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Unleashing Dec-MDPs in Security Games: Enabling
Effective Defender Teamwork

Eric Shieh1, Albert Xin Jiang1, Amulya Yadav1, Pradeep Varakantham2, and Milind Tambe1

Abstract.
Multiagent teamwork and defender-attacker security games are

two areas that are currently receiving significant attention within
multiagent systems research. Unfortunately, despite the need for ef-
fective teamwork among multiple defenders, little has been done to
harness the teamwork research in security games. This paper is the
first to remedy this situation by integrating the powerful teamwork
mechanisms offered by Dec-MDPs into security games. We offer the
following novel contributions in this paper: (i) New models of secu-
rity games where a defender team’s pure strategy is defined as a Dec-
MDP policy for addressing coordination under uncertainty; (ii) New
algorithms based on column generation that enable efficient genera-
tion of mixed strategies given this new model; (iii) Handling global
events during defender execution for effective teamwork; (iv) Ex-
ploration of the robustness of randomized pure strategies. The paper
opens the door to a potentially new area combining computational
game theory and multiagent teamwork.

1 Introduction
Driven by the problem of optimizing team performance in domains
with significant uncertainty, research in multiagent teamwork has for
the past decade or more focused on fundamental advances in decen-
tralized Markov Decision Problems (Dec-MDPs), providing major
algorithmic breakthroughs [3, 6, 11]. On the other hand, security
games have recently emerged as a research area in multiagent sys-
tems, leading to successful deployments that aid security scheduling
at ports, airports and other infrastructure sites, while also aiding in
anti-poaching efforts and protection of fisheries [18]. The challenge
addressed in security games is optimizing the use of a defender’s
limited security resources in the presence of an adversary who can
conduct surveillance before planning an attack.

This paper focuses on a challenge at the intersection of these
two key areas in multiagent systems, potentially opening a fruit-
ful new line of inquiry. In many security environments, teamwork
among multiple defender resources of possibly different types (e.g.,
aerial, canine, motorized vehicles) is important to the overall effec-
tiveness of the defender. However, teamwork is complicated by three
factors—(i) requiring defender resources to coordinate under uncer-
tainty; (ii) handling the dynamic inability of a resource to continue
teamwork; and (iii) lack of communication—as we explain next.

While the work presented in this paper applies to many of the ap-
plication domains of security games, including the security of flights,
ports and rail [18], we focus on the metro rail domain for a con-
crete example, given the increasing amount of rail related terrorism
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threats [15]. The defender resources (i.e., canine, motorized) patrol
the stations while the adversary conducts surveillance and may take
advantage of the defender’s predictability to plan an attack. Defender
resources may engage in teamwork to patrol certain key areas that
may be advantageous in thwarting the adversary compared to indi-
vidual patrolling. Thus, if the adversary observes a coordinated set
of defender resources patrolling a station, he will have to overcome
multiple defenders if he decides to attack. Within this metro rail do-
main, we can see three factors that complicate teamwork. First, while
defender resources are on patrol, one or more of them may be forced
to deviate from the given patrol due to unforeseen events, such as
questioning of suspicious individuals which results in delays in the
patrol – but they may still need to continue to coordinate. Second,
one of the defender resources may get interrupted to deal with a seri-
ous bomb threat – the entire team may be alerted to this threat via an
emergency channel and the responsible resources may take over the
response, resulting in the resource stopping the patrol and requiring
others to fill in any gaps as a team. This type of global event affects
the entire team and impacts the coordination among patrol resources.
Third, in this rail domain there is often no communication among the
defender resources due to various reasons, such as the trains and sta-
tions being underground or the use of cell phones or radio giving
away the defender’s coordinates or information.

