
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2015

The Knowledge Accumulation and Transfer in Open-Source The Knowledge Accumulation and Transfer in Open-Source

Software (OSS) Development Software (OSS) Development

Youngsoo KIM
Singapore Management University, yskim@smu.edu.sg

Lingxiao JIANG
Singapore Management University, lxjiang@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer Sciences Commons

Citation Citation
KIM, Youngsoo and JIANG, Lingxiao. The Knowledge Accumulation and Transfer in Open-Source Software
(OSS) Development. (2015). 48th Hawaii International Conference on System Sciences HICSS 2015: 5-8
January, Kauai, HI: Proceedings. 3811-3820.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2645

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2645&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

The Knowledge Accumulation and Transfer in Open-Source Software (OSS)
Development

Youngsoo Kim

School of Information Systems
Singapore Management University
80 Stamford Road, Singapore 178902

yskim@smu.edu.sg

Lingxiao Jiang

School of Information Systems
Singapore Management University
80 Stamford Road, Singapore 178902

lxjiang@smu.edu.sg

Abstract—We examine the learning curves of individual soft-
ware developers in Open-Source Software (OSS) Development.
We collected the dataset of multi-year code change histories
from the repositories for 20 open source software projects
involving more than 200 developers. We build and estimate
regression models to assess individual developers’ learning
progress (in reducing the likelihood they make a bug). Our
estimation results show that developer’s coding and indirect
bug-fixing experiences do not decrease bug ratios while bug-
fixing experience can lead to the decrease of bug ratio of
learning progress. We also find that developer’s coding and
bug-fixing experiences in other projects do not decrease the
developer’s bug ratio in a focal project. We empirically confirm
the moderating effects of bug types on learning progress. De-
velopers exhibit learning effects for some simple bug types (e.g.,
wrong literals) or bug types with many instances (e.g., wrong
if conditionals). The results may have managerial implications
and provoke future research on project management about
allocating resources on tasks that add new code versus tasks
that debug and fix existing code.

Keywords-learning effects; knowledge transfer; software de-
veloper; open-source software;

I. INTRODUCTION

As the old saying goes, “practice makes perfect.” Learning

from actual coding and (direct and indirect) bug-fixing

experiences in software development may be effective for

developers to gain new knowledge and increase their skills.

No matter whether a developer is a novice or an expert,

software bugs can inevitably occur in their codes. Such

learning from their experiences can be a life-long journey

for both almost all developers, with continually appearing

new technologies and problem domains.

In this study, we explore whether a developer can reduce

their bug ratios over time (years 2003-2006). Figure 1 shows

the trajectories of three developers’ bug ratios in a project

against year. The figure illustrates that the likelihood for a

developer to make a bug in a project may change over time.

In particular, it shows overall the downward trend of the bug

ratios.

We attempt to answer following research questions in-

volved in individual developer’s knowledge accumulation:

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

2003 2004 2005 2006

BugType1�For�developer1

BugType1�For�Developer2

BugType1�For�Developer3

BugType2�For�Developer1

BugType2�For�Developer2

BugType2�For�Developer3

Figure 1: Three developers’ bug ratios for two bug types in
one project over years 2003-2006.

RQ1 Does developer’s coding experience in a project decrease

the developer’s bug ratio in the project?

RQ2 Does developer’s indirect bug-fixing experience in a

project decrease the developer’s bug ratio in the project?

RQ3 Does developer’s bug-fixing experience in a project

decrease the developer’s bug ratio in the project?

We also aim to examine the knowledge transfer across

projects and bug types.

RQ4 Does developer’s coding experience in other projects

decrease the developer’s bug ratio in a focal project?

RQ5 Does developer’s bug-fixing experience in other projects

decrease the developer’s bug ratio in a focal project?

Another interesting observation based on the Figure 1 is

that the overall slope of the trajectories depend on the bug

type. The bug ratio in bug type 1 shows steeper decrease than

that in bug type 2, indicating there could be different learning

progress depending on bug types. We aim to examine the

learning effects in each bug type:

RQ6 Do developers show different learning curves depending

on a bug type in reducing their bug ratios?

In addition to different learning progress across bug

types, developers show different reduction rate of the bug

ratios across developers. Practically, the third developer’s

trajectory of bug ratio in bug type 1 is almost flat (or a little

upward trend) indicating that learning progress may vary

across developers. In order to control them, we build and

2015 48th Hawaii International Conference on System Sciences

1530-1605/15 $31.00 © 2015 IEEE

DOI 10.1109/HICSS.2015.458

3811

estimate the regression models with developer heterogeneity

controlled.

We collect and calculate various measures for more than

95K lines of buggy codes made by more than 200 developers

in 20 open source projects. We make substantial contributions

in understanding knowledge accumulation and transfer in

OSS development by analyzing the data set with regression

models. Our analysis is different from many studies on

factors affecting developer productivity and software quality

in the literature [8], [10], [29]. We link the bug ratios of

individual developers to various types of bugs and bug-
fixing experiences, in addition to general observable factors
(e.g., the code amounts of individual developers and the

bug ratios of individual projects). Particularly, our study

reveals the relationship between bug-fixing experiences and

learning effects (or the reduction of bug ratios). Therefore,

our empirical findings may provide important insights for

project management and future research on OSS developers’

learning progress.

The rest of this paper is organized as follows. Section II

briefly surveys related work. Section III describes the

collected dataset and measures. We will show our empirical

models in Section IV. Section V presents our analysis results

and discusses the implications of our results. Section VI

concludes.

II. RELATED WORK

We discuss related work in the area of learning models

in software engineering and empirical studies on software

project performance.

A. Learning in Software Engineering

There are many studies on learning models in software

engineering. Hanakawa et al. [10] incorporate developers’

learning into a simulation model to make better project plans.

