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Abstract

We investigate online active learning techniques for classification tasks in data stream min-
ing applications. Unlike traditional learning approaches (either batch or online learning)
that often require to request the class label of each incoming instance, online active learning
queries only a subset of informative incoming instances to update the classification model,
which aims to maximize classification performance using minimal human labeling effort
during the entire online stream data mining task. In this paper, we present a new family of
algorithms for online active learning called Passive-Aggressive Active (PAA) learning algo-
rithms by adapting the popular Passive-Aggressive algorithms in an online active learning
setting. Unlike the conventional Perceptron-based approach that employs only the misclas-
sified instances for updating the model, the proposed PAA learning algorithms not only
use the misclassified instances to update the classifier, but also exploit correctly classified
examples with low prediction confidence. We theoretically analyse the mistake bounds
of the proposed algorithms and conduct extensive experiments to examine their empirical
performance, in which encouraging results show clear advantages of our algorithms over
the baselines.

Keywords: Online Learning, Data Stream, Active Learning, Passive-Aggressive

1. Introduction

Both online learning and active learning have been extensively studied in machine learn-
ing and data mining (Freund et al., 1997; McCallum and Nigam, 1998; Balcan et al., 2006;
Cesa-Bianchi and Lugosi, 2006; Crammer et al., 2006; Balcan et al., 2007; Castro and Nowak,
2007; Zhao and Hoi, 2010; Hoi et al., 2014). In a traditional online learning task (e.g., on-
line classification), a learner is trained in a sequential manner to predict the class labels
of a sequence of instances as accurately as possible. Specifically, at each round of a typi-
cal online learning task, the learner first receives an incoming instance, and then makes a
prediction of its class label. After that, it is assumed to always receive the true class label
from an oracle, which can be used to measure the loss incurred by the learner’s prediction
so as to update the learner if necessary. In many real-world applications especially for min-
ing real-life data streams (e.g., spam email filtering), acquiring the true class labels from
an oracle is often time-consuming and costly due to the unavoidable interaction between
the learner and the environment. This has motivated the recent study of Online Active
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Learning (Cesa-Bianchi et al., 2006; Dasgupta et al., 2009; Cesa-Bianchi and Lugosi, 2006;
Sculley, 2007), which explores active learning strategy in an online learning setting to avoid
requiring to request class labels of every incoming instance.

A pioneering and state-of-the-art technique to online active learning is known as La-
bel Efficient Perceptron (Cesa-Bianchi and Lugosi, 2006) or Selective Sampling Percep-
tron (Cesa-Bianchi et al., 2006; Cavallanti et al., 2008), or called Perceptron-based Ac-
tive Learning (Dasgupta et al., 2009). In particular, consider an online classification task,
when a learner receives an incoming instance xt, the learner first makes a prediction
ŷt = sign(f(xt)) where f(xt) = wt · xt, and then uses a stochastic approach to decide
whether it should query the class label or not, where the query probability is inversely pro-
portional to the prediction confidence (e.g., the magnitude of the margin, i.e., ρ/(ρ+|f(xt)|)
where ρ is a positive smoothing constant). If no class label is queried, the learner makes
no update; otherwise, it acquires the true label yt from the environment and follows the
regular Perceptron algorithm to make update (i.e., the learner will update the model if and
only if the instance is misclassified according to the true class label).

In the above Perceptron-based active learning, if an incoming instance is predicted with
low confidence by the current model, the learner very likely would query its class label.
However, if the instance is correctly classified according to the acquired true label, this
training instance will be discarded and never be used to update the learner according to
the principle of the Perceptron algorithm. Clearly this is a critical limitation of wasting the
effort of requesting class labels. To overcome this limitation, we present a new scheme for
online active learning, i.e., the Passive-Aggressive Active (PAA) learning, which explores
the principle of passive-aggressive learning (Crammer et al., 2006). It not only decides
when the learner should make a query appropriately, but also attempts to fully exploit the
potential of every queried instance for updating the classification model.

The rest of this paper is organized as follows. Section 2 reviews the background of
passive-aggressive online learning. Section 3 presents the proposed PAA algorithms. Section
4 analyzes the mistake bounds of the proposed algorithms. Section 5 discusses our empirical
study and Section 6 concludes this work.

2. Background Review

Online learning has been extensively studied in literature (Gaber et al., 2005; Hahsler and Dunham,
2011; Wang et al., 2012c). Specifically, online learning mainly aims to online optimize some
performance measures, for example, accuracy (Zhao et al., 2011a; Wang et al., 2012b), bal-
anced accuracy (Wang et al., 2014), AUC (Zhao et al., 2011b), etc. In this paper, our goal
is to explore online learning techniques for optimizing the accuracy of binary classification
tasks. We first introduce the problem setting of a regular online binary classification task.
Let {(xt, yt)| t = 1, . . . , T} be a sequence of input patterns for online learning, where each
instance xt ∈ R

n received at the tth trial is a vector of n dimension and yt ∈ {−1,+1}
is its true class label. The goal of online binary classification is to learn a linear classifier
f(xt) = sign(wt · xt) where wt ∈ R

n is the weight vector at the tth round. For the Per-
ceptron algorithm (Rosenblatt, 1958; Freund and Schapire, 1999), a learner first receives
an incoming instance xt at tth round; it then makes a prediction ŷt = sign(f(xt)); finally
the true class label yt is disclosed. If the prediction is correct, i.e., ŷt = yt, no update
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is applied to the learner; otherwise, Perceptron updates the model with the misclassified
instance (xt, yt), i.e., wt+1 ← wt + ytxt.