Unfortunately, previous work in security games has mostly ig-
nored this challenge of defender teamwork; while deployment of
multiple defenders is optimized, most previous research has not fo-
cused on coordination among these resources. To handle teamwork
of defender resources in security games under uncertainty, our work
makes the following contributions. First, this paper provides a new
model of a security game where a Dec-MDP policy is used as the
defender’s pure strategy to handle coordination under uncertainty.
Second, we present a new algorithm that uses column generation to
efficiently generate Dec-MDP policies as pure strategies used in de-
termining the optimal mixed strategy for the defender team. Third,
global events among defender resources are modeled and leveraged
in handling teamwork. Fourth, we show heuristics that help scale-
up to real-world scenarios. Fifth, while exploring randomized pure
strategies previously seen to converge faster, we discovered that they
were not as fast but instead were more robust.

2 Background: DEC-MDP
To represent the security problems of interest, we employ the
well known DEC-MDP model that is defined by the tuple:
〈Ag, S,A, T,R〉. Ag = {1, . . . , n} represents the set of n defender
resources. S = Su×S1×· · ·×Sn is a finite set of world states of the
form s = 〈su, s1, · · · , sn〉. Each resource i’s local state si is a tuple
(ti, τi) where ti is the target and τi is the time at which resource i



reaches target ti. Time is discretized and there arem decision epochs
{1, . . . ,m}. su is the unaffected state, meaning that it is not affected
by the resources’ actions. It is employed to represent occurrence of
global events (bomb threats, increased risk at a location etc.)
A = A1 × · · · × An is a finite set of joint actions a =
〈a1, · · · , an〉, where Ai is the set of actions to be performed by re-
source i. T : S × A × S → R is the transition function where
T (s, a, s′) represents the probability of the next joint state being s′

if the current joint state is s and joint action is a. Since transitions
between resource i’s local states are independent of actions of other
resources, we have transition independence. Due to the presence of
unaffected states, this notion of transition independence is equiva-
lent to the one employed in Network Distributed POMDPs [13]. For-
mally, T (s, a, s′) = Tu(su, s

′
u) ·

∏
i Ti(〈su, si〉, ai, s′i).

In this paper we are modeling game-theoretic interactions, in
which the rewards depend on the strategies of both the defender and
the attacker. Therefore standard Dec-MDP reward functions cannot
be directly applied. Nevertheless, as part of our algorithm, we will
reduce a subproblem to a Dec-MDP problem with a standard Dec-
MDP joint reward function of the form R : S → R, where R(s)
represents the reward for reaching joint state s. Unlike in the ND-
POMDP framework, our reward function is not decomposable.

3 Game Formulation

This paper presents a game theoretic model of effective teamwork
among multiple defender resources with execution uncertainty by
combining security games with Dec-MDPs. A security game [18]
is a Stackelberg game with two players, a leader (defender) and a
follower (attacker). The attacker is able to observe the mixed strat-
egy of the defender resources, and then chooses a target-time pair
b = (t, τ), where t is the target to attack and τ is the time point to
carry out the attack. In the train domain, targets correspond to sta-
tions in the metro system. Let B be the set of target-time pairs. The
defender’s actions and capabilities (to be explained below) influence
the effectiveness of coverage on target-time pairs, allowing for partial
effectiveness. Each target-time pair b has a payoff associated with it
for both the attacker and defender, withUc

d(b) denoting the payoff for
the defender if b is covered (100% effectiveness), and Uu

d (b) denot-
ing the payoff for the defender if b is uncovered (0% effectiveness) —
we define defender expected utility under partial effectiveness later.
We choose to have payoffs on both the location and time, due to the
payoff being dependent on time, e.g., in the train domain, at rush
hour the payoffs are larger than in the middle of the night with very
few passengers. The payoffs for the attacker are in the same format,
Uc

a(b) and Uu
a (b). A common assumption for security games is that

Uc
d(b) > Uu

d (b) and Uc
a(b) < Uu

a (b), i.e., when a defender covers
b, she receives a higher reward while the attacker receives a lower
reward [18]. The model allows a non-zero-sum game, where the sum
of defender’s and attacker’s payoff values may be non-zero.