Singh et al. [29] examine the developer’s learning dynamics in

open source software (OSS) projects utilizing hidden Markov

Model (HMM). They find that the developers’ learning

patterns depends on their learning states. Chouseinoglou

et al. [8] assess the learning characteristics of a software

developer organizations (SDO). Abu et al. [2] propose an

model to consider learning for software test processes. Even

though previous studies on learning in software engineering

identify/incorporate the change of developer’s productivity in

their models, most of them do not estimate the developer’s

learning progress.

B. Empirical Studies on Project Performance

The performance of a software project can be measured

in various ways, such as developer productivity, code quality,

and maintenance costs. Many studies have analyzed various

factors that may affect project performance. Ramasubbu

and Balan [27] use regression models to identify that

geo-dispersion of developers has great impact on software

productivity and quality. Banker et al. [3] finds that the

improvement of software development practices can improve

the maintenance performance. Harter et al. [11] finds that

higher process maturity can lead to higher software quality.

Krishnan et al. [15] investigates the relationship between

various measures (e.g., product size, personnel capability,

software process) and the software quality. Abreu and Premraj

[1] propose that communication frequency of developers may

affect the amount of bug-introducing changes. Bettenburg

and Hassan [5] focus on the impact of social information

of developers on software quality. Some studies examine

the impact of developer social network/interactions on

productivity, software quality, code quality, etc. [1], [5], [16],

[21], [23].

There are diverse developer’s performance measures in

previous studies (e.g., coding speed, the amount of coding

and bug ratio). In the studies, focusing on the dynamics of

developer’s performance, we select the bug ratio in a project

as our performance measure. Then, we referred to techniques

to identify both bug-introducing and bug-fixing change/codes

[14], [30], [31], [37]. None of previous studies focus on

the relationship between coding/bug-fixing experience and

learning. Particularly, we are the first to investigate the effect

of bug-fixing on developers’ bug ratios.

III. DATA AND MEASURE

A. Data

We use data available from the open-source software

projects hosted on The Apache Software Foundation (ASF).

We collected code change histories from the repositories

for 20 open source software projects mostly written in

Java (Apache Ant, Apache Commons Compress, Apache

Commons Lang, Apache Solr/Lucene, and Eclipse Platform).

The data spans multiple years from 2000 to 2014, involving

more than 200 developers. The bugs we analyze span more

than 95K lines of codes across different versions of the

projects. Table I lists basic statistics about some projects

selected for our empirical analysis.

We extract various information about the code changes

(including bug location, developer who introduced the bug

or fixed a bug, introduction time of the bug, bug type, etc.)

and the projects (including code complexity in a project, the

number of developers engaged in a project, etc.). The data

collection has the following steps.

1) Collect code change histories from Git repository:
Git is a free and open source distributed version control

system used by many open source software developers to

manage development process. Git has been recording traces

of numerous interlaced and collaborative activities carried

out by developers (including bug-introducing and bug-fixing

commits). In order to find a bug and its introducing commits,

we first locate a bug-fixing commit and then trace back to its

original commit, in a similar way to the approach taken in

previous studies [14], [26], [31]. We searched all commit log

3812

Table I: Project descriptions.
Project Name Start Date Last

version
Size (LoC)

Cumulative
Developer
Size

Cumulative
Bug
Amount

Cumulative
Added LoC

Self-
Fixed Bug
Amount

% of Self-
Fixed Bug
Amount

Program
Language

Project Type

Ace 2009.05.08 45539 13 7004 445340 1993 28.5% java Framework

Activemq 2005.12.12 248913 37 17459 1681013 7310 41.9% java Server

Ant 2000.01.13 94129 48 20459 1272108 5822 28.5% java Builder

Any23 2008.10.18 17922 13 1005 218226 803 79.9% java DataTool

Aries 2009.09.29 104542 32 439 617334 176 40.1% java OSGi

Bval 2010.03.12 12247 12 2460 73982 334 13.6% java Other

Camel 2007.03.19 413332 59 5183 1531929 1759 33.9% java Framework

Commons-
Compress

2003.11.23 20504 21 2815 105773 1689 60.0% java API

Commons-
Lang

2002.07.19 45707 45 582 539759 229 39.9% java API

Felix 2005.07.19 290994 47 17127 2633187 13649 79.7% java OSGi,Framework

Geronimo 2003.08.07 192712 61 7698 3119852 1758 22.8% java Server

Karaf 2007.11.26 55604 31 509 394659 190 37.3% java OSGi

Lucene-Solr 2010.03.17 422960 42 97571 3089964 48574 49.8% java API

Tomee 2006.01.02 276851 28 11154 1463729 4929 44.2% java Server

messages with the keyword “fix” and/or “bug” to identify

bug-fixing commits. We also manually verified the search

results to ensure that the selected commits involve bug-fixing

codes. For example, “Fix JavaDoc” in log files is not a

bug-fixing commit.

After verifying the bug-fixing commits, we used the

command git diff to compare bug-fixing commits with their
original (or parent) commits with bugs. Then, we got the

diff between each bug-fixing commit and its parent commit
(i.e., the last commit before the fix commit) so that we can

identify the changed lines in the parent commit (i.e., which

lines of the old file are deleted and/or which lines are added

to the new file). The identified code lines are treated as buggy

lines and we count each buggy line as one bug. Similarly,

we identified a bug introducer (modification author) and

bug-introducing date (modification date) to each identified

buggy line by using the command git blame. We describe
the measures to identify individual bugs and how we collect

and calculate them.

Locationj: The line number for individual buggy code j in
a specific project/package/file.

IntroDatej: The date when the buggy code j was com-
mitted into a project repository. We mostly rely on

“git blame” of the diff to get the information about
bug origins. Although there are threats to validity of

IntroDate obtained in this way [6], it is sufficient
approximation in collecting the information as shown

in previous studies [12], [26], [31].

