
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2014

An Empirical Study of Off-line Configuration and On-line An Empirical Study of Off-line Configuration and On-line

Adaptation in Operator Selection Adaptation in Operator Selection

Zhi YUAN

Stephanus Daniel HANDOKO
Singapore Management University, dhandoko@smu.edu.sg

Duc Thien NGUYEN
Singapore Management University, dtnguyen.2014@phdis.smu.edu.sg

Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems

Engineering and Industrial Engineering Commons

Citation Citation
YUAN, Zhi; HANDOKO, Stephanus Daniel; NGUYEN, Duc Thien; and LAU, Hoong Chuin. An Empirical Study
of Off-line Configuration and On-line Adaptation in Operator Selection. (2014). Learning and Intelligent
Optimization: 8th International Conference, Lion 8, Gainesville, FL, USA, February 16-21, 2014. Revised
Selected Papers. 8426, 62-76.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2664

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2664&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

An Empirical Study of Off-line Configuration
and On-line Adaptation in Operator Selection

Zhi Yuan1?, Stephanus Daniel Handoko2, Duc Thien Nguyen2, and
Hoong Chuin Lau2

1 Professorship of Applied Mathematics, Department of Mechanical Engineering,
Helmut-Schmidt-University, Hamburg, Germany

yuanz@hsu-hh.de
2 School of Information Systems, Singapore Management University, Singapore

{dhandoko,dtnguyen,hclau}@smu.edu.sg

Abstract. Automating the process of finding good parameter settings is
important in the design of high-performing algorithms. These automatic
processes can generally be categorized into off-line and on-line methods.
Off-line configuration consists in learning and selecting the best setting
in a training phase, and usually fixes it while solving an instance. On-line
adaptation methods on the contrary vary the parameter setting adap-
tively during each algorithm run. In this work, we provide an empirical
study of both approaches on the operator selection problem, explore the
possibility of varying parameter value by a non-adaptive distribution
tuned off-line, and incorporate the off-line with on-line approaches. In
particular, using an off-line tuned distribution to vary parameter values
at runtime appears to be a promising idea for automatic configuration.

1 Introduction

The performance of metaheuristics in solving hard problems usually depends
on their parameter settings. This leaves every algorithm designer and user with
a question: how to properly set algorithm parameters? In recent years, many
works on using automatic algorithm configuration to replace the conventional
rule-of-thumb or trial-and-error approaches have been proposed [1–3].

The automatic algorithm configuration methods can generally be categorized
into two classes: off-line method and on-line method. The goal of off-line configu-
ration method, also referred to as parameter tuning, is to find a good parameter
configuration for the target algorithm based on a set of available training in-
stances [4]. These training instances in practice can be obtained from, e.g., a
simulated instance generator or historical data if the target optimization prob-
lem happens in a recurring manner, for example, to optimize logistic plans on
weekly delivery demand, etc. Once the training phase is finished, the target al-
gorithm is deployed using the tuned configuration to solve future instances. The

? Main part of this research was carried out while Zhi Yuan was working at the School
of Information Systems, Singapore Management University. Zhi Yuan is currently
also a PhD candidate at IRIDIA, CoDE, Université Libre de Bruxelles, Belgium.

off-line tuned configuration deployed is usually fixed when solving each instance,
and across different instances encountered3. Existing approaches to this aim in-
clude, e.g., [6–11]. In contrast with off-line configuration, instead of keeping a
static parameter configuration during the algorithm run, an on-line configura-
tion method tries to vary the parameter value as the target algorithm is deployed
to solve an instance. Such approaches are also referred to as parameter adapta-
tion [12] or parameter control [13]. The on-line parameter adaptation problem
has attracted many attentions and research efforts, especially in the field of evo-
lutionary algorithm [14]. The usage of machine learning techniques in parameter
adaptation is also the unifying research theme of reactive search [3].

Although the on-line and off-line methods approach the automatic algorithm
configuration problem differently, they can be regarded as complementary to
each other. For example, the on-line methods usually also have a number of
hyper-parameter to be configured, and this can be fine-tuned by an off-line
method, as done in the design of on-line operator selection method in [15].
Besides, off-line methods can provide a good starting parameter configuration,
which is then further adapted by an on-line mechanism once the instances to be
solved are given. [16] provides an in-depth analysis in this direction under the
context of ant colony optimization algorithms (ACO), but shows that the on-line
methods usually worsen the algorithm performance comparing with using a fixed
configuration tuned off-line. Francesca et al. [17] compared on-line adaptation
in operator selection with a static operator tuned off-line, and found using a
statically tuned operator more preferable in their context. Another study in [18]
shows that instead of adapting the tabu list length on-line as in reactive tabu
search [19], varying the tabu list length by a static distribution tuned off-line
performs better.