The defender team has a set ofR resources. A (naive) patrol sched-
ule for each resource consists of a sequence of commands; each com-
mand is of the form: at time τ , the resource should be at target t and
execute action a. The action of the current command takes the de-
fender resource to the location and time of the next command. In
practice, each defender resource faces execution uncertainty, where
taking an action might result in the defender resource being at a
different location and time than intended. To handle execution un-
certainty, we represent the defender’s strategy as a joint policy of a
transition-independent Dec-MDP, as defined in Section 2. For sim-
plicity of exposition, we first focus on the case with no global events,

in which case the unaffected state su never changes and can be ig-
nored. (We will consider these global events later in Section 5.) A de-
fender resource r’s state sr = (t, τ) represents her location (target)
and time. Actions at sr are decisions of which target to visit next. Ex-
ecution uncertainty is represented by probabilistic transitions. While
more complex transitions could be easily modeled, we consider the
following simple model of delays that mirror the real-world scenar-
ios of unexpected events: for each action ar at sr there are two states
s′r, s

′′
r with a nonzero transition probability: s′r is the intended next

state and s′′r has the same target as sr but a later time.
We define ξ ∈ [0, 1] to be the effectiveness of a single defender re-

source visiting a target-time pair. ξ can be less than 1 because visiting
a target-time pair will not guarantee full protection. For example, if
a defender resource visits a station, she will be able to provide some
level of effectiveness, however she cannot guarantee that there is no
adversary attack. Two or more defender resources visiting the same
target-time pair provides an additional effectiveness. Given a global
state s of defender resources, let eff(s, b) be the effectiveness of
the resources on target-time pair b. For concreteness, we define the
effectiveness of k resources visiting the same target-time pair to be
1 − (1 − ξ)k. This corresponds to the probability of catching the
attacker if each resource independently has probability ξ of catching
the attacker. Then eff(s, b) = 1−(1−ξ)

∑
i Isi=b where Isi=b is the

indicator function that is 1 when si = b and 0 otherwise. Our meth-
ods would apply to other models of effectiveness, including when
different resources have different capabilities.

Denote by πj the defender team’s jth pure strategy (joint pol-
icy), and πJ the set of all defender pure strategies, where J is the
corresponding set of indices. Each pure strategy πj induces a dis-
tribution over global states visited. Denote by Pr(s|πj) the prob-
ability that global state s is reached given πj . The expected ef-
fectiveness of target-time pair b from defender pure strategy πj , is
denoted by P j

b ; formally, P j
b =

∑
s Pr(s|π

j)eff(s, b). Given a
defender pure strategy πj , and an attacker pure strategy of target-
time pair b, the expected utility of the defender is Ud(b,π

j) =
P j
b U

c
d(b) + (1 − P j

b )U
u
d (b). The attacker’s utility is defined anal-

ogously. The defender may also play a mixed strategy x, which is
a probability distribution over the set of pure strategies πJ . Denote
by xj the probability of playing pure strategy πj . The players’ ex-
pected utilities given mixed strategies are then naturally defined as
the expectations of their pure-strategy expected utilities. Formally,
the defender’s expected utility given the defender mixed strategy x
and attacker pure strategy b is

∑
j xjUd(b,π

j). Let cb =
∑

j xjP
j
b

be the marginal coverage on b by the mixed strategy x [18], and c
the vector of marginal coverages over target-time pairs. Then this ex-
pected utility can be expressed in terms of marginal coverages, as
Ud(b, c) = cbU

c
d(b) + (1− cb)Uu

d (b).
Our model assumes the attacker has a surveillance phase prior to

execution of an attack, and that it is difficult for the attacker to ob-
serve the defender’s pure strategy and conditionally launch different
attacks based on different observations. This is based on real-world
cases and security experts’ feedback [14]. In this Stackelberg game,
we assume that the attacker plays a best response against the mixed
strategy of the defender, which is a target-time pair b that maximizes
the attacker’s expected utility given the defender’s mixed strategy.