IntroDeveloperj: The developer who introduced the buggy
code j into the repository. Similar to IntroDate, we
use “git blame” of the diff.

FixDatej: The date when the bug code j was fixed in the
repository (i.e., the date of the fix commit).

FixDeveloperj: The developer who fixed finally the buggy
code i (i.e., the developer who committed the fix into
the repository).

BugTypej: The bug type of the buggy line j. We classify
the type of each bug based on the syntax of the bug, fol-

lowing the study on syntax-based bug classification [22].

To decide a bug type, we first construct the abstract

syntax tree (AST) for the source file containing the

bug, then identify a minimum subtree that contains

all code in the buggy line. Secondly, we count the

number of occurrences of each tree node type in the

subtree, and give some node types (e.g., if and for
nodes) higher priorities based on common patterns

shown in [22]. Third, we choose the node type with

the highest weighted occurrence number as the type

for the bug. In the ASTs constructed by Eclipse JDT

(http://www.eclipse.org/jdt/), there are more than 80

node types. With a preliminary study, many of the node

types have relatively small numbers of bugs. Therefore,

we merge some “semantically” related node types and

thus we classify 13 bug types. The classification also

helps to simplify some of our empirical analysis as

described in Section IV. Table II lists the 13 merged

bug types and their descriptions.

Table II: Syntax-based bug types, classified from 80+ AST node
types from Eclipse JDT.
�� ������	
� �
���	������
�� ������

�
	
����
���instanceof���������

���������������������

�� �������� 	
����
������������������������ !�������������� !�����!����
���������������������

�������������!�������������this���������

"� #
�$���!���� 	
����
�������
����%�����
��$���!����

&� '�
����� 	
����
���������������
������������{����}���������

(�)����!�� 	
����������������hello����123����null���������

*� 	$������
��
!� 	
����$����$�������$���
��
!��!
+���������break����continue����return���������

,� -���$����� 	
������
!������
�����
��!����������if����switch���������

.�)

����� 	
������
!�����!

�����������for����while���������

/� 0
����������!�� 	
����$���$���!���!���������
��������
��!����
�����!������$�� ���
���!����������������

��������������
����
�����
�����������
����!� �!���������

�1� #%�����
��� 	
������
!������%�����
��������������%��%�����
��������$���2����%�����
�����������

��� 3��$
��� 	
������
!��������$
�����!����
����������
����
���

��� '���$�� 	
������
!���������$
��2���
��

�"� 3
������� 	
������
!������
���������������public����private����static���������

2) Collect bug reports from Jira: Most open source
software projects use bug tracking systems to manage their

bug reports. All of our chosen projects use the same bug

tracking system called Jira. We downloaded all bug reports

of the chosen projects from Jira in xml format. In those bug

3813

reports, developers only appear with their Jira usernames

while developers usually appear with their true names in

Git commit logs. Jira usernames are the only source of

identification for developers and so we generate a name map

from one’s true name to the Jira username. We automatically

inspect the commit logs to identify pointers to issue reports.

Issue reports have ID in the format of PEJECT-NUMBER and
thus each string in that format mentioned in a commit log is

treated as a potential link to an entry in the bug database. We

generate URL using the extracted issue ID to connect Jira

web site to analyze the html elements which contain both

true name and Jira username. Then we can map developers

between Jira and Git. In our experiments, this approach can

automatically map 70% of developers between Jira and Git,

the remaining 30% need to be finished by our manual work.

3) Collect Individual developer information (e.g., repu-
tation and contributions) from Github: GitHub is a Git
repository web-based hosting service which offers all of

the functionality of Git as well as adding many of its own

features. It’s also used as a social network service among

developers. As we use Jira usernames as our identification

source for developers, we need to build another name map

from Github usernames to Jira usernames. We discover that

most people’s usernames of these two web sites are the

same. Thus we just use Jira username to generate URL to

visit Github web site. If no such profile page is found, we

manually search by their true names and map.

Figure 2 summarizes the data collection process from three

data sources.

1. Go to Git (version control
system of OSS)

2. Select a OSS project

1. Search the commits related
to a bug fix in the code
change history

2. Verify the search results

1. Compare bug-fix commit
and its parent commit

2. Identify the buggy lines
(changed lines in the parent
commit)

1. Identify
who made the bug,
when it was made,
who fixed the bug,
when it was corrected,
What type of bug it is

1. Collect project-level
information by aggregating
individual-level information

1. Go to Jira (bug tracking
system)

2. Download all bug reports of
the chosen projects

1. Match developers between
Jira and Git (based on the
Jira usernames and names
in Git commit logs)

2. Identify who participated
in all bug reports

1. Go to Github (Git
repository web-based
hosting service)

1. Match Github user name
and Jira usernames

2. Collect developer’s
information

Figure 2: Data collection process.

B. Individual Developer Measure

Since each commit is associated with a unique developer

name or email, we can calculate the measures for individual

developers by aggregating the measures defined above (e.g.,

code changes and bugs) in a unit time (month). We define

the measures for individual developers as follows.

Bugsipt: The total number of buggy lines committed by the
developer i in project p at time t. These numbers are

the sum of all buggy lines whose IntroDate is t and
IntroDeveloper is i in project p.

BugRatioipt: The ratio of buggy lines over the total number
of lines of codes for developer i in project p at time t.
It is Bugsipt divided by Codesipt.

Codesipt: The total number of lines of codes (including
deleted, added and changed lines) committed by the

developer i in project p at time t. These numbers can
be summed up from the diffs of all commits made
by the developer. We omit diffs in non-Java files.