In this empirical study, we continue with [17] on the operator selection prob-
lem, and try to challenge the off-line tuned static operator by: 1) varying the
parameter value by a non-adaptive off-line tuned distribution; 2) using off-line
configuration in the design of on-line adaptive approaches; 3) cooperation of the
non-adaptive approaches and the adaptive approaches. We also provide further
analysis on the performance of on-line adaptation mechanisms.

2 The Target Problem and Algorithm

The target problem to be tackled is the quadratic assignment problem
(QAP) [20]. In the QAP, n facilities are assigned to n locations, where the flow
fij between each pair of facilities i, j = 1, . . . , n and the distance dij between
each pair of locations i, j = 1, . . . , n are given. The goal is to find an permutation
π that assigns to the location i one unique facility πi, such that the cost defined

3 There exist off-line configuration approaches called portfolio-based algorithm selec-
tion[5], which returns a portfolio of configurations instead of one fixed configuration,
then select a configuration from the portfolio based on the feature of the future in-
stance. However, each of its configurations remains fixed when solving an instance.

as the sum of the distances multiplied by the corresponding flows such as follows:

n∑
i=1

n∑
j=1

fπ(i)π(j) · dij (1)

is minimized.

As the target algorithm for the study of off-line and on-line configuration
methods, we focus on the operator selection in the evolutionary algorithm (EA).
Our implementation of EA is inspired by the work described by Merz et al. [21].
In EA, a population of p individuals, each of which represents a QAP solution,
are evolved from iteration to iteration by applying variation operators such as
crossover and mutation. Initially, the p individuals are generated uniformly at
random. Then at each iteration, pc new individuals, dubbed offspring, will be
generated by applying a crossover operator, and pm new individuals will be
generated by applying a mutation operator. All these new individuals may be
refined by applying an optional local search procedure. The best p individuals
among the old and newly generated individuals will be selected to enter the next
iteration.

A crossover operator generates an offspring based on two through recombina-
tion of the chromosomes of two randomly chosen parent solutions. In this study,
we look into the following four different crossover operators:

Cycle crossover (CX) first passes down all chromosomes that are shared by
both parents, Ip1 and Ip2 , to the offspring, Io. The remaining chromosomes of the
offspring are assigned starting from a random one, Io(j). CX first sets Io(j) =
Ip1(j). Then, denoting Ip1(j′) as the chromosomes where Ip1(j′) = Ip2(j), CX
sets Io(j

′) = Ip1(j′) and substitutes the index j with j′. This procedure is
repeated until all chromosomes of Io are assigned.

Distance-preserving crossover (DPX) generates an offspring that has the
same distance from both parents. DPX simply passes down to Io all the chromo-
somes that are shared by both Ip1 and Ip2 . Each of the remaining chromosomes,
Io(j), is assigned randomly provided that Io(j) is a permutation and it is differ-
ent from both Ip1(j) and Ip2(j) in some approximate sense.

Partially-mapped crossover (PMX) randomly draws two chromosome loca-
tions of Io, namely j and j′ where j < j′. PMX then sets Io(k) = Ip1(k) for all k
outside the range of [j, j′] and Io(k) = Ip2(k) for all j ≤ k ≤ j′. If the offspring
generated is not a valid permutation, then for each chromosome pair Io(k) and
Io(z) where Io(k) = Io(z) and j ≤ z ≤ j′, PMX sets Io(k) = Ip1(z). This process
is repeated until a valid permutation is obtained.

Order crossover (OX) randomly draws two chromosome locations of Io,
namely j and j′ where j < j′. OX then sets Io(k) = Ip1(k) for all j ≤ k ≤ j′

and assigns in the k-th unassigned chromosomes of Io the k-th chromosomes of
Ip2 that differs from any Io(z), j ≤ z ≤ j′.

3 Operator Selection Strategies

3.1 The Static Operator Strategy

The static operator strategy (SOS) refers to fixing one operator when solving an
instance. Most EA follows this strategy, especially when an off-line configuration
tool is available [17]. Then this amounts to setting a categorical parameter.

3.2 The Mixed Operator Strategy

In contrast with fixing one operator to use, the mixed operator strategy4 (MOS)
assigns a probability to each operator. This allows an operator to be selected
at each iteration of the algorithm under a certain probability. This strategy is
often designed with a uniform probability distribution for each possible operators
in the literature [22, 17], and referred to as “naive”. Of course, the probability
of selecting each operator can be set in other ways than uniform, and can be
regarded as a real-valued parameter.5 These parameters can potentially be fine-
tuned in the off-line training phase.