Problem Statement: We are interested in computing the strong
Stackelberg equilibrium (SSE) of the game: the defender commits
to the optimal mixed strategy (over a set of joint policies that handle
execution uncertainty) that maximizes her expected utility (which re-
quires teamwork among the defender resources), assuming a strate-
gic adversary that best responds to her strategy.



4 Approach

To address the problem just outlined, ideally, the goal would be to
obtain an optimal solution to the Stackelberg game with Dec-MDPs
defining defender strategies. Unfortunately, finding a single optimal
policy—a pure strategy—in a transition independent Dec-MDP is it-
self NP-complete [3]. We thus focus on a heuristic approach.

A standard method for solving Stackelberg games is the Multiple-
LP algorithm [5]. It solves |B| linear programs, each corresponding
to an attacker pure strategy b′. The LP for b′, shown in Equations (1)
to (5), solves the optimal defender mixed strategy x to commit to,
given that the attacker’s best response is to attack b′. Then among
the |B| solutions, the solution that achieves the best objective (i.e.,
defender expected utility) is chosen. In more detail, Equation (2) en-
forces that the best response of the attacker is indeed b′. In Equa-
tion (3), Pj is a column vector which gives the values of expected ef-
fectiveness P j

b of each target-time pair b given defender’s pure strat-
egy πj . An example of a set of column vectors is shown below:

P =


j1 j2 j3

b1 0.0 0.5 0.4
b2 0.2 0.7 0.0
b3 0.5 0.6 0.2
b4 0.6 0.0 0.8


Column Pj1 = 〈0.0, 0.2, 0.5, 0.6〉 gives the effectiveness P j1

bi
of

the defender’s pure strategy πj1 over each target-time pair bi. For
example, policy πj1 has an effectiveness of 0.5 on b3. Thus, Equa-
tion (3) enforces that given the probabilities xj of executing mixed
strategies πj , cb is the marginal coverage of b.

Since each column corresponds to a defender pure strategy, this al-
gorithm requires enumerating all possible pure strategies. However,
in our game there is an exponential number of possible defender pure
strategies, corresponding to joint policies — and thus a massive num-
ber of columns that cannot be enumerated in memory — so that the
Multiple-LP algorithm cannot be directly applied. For N stations, T
time steps, and R defender resources, we may have (NT )R policies.

max
c,x

Ud(b
′, c) (1)

Ua(b
′, c) ≥ Ua(b, c) ∀b 6= b′ (2)

cb −
∑

j∈J
P j
b xj ≤ 0 ∀b ∈ B (3)∑

j∈J
xj = 1 (4)

xj ≥ 0 ∀j ∈ J, cb ∈ [0, 1] ∀b ∈ B (5)

4.1 Column Generation

To deal with this problem, for each of the LPs we apply column gen-
eration [1], a method for efficiently solving LPs with large numbers
of columns. At a high level, it is an iterative algorithm composed of
a master and a slave component; at each iteration the master solves
a version of the LP with a subset of columns, and the slave smartly
generates a new column (defender pure strategy) to add to the master.

The master is an LP of the same form as Equations (1) to (5),
except that instead of having all pure strategies, J is now a subset of
pure strategies. Pure strategies not in J are assumed to be played with
zero probability, and their corresponding columns do not need to be
represented. We solve the LP and obtain its optimal dual solution.

The slave’s objective is to generate a defender pure strategy πj

and add the corresponding column Pj , which specifies the marginal

coverages, to the master. We show that the problem of generating a
good pure strategy can be reduced to a Dec-MDP problem.

To start, consider the question of whether adding a given pure
strategy πj will improve the master LP solution. This can be an-
swered using the concept of the reduced cost of a column [1], which
intuitively gives the potential change in the master’s objective when
a candidate pure strategy πj is added. Formally, the reduced cost f j

associated with the column Pj is defined as f j =
∑

b yb · P
j
b − z,

where z is the dual variable of (4) and {yb} are the dual variables
of Equation family (3). If f j > 0 then adding pure strategy πj will
improve the master LP solution. When f j ≤ 0 for all j, the current
master LP solution is optimal for the full LP.