IndirectF ixesipt: The total number of activities or contri-
butions (suggestions and comments) that developer i
made to help another developer fix a bug in project p
at time t. A developer can make multiple comments on
a buggy line.

Fixesipt: The total number of buggy lines that developer i
fixed in project p at time t. These numbers are the sum
of all bugs whose FixDate is t and FixDeveloper is
i in project p. A developer can fix his/her own bugs as
well as bugs created by other developers.

Codesipct: The total number of lines of codes committed
by the developer i in all the projects except project p
at time t.

Fixesipct: The total number of buggy lines that developer
i fixed in all the projects except project p at time t.

CumCodesipt−1: The cumulative number of Codesipt that
developer i has committed in project p through time
t− 1.

CumIndirectF ixesipt−1: The cumulative number of

IndirectF ixesipt that developer i has made in project
p through time t− 1.

CumFixesipt−1: The cumulative number of Fixesipt that
developer i has made in project p through time t− 1.

CumCodesipct−1: The cumulative number of Codesipt that
developer i has committed in all the projects except
project p through time t− 1.

CumFixesipct−1: The cumulative number of Fixesipt that
developer i has made in all the projects except project
p through time t− 1.

C. Project Measures

Individual developer’s performance including bug ratios

may be affected by the nature of projects. We develop

the measures to control the project heterogeneity. Many of

them can be aggregated from the measures for individual

developers and individual code changes and bugs in a unit

time (month). In the aggregation process, we use the last

commit before the current time t as the beginning of time
t, and use the first commit as the beginning of the first
time period 1. Here is the summary of variables used in our
regression model.

ProjectCodespt: The total number of lines of codes in
project p at the beginning of the time t. A project codes
(size) can be viewed as a proxy for the accumulative

3814

effects of many code changes by many developers in the

project. We first “git checkout” the last commit before

the time t to get the specific revision of p to calculate
these numbers. We use a code metric tool JavaNCSS

to count the code amount.

ProjectIndirectF ixespt: The total number of activities
or contributions (suggestions and comments) made in

project p at time t. We can obtain these numbers by
summing up the IndirectF ixes from all developers

in the project at time t. These numbers can be the
summation of the Bugs from all developers in project

at time t.
ProjectF ixespt: The total number of fixes made in project

p at time t. We can obtain these numbers by summing
up the Fixes from all developers in project at time t.

ProjectDeveloperSizept: The number of developers who
made some commits in project p at time t.

IV. ECONOMETRIC MODEL

A. Learning Curve Models

We aim to assess the learning progress of individual

developers engaged in open source software (OSS) projects.

We also attempt to examine the knowledge transfer across

projects and bug types.

We perform the empirical analysis by employing a learning

curve power function. The form of the learning curve is

formulated as y(x) = axb, where y is a performance variable
(bug ratio), x represents cumulative learning experience,
a is an initial bug ratio without learning activities, and b
is the individual developer’s learning rate. Taking a log

transformation of both sides and adding covariates of interest

and control variables, we obtain the following regression

equation (1):

ln(BugRatioipt) = β0
+ β1ln(CumCodesipt−1)

(or β1ln(CumIndirectF ixesipt−1))
(or β1ln(CumFixesipt−1))

+ β2Codesipt
(or β2IndirectF ixesipt)
(or β2Fixesipt)

+ β3ProjectCodespt
+ β4ProjectDeveloperSizept
+ ζi + δp + μipt

(1)

The bug ratio of an individual developer is our target obser-

vation and dependent variable in Equation (1). BugRatioipt
is the bug ratio of ith developer at time t in a project p. We
aim to explain the change in BugRatioipt with respect to
the independent (explanatory) variables at the right hand side

of Equation (1).

Given the bug ratio as the performance measure, we

quantify learning experience three different ways considering

OSS development context. In contrast to coding experiences

of individual developers, we found out that bug-fixing experi-

ence can be categorized into two types: (1) a developer helped

another developer fix a bug (indirect bug-fixing experience)

and (2) a developer finally fixed a bug. In this study, we

Table III: Comparison of the cumulative code amounts of
developers with and without bugs in a project.

Project Cumulative CodeAmountjpt for
each developer (Lines of Code)

Mean Min Max Standard
Deviation

Ant

with NO bugs 4053 0 54713 13571
with bugs 73821 320 1014953 190611

Commons
Compress

with NO bugs 1385 0 10787 3385
with bugs 14691 231 65139 23265

Commons
Lang

with NO bugs 7077 0 171391 33533
with bugs 51101 332 473406 122483

Solr / Lucene with NO bugs 1702 0 5281 2484
with bugs 140698 263 1673065 318849

Eclipse Plat-
form

with NO bugs 5910 0 157791 26771
with bugs 53179 54 288889 75520

examine whether developers can improve their performance

(i.e., reduction of bug ratios) through (1) cumulative coding

experience, (2) cumulative indirect bug-fixing experience, and

(3) cumulative direct bug-fixing experience. We developed

three learning variables: CumCodesipt−1, CumFixesipt−1,

and CumIndirectF ixesipt−1 (Refer to Section III-B). The

three learning experience are proxy variables to measure the

transition (increment) of project-specific knowledge stock.

The main objective of Equation (1) is to estimate learning

progress induced from the cumulative learning experience. If

β1 is negative and statistically significant, then the developers
show the learning curve (i.e., the decrease of bug ratios) as

they increase the coding bug-fixing experience in a project.

As shown in the parentheses (CumIndirectF ixesipt−1 and

CumFixesipt−1), we can assess whether the individual

developer’s (indirect and direct) bug-fixing experience can

induce the decrease of the bug ratio.

Besides developers’ own learning experience, their perfor-

mance may be related to working environment (e.g., working

together to fix a bug) as well as the projects they are working

on (e.g., the number of developers in a project, the code

size and project complexity). First of all, Table III gives

summary statistics about the cumulative amount of codes

made by developers with and without bugs in each project.