3.3 The Adaptive Operator Selection

Different from the two approaches above, adaptive operator selection strategy
(AOS) try to adjust the parameter values while running the target algorithm
for each instance. As an on-line method, it is able to adapt parameter values
according to different instances and different search stages. The development of
such on-line methods needs to address two issues: the reward function, or credit
assignment [23], which concerns how to measure operator quality according to
operator performance; and the adaptation mechanism that concerns which op-
erator to use at each time step according to the performance measurement.

Reward Function Two reward functions were used in our work. Both versions
make reference of the cost of the offspring co to the cost of the current best
solution cb and the better parent solution cp. The first reward function is adopted
from the study of [17], for an operator i that is used to generate a set Ii of
offspring at the current iteration:

Ri1 =
1

|Ii|
∑
o∈Ii

· cb
co

max{0, cp − co
cp

}. (2)

A drawback in the reward function R1 is that the relative improvement of the
offspring over its better parent will bias the multiplicative reward value much

4 The term is syntactically and semantically analogous to the term mixed strategy
widely used in game theory.

5 One can even regard the static operator strategy as a degenerate case of a mixed
strategy, in which one operator is selected with probability 1, and each of the others
with probability 0.

stronger than its relative performance to the current best solution. This may
not be effective especially when the parents are drawn uniformly randomly. We
modify (2) by making the reference to the parent solution and the current best
solution to contribute the same magnitude to the reward function:

Ri2 =
1

|Ii|
∑
o∈Ii

cb
co
· cp
co
· sign(cp − co), (3)

where sign(x) function returns 1 when x > 0, and returns 0 otherwise.

On-line Adaptation Mechanisms We considered the three on-line algorithm
adaptation methods studied in [17] for the operator selection problem, namely,
Probability Matching (PM) [24], Adaptive Pursuit (AP) [25] and Multi-Armed
Bandit (MAB) [26]. These three on-line methods update the quality Qi of each
candidate operator i by the formula:

Qi = Qi + α(Ri −Qi) (4)

where 0 ≤ α ≤ 1 is a parameter, and Qi is by default initialized to 1 for each
operator i. Using a PM mechanism, the probability of choosing an operator i is
given by the following formula:

Pi = Pmin + (1− |I|Pmin)
Qi∑
i′∈I Qi′

, (5)

where I is the set of all possible operators. The lower threshold 0 ≤ Pmin ≤ 1 is a
parameter to guarantee that every operator has a chance to show its impact. The
second adaptation method AP differs from PM by using a different probability
update formula than Equation 5:

Pi =

{
Pi + β(Pmax − Pc), if Qi = maxi′ Qi′

Pi + β(Pmin − Pc), otherwise,
(6)

where 0 ≤ β ≤ 1 is a parameter, and Pmax = 1− (|I| − 1)Pmin. Over time, the
probability of choosing a promising operator converge to Pmax while all others
descend into Pmin. The third adaptation method MAB selects an operator ī
deterministically by

argmax
i∈I

{
R̄i + γ(

√
2 ln

∑
i′ ni′

ni
)
}
, (7)

where R̄i is the average reward computed since the beginning of the search and
ni is the number of times the crossover operator i is chosen.

4 Experimental Setup

All experiments are conducted on a computing node with 24-core Intel Xeon
CPU X7542 at 2.67GHz sharing 128GB RAM. Each run uses single thread.

4.1 Instance Setup

Three classes of QAP instances are considered in our experiments: one heteroge-
neous and two homogeneous sets. For the heterogeneous set (het), we followed
the experimental setup in [17]: 32 instances from QAPLIB [27] with size from 50
to 100.6 For the homogeneous sets, we generated 32 relatively easy homogeneous
instances (hom-easy) and 32 harder homogeneous instances (hom-hard) using
instance generator described in [28]. The instances in hom-easy are uni-size 80,
with Manhattan distance matrix and random (unstructured) flow matrix gener-
ated with the same distribution with 50% sparsity; while the hom-hard instances
are uni-size 100 with zero sparsity. Both homogeneous instance sets are chosen
with large size (80 and 100), so that the computational overhead of the on-line
adaptation mechanisms can be ignored.7 All three instance classes are divided
in half, 16 instances for training and 16 others for testing. Each instance was run
10 times, resulting in 160 instance runs. Each of the 160 runs is assigned with
a unique random seed. Note that during each run, different algorithms will use
the same random seed. This is to reduce evaluation variance [29].

