPTIVE OPERATOR SELECTION
The development of an adaptive operator selection (AOS)

method includes a credit assignment mechanism that evalu-
ates the quality of operator applied in the last decision stage,
and an adaptation mechanism that decide which operator to
choose based on the evaluated quality. Herein, we reward
an operator only if it improves over its better parent, and
the amount fo reward depends on its comparison with the
current best solution:

reward =
costbest
costchild

· I(costparent − costchild) (1)

The indicator I(·) returns 1 if the child improves its bet-
ter parent and 0 otherwise. After the quality evaluation
of the operator applied in the current generation, there ex-
ist various established adaptation mechanisms: Probability
Matching (PM), Adaptive Pursuit (AP), and Multi-Armed
Bandit (MAB). An extensive experimental study of these
methods can be found in [9, 7].
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3. A MARKOV DECISION PROCESS FOR
ADAPTIVE OPERATOR SELECTION

The established AOS methods mentioned above are state-
less. A state-based MDP is defined by the sets of states,
actions, and transitions. The states include:

1. Restart. Binary state variable defining whether it is
just restarted. In our implementation, restart is trig-
gered to diversify the current population when the di-
versity level falls below a threshold. Intuitively, a more
explorative crossover operator may be preferred to ex-
plore the surroundings.

2. Fitness Improvement. Binary state variable defining
whether a new restart best solution is just found. A
fitness improvement may indicate that the search has
entered a promising region. Intuitively, an exploitive
crossover operator is preferred to find the best solution
therein.

3. Diversity Level. Three discretized diversity levels are
considered: low (1/8 the maximum diversity or less),
medium (1/8 to 1/4 the maximum diversity), and high
(1/4 the maximum diversity or more). The maximum
diversity is computed as n · p · (p− 1)/2 where n is the
size of the QAP instance and p is the population size.

A total of 2×2×3 = 12 states are used for defining different
search stages. Besides, each action is defined as using one
of the available operators. By modelling the evolutionary
search as a Markov Decision Process, the expected value Q
of each state-action (s, a) pair can be formulated using a
recursive equation

Q(s, a) = R(s, a) +
∑
s′

P (s′, a, s)max
a′

Q(s′, a′), (2)

where P (s′, a, s) is the probability to go into a new state s′

and R(s, a) is the expected reward from executing action a
when in the current state s. In evolutionary search, Q(s, a)
is instance-specific value. We consider herein the Q-learning
method, which allows us to explore the Q value at the same
time as solving it. To implement the reinforcement learning
method, we maintain and update Q(s, a) iteratively at each
generation such that

Qt+1(st, at) = Qt(st, at) + α· (3)[
Rt+1(st, at) + δmax

a
Qt(st+1, a)−Qt(st, at)

]
where α and δ are the learning and discount rates.

4. EXPERIMENTS
For assessing the aforementioned AOS methods, we fol-

lowed the implementation of a memetic algorithm for the
QAP [10], and consider the selection of its crossover oper-
ators. Two different scenarios were considered herein. The
first requires the AOS to select from 3 crossover operators
with comparable performances: CX, OX, and PMX. The
second requires the AOS to select from a pool with one ad-
ditional crossover operator, DPX, which demonstrates some
outlier performance. In each scenario, each of the five AOS
methods (the proposed RL, PM, AP, MAB, and the “naive”
approach N) was run 10 times on each of the 137 benchmark
QAP instances from QAPLib. The Friedman test was used

to assess the pairwise statistical significance so as to compare
among the various AOS methods under the two scenarios.
The mean ranks and the 95% confidence intervals obtained
are shown in Figure 1. An overlap on the intervals of any
two methods indicates their performance difference is not
statistically significant. The proposed RL approach is found
to outperform its counterparts. And interestingly, while an
additional outlier operator worsens the performance of the
other three AOS methods PM, AP, and MAB, the perfor-
mance of RL is rather robust and scales well as the number
of operators increases.

Figure 1: Mean ranks and 95% confidence intervals
(by Friedman test) of various AOS methods (RL,
PM, AP, MAB, and N) under two scenarios (3 or 4
crossover operators) on 137 QAPLib instances.
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