It raises the possibility of the scaling effects showing that

the developers without bugs contribute much less codes than

developers with bugs. Therefore, our regression model also

includes Codesipt, IndirectF ixesipt or Fixesipt to capture
the scale effects.

We also include project-specific measures into our

regression models to check the impact of project-

related characteristics on the developers’ learning ef-

fects: ProjectCodespt and ProjectDeveloperSizept. We
find that ProjectComplexitypt is highly correlated with
ProjectCodespt (correlation coefficient is 0.998). Therefore,
we do not use them together in the model to avoid a

multicollinearity problem. We include ProjectCodespt in
Equation (1) but we confirmed that both will give us

qualitatively the same results.

We adopt a fixed effects model ζi to control for individual
developer heterogeneity, and δp to control for the individual
project heterogeneity, respectively. The error component, μipt
is an idiosyncratic error term and it varies across t as well

3815

as across developer i and project p.
The data structure for all the models is a cross-sectional

time series data (individual developer-level panel data). Given

that our sample data contains individuals and projects, we

considered using a hierarchical linear model (HLM), but

HLM is appropriate only when the units of analysis are

nested within higher units of analysis and the dynamics at the

higher level influence outcomes of the lower level [28]. HLM

does not appear to be appropriate because some developers

made contributions in multiple projects simultaneously.

B. Knowledge Transfer across Projects

We aim to assess the knowledge transfer across projects

and build the regression model to assess whether an individual

developer’s bug ratio in a focal project is affected by

the developer’s coding/bug-fixing experiences in the other

projects. Plugging the modified measures in the right hand

side of the equation, we have the following equation:

ln(BugRatioipt) = β0
+ β1ln(CumCodesipct−1)

(or β1ln(CumFixesipct−1))
+ β2Codesipct

(or β2Fixesipct))
+ β3ProjectCodespt
+ β4ProjectDeveloperSizept
+ ζi + δp + μipt

(2)

The regressor of principal interest, CumCodesipct−1

and CumFixesipct−1 are the cumulative coding and bug-

fixing experiences an individual developer i has accumulated
through j − 1 outside a project p. This is to model the
transition of individual developer’s knowledge stock induced

from the other projects. If β1 is positive and significant in
Equation (2), then it supports the knowledge transfer across

projects. That is, developers can decrease their bug ratios

as they increase coding or bug-fixing experiences in the

other projects. In a similar fashion, the regression model

includes control variables for scaling effects and project-

specific noises.

C. Learning Curves and Knowledge Transfer in Each Bug
Type

Equation (1) assesses the overall learning curve of devel-

opers induced from coding / indirect / indirect bug-fixing

experience without distinguishing bug types. This assumes
implicitly that developers’ learning progress is independent

of bug types. Relaxing the assumption, our next question

is to examine whether learning curves differ according to

bug types. We apply the regression model of Equation (1)

to estimate the learning progress in each bug type. Similarly,

we run the regression model of Equation (2) to evaluate the

knowledge transfer across bug types.

V. EMPIRICAL RESULTS

Table I gives general information about the projects. In

total, the projects involve more than 200 developers who

make commits to the repositories. Most of them, based on

our measures, have committed buggy codes. Table I also
shows that around half of total buggy lines (25%–80%) are

fixed by the same developer.

The right columns of Table IV show some descrip-

tive statistics for the variables used in our regression

model. The baseline correlations provide initial sup-

port for our learning curves of individual developers in

OSS development. ln(BugRatioipt) has a negative cor-
relation with experience variables: ln(CumCodesipt−1),
ln(CumIndirectF ixesipt−1) and ln(CumFixesipt−1).
This indicates that an increase in the experiences is associated

with the reduction in bug ratios. But the correlation cannot

fully guarantee the learning effects due to developer’s

heterogeneity and so we run the regression model with control

variables and several fixed effects factors.

A. Knowledge Accumulation

As shown in the rows in Table IV for

ln(CumCodesipt−1), ln(CumIndirectF ixesipt−1),
and ln(CumFixesipt−1), the estimates indicate that

cumulative coding and indirect bug-fixing experience in

a project do not decrease bug ratios while cumulative

bug-fixing experience leads to learning progress in the

project.

The coefficient of the cumulative coding experience is

insignificant, indicating that bug ratios would not decrease

even though the cumulative codes made by an individual

increases. That is, there is no learning relationship between

coding experience and the likelihood for a developer to make

a bug. We can infer that developers cannot gain knowledge

enough to reduce the bug ratio by simply accumulating coding

experience as measured by the amount of codes. Coding can

just be repetitive routine where each developer applies his/her

coding routine to a given context. These routines may allow

developers to speed up their coding speed But the application

of coding routine (existing knowledge) has nothing to do

with generating new knowledge to help the decrease of a

bug ratio. Developers also have their own coding styles and

preferred coding approach. They have little chance to achieve

the less bug-generating (more efficient) coding style along

with simple coding experience.

Developer’s indirect bug-fixing experience in a project

does not decrease the developer’s bug ratio in the project.

Developers may not look into the bug on a line level

when they make the indirect bug-fixing contribution. That

is, indirect bug-fixing contribution is usually made through

the format of general discussion. Consequently, developers
would not catch the root cause of the bug and so they are

less likely to gain new knowledge enough to decrease their

bug ratio.

ln(CumFixesipt) shows a significant negative coefficient,
supporting the learning curve that developers are less likely to

make bugs as their bug-fixing experience increases. Developer

have to know very detailed information about the bug as well

3816

Table IV: Learning Curve Estimates.