4.2 Target Algorithm Setup

In [17], three memetic algorithm (MA) schemes were used for experiments: sim-
ple MA with crossover only; intermediate MA with crossover and local search;
and full MA with crossover, mutation, and local search. Three levels of computa-
tion time are considered, 10, 31, and 100 seconds. From our initial experiments,
we found that local search is time-consuming. For an instance of size 100, one
local search took about 1 second. The intermediate and full MA thus performed
no crossover in 10 or 31 seconds, and only 1 or 2 crossover generations after 100
seconds.8 With this observation, and also to better distinguish the performance
difference of crossover operator selection strategies, we excluded the local search
as well as mutation9, and focused on the crossover operation in this study. In
such case, the computation time chosen corresponds to around 9000, 30 000,
90 000 crossover generations, respectively. For the default parameters in our im-
plemented MA, we followed exactly [17], setting population size p = 40, crossover
population pc = p/2 = 20. A restart is triggered when the average distance over
all pairs of individuals in the population has dropped below 10 or the average

6 There are in total 33 instances found in the QAPLIB with size from 50 to 100.
We further exclude one of them, esc64a, which is too simple and each algorithm
considered in this work will solve it to optimum. Then it results in a total number
of 32 instances in the heterogeneous set.

7 Comparing with the non-adaptive operator strategy (fixed or mixed strategy), the
computational overhead of the on-line adaptation mechanisms in our implementation
is around 1% on instances of size 100, and around 3% on instances of size 50.

8 More sophisticated techniques such as don’t look bit or neighborhood candidate list
may speed up local search. However, the development of these techniques is out of
the scope of this study.

9 However, mutation will be used in restart when the population converges.

Table 1. The hyper-parameters of the on-line adaptive operator selection: their default
values and their ranges for off-line configuration.

param. name used in default range comment

α MP, AP 0.3 [0.0, 1.0] adaptation rate
Pmin MP, AP 0.05 [0.0, 0.2] minimum probability
β AP 0.3 [0.0, 1.0] learning rate
γ MAB 1.0 [0.0, 5.0] scaling factor

fitness of the population has remained unchanged for the past 30 generations.
In such case, each individual except the current best one will be changed by a
mutation operator until it is 30% of the instance size differ from itself.

4.3 Off-line Configuration Setup

Configuring SOS The task is to choose one of the four crossover operators
based on the training set. Since the parameter space is small, we assess each
static operator by an exhaustive evaluation in each of the training set, which
consists of 10 runs of 16 instances.

Configuring MOS Three versions of MOS are presented in this work: an un-
trained MOS with uniform probability distribution for each operator, denoted
MOS-u and two automatically tuned versions of MOS, denoted MOS-b and MOS-
w. The two tuned versions differ in how the configuration experiment is designed,
more specifically, in which reference operator to choose: MOS-b chooses the best
operator as reference, while MOS-w chooses the worst. Note that finding the
best or the worst operator requires a priori knowledge such as studied in Sec-
tion 5.1, or additional tuning effort. However, this additional tuning effort is
usually small, since the parameter space is much smaller comparing with the
rest tuning task. Suppose there are n operators, each of which is assigned a pa-
rameter qi, i = 1, . . . , n. After a reference operator r is chosen, in our case, either
the best or worst operator, we fix qr = 1, and try to tune the n− 1 parameters
qi, i = {1, . . . , n} \ {r}. The range of these n − 1 parameters is set to [0, 1.2] in
MOS-b, while in MOS-w, the range is set to [0, 100]. Since the parameter space
is infinite, exhaustive evaluation won’t be feasible, thus we used two state-of-
the-art automatic configuration tool, namely iterated racing [7] and BOBYQA
post-selection [11, 30]. For each of the configuration methods, maximum 1000
target algorithm runs were allowed as configuration budget. Then the best con-
figurations found by the both configurators are compared based on their training
performance, and the one with the better training performance is selected. After
the tuned configuration is obtained, the probability pi of each operator i is set
to pi = qi∑n

j=1 qj
.

Configuring AOS We further embarked the off-line algorithm configuration
tools described above to fine-tune the hyper-parameter of the on-line AOS meth-
ods. The AOS parameters with their default parameter values and ranges for
off-line configuration are listed in Table 1.

5 Experimental Results

5.1 The Static Operator Strategy

In each of the 9 training sets (three instance classes with three computation
time), PMX is found to be the best performing operator, thus selected as the
best off-line tuned static operator. Consider the 16 training instances of the het

set, each with three stopping time, totaling 48 case studies. For each case study,
we rank the four operators on each of the 10 runs and compare the their median
rank. In the het set, PMX is best performing in 41 case studies, followed by CX
in 4 case studies and OX in 3 case studies; in the hom-easy set, PMX performs
best in 44 out of 48 case studies, and CX excels in the other four; PMX is most
dominant in the hom-hard set, topping 47 case studies, while CX stands out in
only one case studies. This shows PMX’s dominance in the training set.