Thus the slave computes the πj that maximizes f j , and adds the
corresponding column to the master if f j > 0. If f j ≤ 0 the algo-
rithm terminates and returns the current master LP solution.

4.2 Dec-MDP Formulation of Slave
We formulate this problem of finding the pure strategy that maxi-
mizes reduced cost as a Dec-MDP. The rewards are defined so that
the total expected reward is equal to the reduced cost. The states and
actions are defined as before. We can visualize them using transi-
tion graphs: for each resource r, the transition graph Gr = (N ′r, E

′
r)

contains state nodes sr = (t, τ) ∈ Sr for each target and time. In ad-
dition, the transition graph also contains action nodes that correspond
to the actions that can be performed at each state sr . There exists a
single action edge between a state node sr and each of the action
nodes that correspond to the possible actions that can be executed at
sr . From each action node ar from sr , there are multiple outgoing
chance edges, to state nodes, with the probability Tr(sr, ar, s

′
r) la-

beled on the chance edge to s′r . In the illustrative example scenario
that we have focused on, with there being delays, each action node
has two outgoing chance edges with one chance edge going to the
intended next state and another chance edge going to a different state
which has the same location as the original node but a later time.

Example: Figure 1 shows a sample transition graph showing a
subset of the states and actions for resource i. Looking at the state
node (t1, 0), assuming target t1 is adjacent to t2 and t5, there are
three actions, Stay at t1,Visit t2, or Visit t5. If action, Visit t2 is cho-
sen, then the transition probability is: Ti((t1, 0),Visit t2, (t2, 1)) =
0.9 and Ti((t1, 0),Visit t2, (t1, 1)) = 0.1.

t1

t2

t5

0 1 2
Time Steps

Ta
rg

et
s

… …

…

Legend
State node
Action node

0.9
0.9

0.9

0.1

0.1

0.1
chance edge

action edge

1.0

0.9

0.1

1.0

Set of action 
edges

Figure 1. Example Transition Graph for 1 defender resource

The reward functionR(s) for this slave Dec-MDP — consisting of
multiple such transition graphs — is dependent on the dual variables,
yb, from the master, and the effectiveness eff(s, b) of resources with
global state s on target-time pair b, as defined in Section 3:

R(s) =
∑

b
yb · eff(s, b). (6)



Proposition 1. Let πj be the optimal solution of the slave Dec-MDP
with reward function defined as in (6). Then πj maximizes the re-
duced cost f j among all pure strategies.

Proof. The expected reward of the slave Dec-MDP given πj is

∑
s
Pr(s|πj)R(s) =

∑
b
yb

∑
s
Pr(s|πj)eff(s, b)

=
∑

b
ybP

j
b = f j + z.

Therefore the optimal policy for the Dec-MDP maximizes f j .

4.3 Solving the Slave Dec-MDP
One approach to solve the slave Dec-MDP is to use solvers from the
MADP toolbox [17] and also the MPS algorithm [6]. Unfortunately,
these algorithms are unable to scale up past 4 targets and 4 resources
in this problem scenario. Experimental results illustrating this out-
come are shown in Section 7.

Our approach, outlined in Algorithm 1, borrows some ideas from
the TREMOR algorithm [20], which iteratively and greedily updates
the reward function for the individual resources and solves the cor-
responding MDP. More specifically, in each iteration, this algorithm
updates the reward function for the MDP corresponding to resource
r and solves the single-agent MDP; the rewards of the MDP are up-
dated so as to reflect the fixed policies of previous resources.