Independent Variables Dependent Variable: �� ������������ Descriptive Statistics

Model1 Model2 Model3 Model4 Model5 # Mean S.D. Min Max

�� ������������� 0.0002
(0.0315)

4884 9.8 2.3 0 14.5

�� �	
�����������������
-0.0745
(0.0482)

3806 3.3 1.7 0 7.5

�� �����	�������
-0.1458***

(0.0435)

2497 4.8 2.2 0 8.8

�� ��������������
0.0674

(0.0501)

2102 9.6 2.5 0.7 14.4

�� ��������������
-0.0190

(0.0860) 912 5.1 2.1 0 8.3

��������
-0.0000***

(0.0000)

5329 3444.8 16390.8 1 444824.0

���	���
��������
-0.0237**
(0.0106)

5329 2.6 5.3 0 73.0

��������
-0.0000
(0.0002)

5329 13.8 127.8 0 4865.0

���������
0.0000

(0.0000)

5329 1581.9 12419.2 0 394595.0

���������
-0.0014

(0.0025) 5329 4.5 64.6 0 2351.0

�������	�
����
0.0000***

(0.0000)

-0.0000***

(0.0000)

-0.0000**

(0.0000)

-0.0000***

(0.0000)

-0.0000***

(0.0000) 5329 10718.1 22537.8 0 394611.0

���������������	������
-0.1208***

(0.0233)
-0.0857***

(0.0283)
-0.0933***

(0.0279)
-0.1125**
(0.0444)

-0.0993
(0.0739) 5316 5.9 3.5 0 17.0

N 1590 1244 1035 601 273

 Within R2 0.13 0.06 0.05 0.10 0.13

Prob. > F (Prob. > �2) 0.000 0.000 0.000 0.000 0.000

All regressions include individual developer and project dummies (individual developer and project fixed effects model).
Columns include parameter estimates with standard error in parentheses.

***Significant at p < 0.01 **Significant at p < 0.05 *Significant at p < 0.1

as the context including the project to fix bugs. A developer

can accumulate new knowledge in the process of acquiring

the better understanding of bugs and figuring out how to

approach the problems. The developers may not change their

coding style until they come to recognize their current coding

style is problematic. Developers understand better what kinds

of codes may lead to bugs through the bug-fixing experience

and thus they could avoid making bugs when applying similar

methods. In sum, bug-fixing experience can help developers

to reduce their bug ratios directly and indirectly: directly

increasing the understanding of a specific bug or indirectly

updating the coding routine to generate less bugs.

Learning curves are often characterized in terms of a

progress ratio p, which is calculated based on the estimated
learning rates b, where p = 2b. The progress ratio indicates
how much performance increases for each doubling of

cumulative experience. The bug ratio for developers is

p = 0.90 since the effect for developers’ cumulative bug-
fixing experience is -0.145 in Model 3. This implies that

when developers double their bug-fixing experience, their

bug ratios can decrease by approximately 9.5%.

Our model with control variables is estimated to explore

and control alternative explanation for the results. The

significant negative coefficient of CodeAmountipt shows
negative scale effects that a developer is likely to make

relatively less bugs (lower bug ratios) with more coding

in a period of time. All the project-specific time variant

variables (ProjectCodespt and ProjectDeveloperSizept)
are significant. We can partly conclude that project-specific

factors significantly affect an individual developer’s learning

progress.

B. Knowledge Transfer across Projects

The both coefficients of ln(CumCodesipct−1) and

ln(CumFixesipct−1) in Models 4 and 5 are not significant.
These findings show that there is no knowledge transfer across

projects. Developer’s coding and bug-fixing experiences in

other projects do not decrease the developer’s bug ratio in a

focal project.

Every project has its own background and style and thus

each project needs specific domain knowledge. Although

a developer may write many codes or fix many bugs in

project A, if projects A and B are totally different (in terms

of complexity, difficulty, functionality, bug types, etc.), the

developer could not bring this knowledge from project A

to project B. But we should be cautious of the conclusion

that there is no knowledge transfer effects across projects.

Knowledge transfer effect could be observed across the

similar projects.

C. Learning Curve by Bug Types

We examine learning effects in each bug type with Model

3 (with ln(CumFixesipt−1) as a learning variable), because
our empirical results show that bug-fixing experience is only

the driver to decrease the bug ratio. The columns under

“Learning within a Bug Type” in the Table V summarize the

results of our separate regression models in each bug type,

showing the learning curves depend on a bug type. Overall,

the estimation results show that developers exhibit learning

3817

Table V: Learning in each bug type and knowledge transfer
across bug types.

 Bug Type Learning within a bug type Knowledge Transfer across bug types

1 Types YES YES

2 Def-Use YES YES

3 Error Handling NO NO

4 Scoping YES YES

5 Literals NO NO

6 Change Control NO NO

7 Branching YES YES

8 Looping YES NO

9 Non-essentials NO YES

10 Expressions NO NO

11 Methods YES NO

12 Synchronization Insufficient Observation Insufficient Observation

13 Modifiers NO NO

effects in bug types (1) that are relatively simple, such as Type

5 involving wrong literals and Type 9 involving bugs that are

non-essential for code functionality (e.g., importing needed

libraries, adding annotations, etc.), and (2) that have relatively

large numbers of instances, such as Type 7 involving errors

in conditionals and Type 11 involving method declarations

and invocations.

D. Knowledge Transfer across Bug Types

The columns under “Knowledge Transfer across bug types”

in the Table V indicate that developers show knowledge

transfer across bug types in 5 out of 13 bug types. As a

developer accumulates more experience in a bug type, the

bug ratio in the 5 bug types significantly decreases.

For bug types 1, 2 and 4, these bug types are general

and so the bugs could be similar even in different projects.

There is no knowledge transfer for bug types 3, 5, 10 and 13

because they are very specific bugs to projects. Even though

they are in the same project, they are specific to scenarios

and thus there is no learning effects within a project.