We further applied all the four static operators to the testing set, and their
relative ranking performance in each of the 9 testing sets with a particular run-
time is shown in the first block of each plot in Figure 1, and their performance
across different runtime in each instance class is shown in Figure 2. For assessing
the different candidate algorithms in the following, we test the statistical signifi-
cance of each pairwise comparison by the Friedman test, and each plot in Figure 1
shows the median and the 95% simultaneous confidence intervals of candidate
algorithm regarding these comparisons. If the intervals of two candidate algo-
rithms overlap, then the difference between them is not statistically significant.10

As clearly shown, PMX is dominantly best performing compared to the other
three operators. It outperforms each of the other three operators statistically
significantly (except few test cases in 100 seconds). CX, as the runner-up, signif-
icantly outperforms the other two operators except few cases in the hom-hard

set. DPX turns out to the worst-performing candidate.

5.2 The Mixed Operator Strategy

The ranking performance of the three MOS based approaches is listed in the
second block of each plot in Figure 1. Firstly, the two tuned versions MOS-b and
MOS-w substantially improves over the default MOS-u with uniform probability
in all case studies. The difference is statistically significant especially when the

10 We further generated the box-plot of the median ranks across 10 trials of each
instance, and the performance comparison in this median-rank box-plot and the
presented confidence-interval plots are almost identical. The confidence-interval plot
is shown here instead of median-rank box-plot since it displays additional information
of statistical significance by the Friedman test.

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

10 seconds

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

31 seconds

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

100 seconds

(a) hom-easy

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

10 seconds

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

31 seconds

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

100 seconds

(b) hom-hard

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

10 seconds

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

31 seconds

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

100 seconds

(c) het

Fig. 1. The ranking performance of different operator selection methods (acronyms see
text) with different computation time 10, 31, and 100 seconds on (a) homogeneous easy
(b) homogeneous hard or (c) heterogeneous instance set.

computation time is small, i.e. 10 or 31 seconds. MOS-w appears to be a slightly
better way of tuning MOS compared to MOS-b, but the difference between them
is never statistical significant. Both MOS-w and MOS-b perform better than the
off-line tuned static operator PMX, especially when the instances are heteroge-

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

all

(a) hom-easy

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

all

(b) hom-hard

5 10 15 20 25

PM−2r

PM−MOS

MOS−PM

MAB−t2

MAB−2

MAB−t1

MAB−1

AP−t2

AP−2

AP−t1

AP−1

PM−t2

PM−2

PM−t1

PM−1

MOS−w

MOS−b

MOS

PMX

OX

DPX

CX

all

(c) het

Fig. 2. The ranking performance of different operator selection methods (acronyms
see text) across different computation time on (a) homogeneous easy (b) homogeneous
hard or (c) heterogeneous instance set.

neous as in the het set, and when the instances are hard as in the hom-hard set.
In these two sets, the overall ranking difference between MOS-w and PMX across
three computation times is significant. Even the untrained MOS-u can perform
better than the trained static strategy PMX when solving het and hom-hard in
100 seconds. This interesting result indicates that, even if an operator that is
dominantly better than the others exists, such as PMX in our case, varying the
choice of operators at runtime can result in significantly better and more robust
strategy than a static choice. This also sheds some light on how off-line configu-
ration should be conducted: instead of finding one static configuration, varying
the parameter values at runtime by a static distribution trained off-line may be
a better idea. In fact, varying parameter values at runtime by a non-adaptive
distribution is also applied to set the tabu list length in robust tabu search [31],
a state-of-the-art algorithm for QAP.

5.3 The On-line Adaptive Operator Selection

The ranking performance of probability matching (PM), adaptive pursuit (AP),
and multi-armed bandit (MAB) is illustrated in Figure 1 and 2, at the third,
fourth, and fifth block, respectively. Within each block, the first two boxes refer
to untrained and tuned version with the first reward function R1

c in Equation (2),
while the latter two boxes with second reward function R2

c in Equation (3). It
appears that the R2

c benefits PM and AP, while worsens MAB. In general, PM
with R2

c (PM-2), is the best-performing adaptation method. The overall ranking
differences between PM-2 and all the AP and MAB variants are significant for
the heterogeneous instances (het) and hard instances (hom-hard).

The off-line configuration can improve the on-line adaptation methods when
its quality is poor or when computation time is small. For example, the MAB-t2
significantly improves the performance of MAB-2 in terms of overall ranking as
well as ranking in 10-second cases in the set of heterogeneous and hard instances.