Algorithm 1 SolveSlave(yb, G)

1: Initialize πj

2: for all r ∈ R do
3: µr ← ComputeUpdatedReward(πj , yb,Gr)
4: πr ← SolveSingleMDP(µr,Gr)
5: πj ← πj ∪ πr

6: Pj ← ConvertToColumn(πj)
7: return πj ,Pj

In more detail, this algorithm takes the coefficients yb (refer Sec-
tion 4.1) from the master component and G (which consists of a
set of transition graphs Gr – refer Section 4.2) as input and builds
πj iteratively in Lines 2–5. Line 3 computes vector µr , the ad-
ditional reward of reaching each of resource r’s states. Consider
the slave Dec-MDP defined on resources 1, . . . , r (with joint re-
ward function (6)). The additional reward µr(sr) for state sr is
the marginal contribution of r visiting sr to this joint reward, given
the policies of the r − 1 resources computed in previous iterations,
πj = {π1, . . . , πr−1}. Specifically, because of transition indepen-
dence, given {π1, . . . , πr−1}we can compute the probability psr (k)
that k of the first r− 1 resources has visited the same target and time
as sr . Then µr(sr) =

∑r−1
k=0 psr (k)(eff(k+1)−eff(k)), where

we slightly abuse notation and define eff(k) = 1− (1− ξ)k.
Line 4 computes the best individual policy πr for resource r’s

MDP, with rewards µr . We compute πr using value iteration (VI):

V (sr, ar) = µr(sr) +
∑

s′r
Tr(sr, ar, s

′
r)V (s′r)

where V (sr) = maxar V (sr, ar) and πr(sr) =
argmaxar V (sr, ar).

In addition to solving the single MDP for each resource by using
value iteration, we also solved the MDP using soft-max value iter-
ation (SMVI) [19]. SMVI is similar to VI except that the soft-max

function is used instead of max while computing the value function
of a state s. SMVI generates randomized policies – i.e., randomized
pure strategies –, associating probability πr(sr, ar) to each action ar
at each state sr . Formally,

V (sr) = softmaxarV (sr, ar) ≡ log
∑

ar

eV (sr,ar)

πr(sr, ar) =
eV (sr,ar)

eV (sr)

SMVI was first explored for its ability to speed up convergence,
as in [19]. In our experiments SMVI did not provide significant run-
time improvement, however we discovered that the randomized pol-
icy obtained from SMVI provides robustness to uncertainty in our
estimates of transition probabilities, which is a highly useful feature
since this uncertainty often arises in practice. The intuition behind
SMVI providing robustness to uncertainty stems from the fact that
the SMVI algorithm computes a policy that spreads out the proba-
bility of choosing an action at each state, instead of choosing only
one action at each state (VI). In the presence of uncertainty, if the
action that is chosen by VI is no longer the best action, it will still be
chosen with a probability of 1. With soft-max, the probability over
the action to take at each state is distributed over the actions based on
their values, thereby when noise or uncertainty is added, the random-
ized policy will still have some probability of choosing the now best
action (or a close-to-best action). Such probability will be significant
especially when there are many close-to-optimal pure policies.

5 Global Events
Global events correspond to scenarios such as bomb threats or crime,
where a resource must stop patrolling and deal with the unexpected
event. Global unaffected state is a vector over different types of
events that may be updated at each time step τ . Depending on the
type of event, a pre-specified defender resource will be removed from
patrolling and allocated to dealing with the event once it occurs.

Transitions associated with global unaffected state, i.e.,
Tu(su, s

′
u) could potentially be computed based on the threat/risk

levels of various events at the different time steps. The transitions as-
sociated with individual defender resources, i.e., Ti(〈su, si〉, ai, s′i)
are dependent on whether the defender resource is responsible for
handling a global event that has become active in that time step.
If su indicates that a bomb threat is active and i is the qualified
defender resource, then irrespective of the patrolling action, s′i
will correspond to “out of patrolling duty” state, and resource i
will remain in that state for the rest of the patrol. Similarly, if su
indicates a bomb threat and i is not the qualified defender resource,
then resource i would transition depending on action ai and su
with the knowledge that the qualified defender resource is no longer
patrolling. Once this model associated with global events is present,
we employ Algorithm 1 to solve the Dec-MDP. It should be noted
that once a resource i is out of patrolling duty, the policy of other
resources get updated to account for one less resource available for
doing patrolling (in “out of patrolling duty” state).