E. Developers’ Interpretation of Empirical Results

We showed our estimation results to several developers in

order to understand how they can interpret our empirical

results from developer’s perspective. Here is the short

summary.

Bug type 1 (Types): Types are basic elements in Java and

so this type of bugs is quite basic. They can often be

caught by Java compilers. It is easy to learn and transfer

the relevant knowledge.

Bug type 2 (Def-Use): It is about to define variables and

very simple. Compiler can catch some of the bugs. It

is easy to learn and transfer the relevant knowledge.

Bug type 3 (Error Handling): Each error case is quite

specific to different situation. Therefore, it is not easy to

transfer experience from one project to another project.

Bug type 4 (Scoping): It is scoping about using blocks ”

” in codes. It is so simple that developers ignore them

(i.e., error due to negligence, not ignorance) whirling

they are programing. This type of bugs may often occur

together with other types of bugs and so developers can

learn to fix them together with other types of bugs.

Bug type 5 (Literals): It is the use of wrong literals and

really simple. But every case uses a different literal and

so it is not to transfer experience from one literal to

another literal.

Bug type 6. (Change Control): It involves the changes of

execution logic of code. It is situation-specific and so

difficult to learn.

Bug type 7 (Branching): It involves creating different code

branches for different situations. The same creation logic

may often be shared across different code locations and

so learning effect within the bug type are expected.

Bug type 8 (Looping): It involve creating loops in codes.

Usually, it is challenging to avoid the mistakes.

Bug type 9 (Non-essentials): It involves non-functioning

code (e.g., annotations in code). It is easy to learn and

transfer the relevant knowledge.

Bug type 10 (Expressions): It is quite basic elements in

Java. But compiler doesn’t check this type of bugs and

error symptoms may appear as different computation

results for different situations. Therefore, it is not easy

to transfer experience from one situation to another

situation.

Bug type 11 (Methods): It involve wrong method invocation,

which may mean mis-understanding of the functionality

of invoked methods. Developers can learn and invoke

correct methods next time.

Bug type 12 (Synch): This type of bug is often complex

and so it is hard to understand and learn.

Bug type 13 (Modifiers): It is only change code in minor

ways. The results are a little counterintuitive.

VI. CONCLUSION

Our empirical findings give us the intriguing insight

that developers’ performance (bug ratios) may not improve

through just coding experience and indirect bug-fixing

experiences in OSS development context. However their

performance significantly improves by fixing bugs made by

either themselves or other developers.

The results have implications on project management about

how to split efforts on tasks that add new codes versus tasks

that debug and fix existing codes. Software project managers

may consider assigning more testing and debugging tasks to

the developers who tend to end up with (or have generated)

many bugs. The task differentiation depending on the individ-

ual developer’s status will be effective for their performance

trajectory (improvement) in the long-term perspective as well

as the short-term organizational performance. Furthermore, it

would be even better if there were systematic mechanisms to

share the learning accumulated from bug-fixing experiences

among developers.

Our analysis results also show different bug ratios and

different distributions of bug types across projects, raising

the possibility of project-specific and/or developer-specific

bug prediction approach We can utilize the project-specific

3818

and/or developer-specific natures for the purpose of bug

prediction, which also justifies related work on across-project

bug prediction [18], [20], [25], [33], [38].

A. Limitation and Future Research Directions

We now discuss the limitations of our study and propose

interesting future research.

First of all, there could be some measurement errors in

the measures we developed and identify, particularly in bug

identification and bug type classification. We follow common

practices used in the literature [14], [26], [31] to identify

bug fixes and bug origins. However, each diff related to a
bug may still contain non-buggy codes. We may need other

techniques to help reduce falsely identified bugs [13], [32].

We also refer to the literature to classify the bug types

and bug fixes [22]. This kind of classification can be

easily scaled to large code bases. But our classification is

mostly based on the syntax of code, not on the semantic or

functionality of code. Thus, we have used topic modeling in

the exploratory study to analyze bugs with respect to code

of different “functionality” (or, topics). As future work, we

can consider using more semantic-aware classification or

root-cause analysis techniques to identify bug types [7], [17],

[24], [34].

In this study, we don’t consider bug severity, bug priority,

or bug difficulty in our study.

There are other factors that affect developers’ learning

effects but not considered in our analyses. For example, there

are the interactions among developers that are not recorded in

the project repositories. Also, implicit interactions happened

in creating new code (e.g., reading/changing each other’s

code). It should be worth capturing implicit interactions and

other kinds of interactions captured in various data sources

(e.g., bug reports, messages in mailing lists and discussion

fora, wiki edits, etc.) to examine the impact of interaction

among developers on individual developer’s performance.

Threats to external validity concern whether our analysis

results can be generalized.

Our empirical study includes multiple projects involving

more than 200 developers over multiple years. We believe

that our research settings allow us to generalize our em-

pirical results. But more studies on projects using different

languages, different business model (close-source), different

development and maintenance processes would help increase

our understanding in knowledge accumulation and transfer

in OSS development.

One interesting direction for future work is to consider

factors that can improve the effectiveness of learning. For

example, “social coding” is touted as a better way to code

[4], [5], [9], [19], [35], [36]. The comparison of social

coding with non-socially coded ones may provide insights

how developers can learn more effectively from each other’s

coding experience.

REFERENCES

[1] R. Abreu and R. Premraj. How developer communication frequency
relates to bug introducing changes. In Joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops, pages 153–158, 2009.

[2] G. Abu, J. W. Cangussu, and J. Turi. A quantitative learning model for
software test process. In 38th Annual Hawaii International Conference
on System Sciences (HICSS), pages 78b–78b, 2005.