Likewise, AP-t1 significantly improves AP-1. It appears that the performance of
AP and MAB are more sensitive to their parameters and the reward function
used; especially the scaling factor γ in MAB needs to be fine-tuned when the
reward function is changed. So an off-line configuration should be helpful for
these methods. However, the off-line configuration doesn’t seem to be able to
improve the performance of our best on-line method PM. Nevertheless, it is
still recommended to use an off-line configuration, if one is uncertain about the
algorithm performance, faces new problem domain or new setting of reward
function, or the number of total operator generation is small.

Comparing with the static or mixed operator strategies, the ranking perfor-
mance of on-line adaptation methods improve as computation time increases.
Comparing with the off-line selected static operator PMX, PM-2 in general per-
forms better, and the difference is significant when the instance set is hetero-
geneous as in het, and the computation time is long enough (100 seconds). It
is interesting to see that even our best-performing on-line adaptation methods
cannot outperform the fine-tuned mixed operator strategy. The difference be-
tween PM-2 and MOS-w and MOS-b is never significant. MOS variants tend to
perform better in the homogeneous instances and at short or medium computa-
tion time, and PM-2 appears to be slightly better performing when the instances
are heterogeneous and the computation time is long.

5.4 Combining MOS and AOS

We further investigate the possibility to incorporate both MOS and AOS to-
gether. The best MOS and AOS version found in this work, MOS-w and PM-2,
respectively, are used for this study. Two ways of combination, namely, MOS-PM
and PM-MOS are discussed below, and their results are presented in the second
last block of each plot in Figure 1 and 2.

MOS-PM The first hybrid, named MOS-PM, is to tune the MOS-w parame-
ters qi (the quality vector to generate probability of choosing each operator) in
the training set, and then use this to initialize the quality vector Qi for each
operator i in PM-2 by setting Qi = qi/qargmaxi qi . The scaling by setting the
maximum initial Qi to 1 is to make Qi consistent with the magnitude in the
reward function R2

c . This approach amounts to a biased initial condition for the
on-line adaptation method by an operator distribution trained off-line. However,
MOS-PM does not bring any improvement to

– MOS-w, which shows that on-line adaptation cannot further improve a well-
tuned non-adaptive mixed operator strategy. This agrees with the study
in [16] that on-line adaptation methods cannot improve an off-line tuned
static parameter configuration in ACO.

– PM-2 or PM-t2, which shows that either the fine-tuned initial quality Qi
does not interact well with the default setting of α and Pmin in PM, or
tuning initial condition for PM doesn’t pay off in our context. We further
ruled out the first factor by tuning the initial operator quality Qi together

with α and Pmin. However, no noticeable performance improvement can be
observed comparing with tuning only α and Pmin as in PM-t2. The same
observation can be obtained on MAB and AP, where tuning initial condition
doesn’t improve adaptation performance, as long as its hyper-parameters for
adaptation are already fine-tuned. This may be due to the large number of
crossover operations in our experimental setting. There are already around
9 000 crossover generations in the 10-second case, where in each generation
20 crossover operations are performed, totaling 180 000 crossover operations.
If the number of operations are low, such as when local search is applied, an
off-line configuration of the initial conditions may pay off.

PM-MOS The second hybrid PM-MOS is to apply PM-2 on the training set to
obtain the probability pi of operator i for MOS-w. We first run PM-2 exhaustively
on the training set (10 runs on each of the 16 training instances), keep track of the
number of usage nri for operator i in each run r, normalize it into the probability
pri = nri /

∑
i n

r
i of each operator i in run r, then derive pi by averaging pri

over all training runs. This amounts to tuning parameters of MOS-w by an on-
line adaptation method PM-2. In the study of [18], the on-line adaptation is
found to perform worse than varying parameter setting randomly by the same
empirical distribution in reactive tabu search [19]. If the same holds for PM-2,
PM-MOS may perform better than PM-2. However, the results disagrees with our
hypothesis. Comparing with PM-2, PM-MOS performs worse in the het set, and
no observable difference on the two homogeneous instance set can be concluded.
The reason for PM-MOS’ inferior performance to PM-2 is further analyzed in
the next section.