6 Improving Runtime
As mentioned earlier, without column generation, our model of Dec-
MDPs in security games would be faced with enumerating (NT )R

columns, making enumeration of defender pure strategies impossi-
ble, let alone trying to find a solution. Column generation is thus
critical to ensure that our model runs. However, starting each LP with



its own columns (i.e., cold-start) does not scale well. We build on this
approach with several heuristics for scale-up:

Append: First, we explored reusing the generated defender pure
strategies across the multiple LPs. The intuition is that the defender
strategies generated by an LP might be useful in solving subsequent
LPs, resulting in an overall decrease in the total number of defender
pure strategies generated over all the multiple LPs.

Cutoff: To further improve the runtime, we explored setting a limit
on the number of defender pure strategies generated (i.e., the number
of iterations of column generation that is executed) for each LP.

Ordered: With this limit on the columns generated, some of the
|B| LPs return low-quality solutions, or are even infeasible, due to
not having enough columns. Combined with reusing columns across
LPs, the LPs that are solved earlier will have fewer columns. Since
we only need a high-quality solution for the LP with the best objec-
tive, we would like to solve the most promising LPs last, so that these
LPs will have a larger set of defender pure strategies to use. While
we do not know apriori which LP has the highest value, one heuristic
that turns out to work well in practice is to sort the LPs in increas-
ing order of Uu

a (b), the uncovered payoff of the attacker strategies
(target-time pairs) chosen; i.e., to solve the LPs that correspond to
attack strategies that are less attractive to the attacker first, and LPs
(attack strategies) that are more attractive to the attacker later.

7 Evaluation

The experiments detailed in this section were performed on a quad
core Linux machine with 12 GB of RAM and 2.3 GHz processor
speed. The test results were averaged over 30 game instances, with
each game having random payoffs in the range [-10,10]. Unless oth-
erwise stated, the scenarios are run over 8 targets, 8 time steps and
4 resources, with 5% probability of delay and 5% probability of a
global events, using VI with append + cutoff + ordering. The graphs
of the scenarios are formed by connecting targets together in lines
of length 5, and then randomly adding |T |

2
edges between targets, to

resemble train systems in the real world with complex loops. All key
comparisons where we assert superiority of particular techniques,
e.g., as in Figure 5(b), are statistically significant with p < 0.01.

Figure 2(a) shows the benefit of our model’s ability to handle
teamwork. More specifically, it shows the difference in solution qual-
ity between our model where there is a benefit to having multiple re-
sources covering the same target-time pair, eff(s, b) = 1 − (1 −
ξ)

∑
i Isi=b , and the case where there is no such additional effective-

ness, eff(s, b) = ξ · Ib∈s (i.e., it is ξ as long as at least one resource
covers b). As the number of defender resources increases, the solu-
tion quality for when there is a benefit to having multiple resources
increases at a faster rate than when there is no benefit of multiple
resources visiting the same state (no teamwork).

Figure 2(b) further illustrates the expressiveness of our teamwork
model. It compares the solution quality when we consider global
events versus solving under the assumption of no global events. In
the latter case, the system solves the model under the assumption
that there is no global event, and we compute the defender expected
utility if there is a 5% probability of global events at each time step.

In Figure 3 we compare the runtime of the VI-based slave for
one iteration (no column generation) with other algorithms for Dec-
MDPs such as MPS [6], JESP [12] and DICEPS [9]—this is the only
figure in this section that focuses only on the slave and not on the
master-slave algorithm in full. We show the number of targets along
the x-axis and execution time(seconds) along the y axis. We see that
JESP and DICEPS run out of memory for more than 2 targets, while

MPS runs out of memory for more than 4 targets—thereby suggest-
ing that security games require a new family of fast approximate Dec-
MDP algorithms, such as our VI-based slave, providing a new fertile
ground for further Dec-MDP research.