[3] R. D. Banker, G. B. Davis, and S. A. Slaughter. Software development
practices, software complexity, and software maintenance performance:
A field study. Management Science, 44(4):433–450, Apr 1998.

[4] A. Begel, J. Bosch, and M.-A. Storey. Social networking meets
software development: Perspectives from github, msdn, stack exchange,
and topcoder. IEEE Software, 30(1):52–66, 2013.

[5] N. Bettenburg and A. E. Hassan. Studying the impact of social
structures on software quality. In IEEE ICPC, pages 124–133, 2010.

[6] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. Germán, and
P. T. Devanbu. The promises and perils of mining git. In MSR, pages
1–10, 2009.

[7] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus,
B. K. Ray, and M.-Y. Wong. Orthogonal defect classification—a
concept for in-process measurements. IEEE TSE, 18(11):943–956,
Nov 1992.

[8] O. Chouseinoglou, D. İren, N. A. Karagöz, and S. Bilgen. AiOLoS: A
model for assessing organizational learning in software development
organizations. Information and Software Technology, 55(11):1904–
1924, 2013.

[9] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb. Social
coding in GitHub: transparency and collaboration in an open software
repository. In Computer Supported Cooperative Work (CSCW), pages
1277–1286, 2012.

[10] N. Hanakawa, S. Morisaki, and K.-i. Matsumoto. A learning curve
based simulation model for software development. In ICSE, pages
350–359, 1998.

[11] D. E. Harter, M. S. Krishnan, and S. A. Slaughter. Effects of
process maturity on quality, cycle time, and effort in software product
development. Management Science, 46(4):451–466, Apr 2000.

[12] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction. In ASE,
pages 279–289, 2013.

[13] D. Kawrykow and M. P. Robillard. Non-essential changes in version
histories. In ICSE, pages 351–360, 2011.

[14] S. Kim, T. Zimmermann, K. Pan, and E. J. W. Jr. Automatic
identification of bug-introducing changes. In ASE, pages 81–90,
2006.

[15] M. S. Krishnan, C. H. Kriebel, S. Kekre, and T. Mukhopadhyay. An
empirical analysis of productivity and quality in software products.
Management Science, 46(6):745–759, Jun 2000.

[16] I. Kwan, A. Schroter, and D. Damian. Does socio-technical congruence
have an effect on software build success? a study of coordination in
a software project. IEEE TSE, 37(3):307–324, 2011.

[17] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun. Classification
of software behaviors for failure detection: a discriminative pattern
mining approach. In KDD, pages 557–566, 2009.

[18] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer learning for
cross-company software defect prediction. Information and Software
Technology, 54(3):248–256, Mar 2012.

[19] G. Madey, V. Freeh, and R. Tynan. The open source software
development phenomenon: An analysis based on social network theory.
In Americas conf. on Information Systems (AMCIS), pages 1806–1813,
2002.

[20] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In ICSE,
pages 382–391, 2013.

[21] T. H. Nguyen, B. Adams, and A. E. Hassan. Studying the impact of
dependency network measures on software quality. In IEEE ICSM,
pages 1–10. IEEE, 2010.

[22] K. Pan, S. Kim, and E. J. W. Jr. Toward an understanding of bug fix
patterns. Empirical Software Engineering, 14(3):286–315, 2009.

[23] K. Petersen. Measuring and predicting software productivity: A
systematic map and review. Information and Software Technology,
53(4):317–343, 2011.

[24] R. Prieto-Diaz and P. Freeman. Classifying software for reusability.
IEEE Software, 4(1):6–16, Jan 1987.

[25] F. Rahman, D. Posnett, and P. T. Devanbu. Recalling the “imprecision”
of cross-project defect prediction. In SIGSOFT FSE, page 61, 2012.

[26] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu. Bugcache
for inspections: Hit or miss? In ESEC/FSE, pages 322–331, 2011.

[27] N. Ramasubbu and R. K. Balan. Globally distributed software develop-
ment project performance: an empirical analysis. In ESEC/SIGSOFT
FSE, pages 125–134, 2007.

3819

[28] R. Reagans, L. Argote, and D. Brooks. Individual experience and
experience working together: Predicting learning rates from knowing
who knows what and knowing how to work together. Management
Science, 51(6):869–881, 2005.

[29] P. V. Singh, Y. Tan, and N. Youn. A hidden markov model of developer
learning dynamics in open source software projects. Information
Systems Research, 22(4):790–807, 2011.

[30] V. S. Sinha, S. Sinha, and S. Rao. BUGINNINGS: Identifying the
origins of a bug. In ISEC, 2010.

[31] J. Sliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? In MSR, 2005.

[32] F. Thung, D. Lo, and L. Jiang. Automatic recovery of root causes
from bug-fixing changes. In WCRE, pages 92–101, 2013.

[33] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano. On the
relative value of cross-company and within-company data for defect
prediction. Empirical Software Engineering (EMSE), 14(5):540–578,

Oct 2009.
[34] S. Ugurel, R. Krovetz, and C. L. Giles. What’s the code? automatic

classification of source code archives. In KDD, pages 632–638, 2002.
[35] B. Vasilescu, V. Filkov, and A. Serebrenik. StackOverflow and

GitHub: associations between software development and crowdsourced
knowledge. In International Conference on Social Computing
(SocialCom), pages 188–195, 2013.

[36] T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predicting build
failures using social network analysis on developer communication.
In ICSE, pages 1–11, 2009.

[37] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. ReLink: Recovering
links between bugs and changes. In SIGSOFT FSE, pages 15–25,
2011.

[38] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy.
Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process. In ESEC/SIGSOFT FSE, pages 91–100, 2009.

3820

	The Knowledge Accumulation and Transfer in Open-Source Software (OSS) Development
	Citation

	The Knowledge Accumulation and Transfer in Open-Source Software (OSS) Development