5.5 Further analysis on the effectiveness of on-line adaptation

The reason that PM-2 works better than PM-MOS on het set may be due to three
factors: 1) the difference in the training and testing set induces experimental
bias for the trained configuration; 2) the heterogeneity between instances, so
that PM-2 can adapt to different settings for different instances; 3) PM-2, as
an on-line adaptation method, has the ability to adapt the algorithm’s behavior
to local characteristics of the search space when running the algorithm for an
instance [18]. We first took a look into the operator usage frequency in PM-2 on
each instance on both the training and testing set. The operator usage frequency
is actually very close from instance to instance, and no major difference between
the training set and testing set can be observed. We set up experiments inspired
by [18] to test the third factor as follows. For each run on each instance in the
testing set, we keep track of the number of usage ni of operator i in PM-2, and
then randomly generate operators by MOS based on the empirical probability
distribution of PM-2, pi = ni/

∑
i ni. We allowed MOS to run exactly the same

number of total operator generations in the PM-2. In such case, we observed that
MOS may finish around 1% earlier than PM-2 due to the ease of computational
overhead caused by the adaptation in PM-2. This result of the MOS run is

denoted as PM-2r as shown at the last block of each plot in Figure 1 and 2. Note
that the empirical distribution in PM-2r is learned for each run on each instance,
therefore, the first two factors above are ruled out. As shown in Figure 1 and
2, we observed that PM-2 and PM-2r have no performance difference in the two
homogeneous instance sets hom-easy and hom-hard. However, in the het set
of real-world benchmark QAP instances, PM-2 has a noticeable advantage over
PM-2r, although the difference is not yet statistically significant. This indicates
that the best adaptive operator selector in our context, PM-2, does adapt well
to the local characteristics of the search space when running on the real-world
benchmark QAP instances, however, it fails to do so for the generated instances
with more random structures.

6 Conclusions and Future Works

In this work, we provide an empirical study of off-line parameter configuration
and on-line parameter adaptation on the operator selection problem in evolu-
tionary algorithm. We extended [17] by incorporating off-line configuration with
the non-static operator selection methods, including: i) a non-adaptive mixed
operator strategy (MOS), which assigns a probability distribution for selecting
each operator; ii) three adaptive operator selection (AOS) methods Probability
Matching, Adaptive Pursuit, and Multi-Armed Bandit. State-of-the-art off-line
algorithm configuration tools are applied to this end, including iterated racing [7]
and post-selection techniques [30]. One major contribution in this study is to
identify an automatically tuned MOS as one of the best performing approaches
for operator selection. The results show that even when a dominantly best choice
of static operator exists, using an automatically tuned operator probability dis-
tribution still significantly outperforms the best static operator approach. This
also sheds some light to the future design of off-line algorithm configuration:
instead of tuning for a static parameter configuration, it may be a better idea
to tune a distribution from which the parameter configurations are randomly
generated and changed during algorithm run. Besides, we also improved the
performance of on-line AOS methods by considering different reward function
and an off-line configuration of its hyper-parameters.

Our future works aim to extend this study to operator selection problem
other than only crossover operators: local search operators, mutation operators,
selection criteria operators, etc., or even a combination of different kinds of
operators to test the scalability of the approaches studied in this work. We
also plan to include other state-of-the-art operator selection techniques such as
Dynamic Multi-Armed Bandit (DMAB) [32]. Another interesting direction is to
do a portfolio-based operator selection by taking into account also the instance
features. Since adapting operator choice according to local characteristics of
search space is found to be crucial for the good performance of on-line method
PM-2, applying Markov Decision Process [33] by translating the local landscape
characteristics into different states at each time step and performing state-based
on-line learning becomes a good direction to follow.

Acknowledgments

We sincerely thank Dr. Thomas Stützle for sharing the QAP instance generator,
and for the insightful discussions on the instances and the result presentation.
This work was partially supported by the BMBF Verbundprojekt E-Motion.

References

1. Hamadi, Y., Monfroy, E., Saubion, F., eds.: Autonomous Search. Springer, Berlin,
Germany (2007)

2. Hoos, H.H.: Programming by optimization. Communications of the ACM 55(2)
(2012) 70–80

3. Battiti, R., Brunato, M., Mascia, F.: Reactive search and intelligent optimization.
Springer, New York (2008)

4. Birattari, M.: Tuning Metaheuristics: A machine learning perspective. Springer,
Berlin, Germany (2009)

5. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algo-
rithm selection for sat. J. Artif. Intell. Res.(JAIR) 32 (2008) 565–606

6. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In Langdon, W.B., et al., eds.: GECCO 2002: Proceed-
ings of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann
Publishers, San Francisco, CA (2002) 11–18

7. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race:
An overview. In Bartz-Beielstein, T., et al., eds.: Experimental Methods for the
Analysis of Optimization Algorithms. Springer, Berlin, Germany (2010) 311–336

8. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36
(2009) 267–306

9. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of solvers. In Gent, I.P., ed.: Principles and Practice of
Constraint Programming – CP 2009. Volume 5732 of Lecture Notes in Computer
Science. Springer (2009) 142–157