(a) Teamwork Effectiveness
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Figure 2. Teamwork and Global Event

Figure 4(a) and 4(b), shed light on the run-time and solution qual-
ity tradeoff of the various improvements made to the algorithm as
mentioned in Section 6. The x-axis is the number of targets, and the
y-axis is the runtime in minutes (Figure 4(a)), or solution quality
(Figure 4(b)). Figure 4(a) demonstrates the 10 fold speedup resulting
from append and 30 fold speedup using append, cutoff and ordering.
Figure 4(b) demonstrates that when achieving our maximum speed
improvement, our loss in solution quality is less than 3%.
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Figure 3. Comparison of various
Dec-MDP solvers

Figure 4(c) shows the ef-
fectiveness of append + cut-
off + ordering in scale up.
We show that it is easily pos-
sible to scale up to 35 tar-
gets. This figure also com-
pares VI versus SMVI and
shows that SMVI does not
provide runtime improve-
ment over VI. Figure 4(d)
shows the runtime for scal-
ing up the number of de-
fender resources. The cold
start approach takes over 20
minutes to run past 4 resources while the append approach takes over
20 minutes to run for more than 6 resources. Using cutoff, the algo-
rithm is able to handle over 10 defender resources.

Figure 5(a) shows the solution quality of our algorithms using
SMVI and VI versus the uniform random strategy. The difference in
solution quality between our algorithms (VI and SMVI) and Uniform
Random suggests that the problem at hand is not trivial. Figure 5(b)
shows the difference in solution quality of soft-max value iteration
(SMVI) versus value iteration (VI) in the presence of uncertainty in
transition probability for zero-sum games. The x-axis is the number
of targets and the y-axis is the solution quality. The uncertainty that
is added corresponds to the probability of the transition uncertainty
being different than the initial assumed value. In this scenario, SMVI
and VI obtain Dec-MDP based pure strategies with the assumption
that the probability of delay of 5%. However, if the probability of
delay was actually 10% while the algorithms assumed a delay of 5%,
we look at how the solution quality is impacted. SMVI leads to less
than 10% degradation but VI leads to more than 30% degradation
due to uncertainty. This shows that without any uncertainty SMVI
performs worse than VI, but with uncertainty in the transition proba-
bility, SMVI gives a higher solution quality than VI. Thus, SMVI is
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Figure 4. Runtime (a, c, d) and solution quality (b)

a more favorable option given uncertainty in transition probability.
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8 Conclusion and Related Work
The key contribution of this paper is opening up a fruitful new area of
research at the intersection of security games and multiagent team-
work. We present a novel game theoretic model that for the first
time utilizes Dec-MDPs in addressing teamwork under uncertainty
for security games. Handling the well-known computational chal-
lenges of Dec-MDPs requires leveraging column generation and fur-
ther heuristics. Additionally, we handle global events and demon-
strate the robustness of using randomized pure strategies.

While there has been significant research in security games in-
cluding defending mobile targets [4], patrolling in extensive-form
infinite-horizon games [2], and simulations and tools for maritime
security [8], there has been limited work on coordination among de-
fender resources [16]. However, these algorithms do not handle both
execution uncertainty and teamwork among defender resources. The
entire issue of planning based on Dec-MDPs in security games is a
novel contribution of this work, not discussed in previous research.

Dec-MDPs are a popular framework for multiagent planning and
coordination under uncertainty, with work ranging from a simplified
model for transition independent Dec-MDPs [3], a toolbox for mul-
tiagent planning solvers [17], the use of heuristic search and con-
straint optimization [6], to multi-robot exploration [10]. A major dif-
ference in this paper is the addition of an adversarial agent that is

able to respond to the joint policy of the Dec-MDP. Partially Observ-
able Stochastic Games [7] can be used to model an adversarial agent
along with cooperative defender agents, however in our domain, the
attacker has a more simple problem that does not require such a gen-
eralized model allowing us to exploit the specialization for speed-up.
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