10. Hutter, F., Bartz-Beielstein, T., Hoos, H.H., Leyton-Brown, K., Murphy, K.: Se-
quential model-based parameter optimisation: an experimental investigation of au-
tomated and interactive approaches. In Bartz-Beielstein, T., et al., eds.: Empirical
Methods for the Analysis of Optimization Algorithms. Springer, Berlin, Germany
(2010) 363–414

11. Yuan, Z., de Oca, M.M., Birattari, M., Stützle, T.: Continuous optimization al-
gorithms for tuning real and integer parameters of swarm intelligence algorithms.
Swarm Intelligence 6(1) (2012) 49–75

12. Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In
Palaniswami, M., et al., eds.: Computational intelligence: a dynamic systems per-
spective, IEEE Press (1995)

13. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter Control in
Evolutionary Algorithms. In Lobo, F.G., Lima, C.F., Michalewicz, Z., eds.: Pa-
rameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence
Series. Springer, Berlin, Germany (2007) 19–46

14. Lobo, F., Lima, C.F., Michalewicz, Z., eds.: Parameter Setting in Evolutionary
Algorithms. Springer, Berlin, Germany (2007)

15. Fialho, Á., Schoenauer, M., Sebag, M.: Toward comparison-based adaptive op-
erator selection. In: Proceedings of the 12th annual conference on Genetic and
evolutionary computation, ACM (2010) 767–774

16. Pellegrini, P., Stützle, T., Birattari, M.: A critical analysis of parameter adaptation
in ant colony optimization. Swarm Intelligence 6(1) (2012) 23–48

17. Francesca, G., Pellegrini, P., Sttzle, T., Birattari, M.: Off-line and on-line tuning:
A study on operator selection for a memetic algorithm applied to the qap. In Merz,
P., Hao, J.K., eds.: Proc. of EvoCOP. Volume 6622 of Lecture Notes in Computer
Science., Springer (2011) 203–214

18. Mascia, F., Pellegrini, P., Birattari, M., Stützle, T.: An analysis of parameter adap-
tation in reactive tabu search. International Transactions in Operational Research
(2013) To appear.

19. Battiti, R.: The reactive tabu search. ORSA Journal on Computing (1994)
20. Pardalos, P.M., Wolkowicz, H., eds.: Quadratic Assignment and Related Problems.

DIMACS Series. American Mathematical Society (1994)
21. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the

quadratic assignment problem. IEEE Transaction on Evolutionary Computation
4(4) (2000) 337–352

22. Krempser, E., Fialho, Á., Barbosa, H.J.C.: Adaptive operator selection at the
hyper-level. In Coello, C., et al., eds.: Prof. of PPSN. Volume 7492 of Lecture
Notes in Computer Science., Springer (2012) 378–387

23. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: Parallel Problem Solving from Nature–PPSN X, Springer
(2008) 175–184

24. Corne, D.W., Oates, M.J., Kell, D.B.: On fitness distributions and expected fitness
gain of mutation rates in parallel evolutionary algorithms. In: Proc. of PPSN VII,
Springer (2002) 132–141

25. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: Proc. of IEEE CEC, IEEE (2005) 1539–1546

26. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine learning 47(2) (2002) 235–256

27. Burkard, R.E., Karisch, S.E., Rendl, F.: Qaplib–a quadratic assignment problem
library. Journal of Global Optimization 10(4) (1997) 391–403

28. Stützle, T., Fernandes, S.: New benchmark instances for the qap and the ex-
perimental analysis of algorithms. In: Proc. of EvoCOP. Volume 3004 of LNCS.
Springer (2004) 199–209

29. McGeoch, C.: Analyzing algorithms by simulation: variance reduction techniques
and simulation speedups. ACM Computing Surveys (CSUR) 24(2) (1992) 195–212

30. Yuan, Z., Stützle, T., Montes de Oca, M.A., Lau, H.C., Birattari, M.: An analysis
of post-selection in automatic configuration. In: Proceeding of the fifteenth an-
nual conference on Genetic and evolutionary computation conference, ACM (2013)
1557–1564

31. Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel
computing 17(4) (1991) 443–455

32. Fialho, A., Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits
and extreme value-based rewards for adaptive operator selection in evolutionary
algorithms. In Stützle, T., et al., eds.: Proc. of LION, Berlin, Germany, Springer-
Verlag (2009) 176–190

33. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. 1st edn. John Wiley & Sons, Inc., New York, NY, USA (1994)

	An Empirical Study of Off-line Configuration and On-line Adaptation in Operator Selection
	Citation

	tmp.1444619179.pdf.1mdlW