Unlike Perceptron that updates the model only when a misclassification occurs, the
Passive-Aggressive (PA) algorithms (Crammer et al., 2006) make update whenever the loss
function ℓt(wt; (xt, yt)) is nonzero, e.g., one can choose the hinge loss ℓt(wt) = max(0, 1 −
ytwt · xt). In particular, PA algorithms update the model wt+1 by solving three variants of
the optimization task:

argmin
w

F (w) =



























1

2
‖w −wt‖

2 s.t. ℓt(w; (xt, yt)) = 0, (PA)

1

2
‖w −wt‖

2 + Cℓt(w; (xt, yt)), (PA-I)

1

2
‖w −wt‖

2 + Cℓt(w; (xt, yt))
2, (PA-II)

where C > 0 is a penalty cost parameter. The closed-form solutions can be derived for the
above optimizations, i.e., wt+1 ← wt+τtytxt, where the stepsize τt is computed respectively
as follows:

τt =











ℓt(wt; (xt, yt))/‖xt‖
2, (PA)

min(C, ℓt(wt; (xt, yt))/‖xt‖
2), (PA-I)

ℓt(wt; (xt, yt))/(‖xt‖
2 + 1/(2C)). (PA-II)

(1)

Thus, the PA algorithms are more aggressive in updating the model than Perceptron.

3. Passive-Aggressive Active Learning

In this section, we aim to develop new algorithms for online active learning. Unlike conven-
tional online learning (Rosenblatt, 1958) and pool-based active learning (McCallum and Nigam,
1998; Tong and Koller, 2002), the key challenges to an online active learning task are two-
fold: (i) when a learner should query the class label of an incoming instance, and (ii) when
the class label is queried and disclosed, how to exploit the labeled instance to update the
learner in an effective way. We propose Passive-Aggressive Active (PAA) learning to tackle
the above challenges. In particular, the PAA algorithms adopt a simple yet effective ran-
domized rule to decide whether the label of an incoming instance should be queried, and
employ state-of-the-art PA algorithms to exploit the labeled instance for updating the online
learner.

In particular, for an incoming instance xt at the tth round, the PAA algorithm first
computes its prediction margin, i.e., pt = wt ·xt, by the current classifier, and then decides
if the class label should be queried according to a Bernoulli random variable Zt ∈ {0, 1}
with probability equal to ρ/(ρ + |pt|), where ρ ≥ 1 is a smoothing parameter. Such an
approach is similar to the idea of margin-based active learning (Tong and Koller, 2002;
Balcan et al., 2007) and has been adopted in other previous work (Cesa-Bianchi et al., 2006;
Dasgupta et al., 2009). If the outcome Zt = 0, the class label will not be queried and
the learner is not updated; otherwise, the class label is queried and the outcome yt is
disclosed. Whenever the class label of an incoming instance is queried, the PAA algorithm
will try the best effort to exploit the potential of this example for updating the learner.
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Specifically, it adopts the PA algorithms to update the linear classification model wt+1

according to Eqn. (1). Clearly this is able to overcome the limitation of the Perceptron-
based active learning algorithm that only updates the misclassified instances and wastes a
large amount of correctly classified instances with low prediction confidence which can be
potentially beneficial to improving the classifier. Finally, we summarize the detailed steps
of the proposed PAA algorithms in Algorithm 1.

Algorithm 1 Passive-Aggressive Active Learning Algorithms (PAA)

INPUT : penalty parameter C > 0 and smoothing parameter ρ ≥ 1.
INITIALIZATION : w1 = (0, . . . , 0)⊤.
for t = 1, . . . , T do

observe: xt ∈ R
n, set pt = wt · xt, and predict ŷt = sign(pt);

draw a Bernoulli random variable Zt ∈ {0, 1} of parameter ρ/(ρ+ |pt|);
if Zt = 1 then

query label yt ∈ {−1,+1}, and suffer loss ℓt(wt) = max(0, 1 − ytwt · xt);
compute τt according to equation (1), and wt+1 = wt + τtytxt;

else

wt+1 = wt;
end if

end for

4. Analysis of Mistake Bounds

In this section, we aim to theoretically analyze the mistake bounds of the proposed PAA
algorithms. Before presenting the mistake bounds, we begin by presenting a technical lemma
which would facilitate the proofs in this section. With this lemma, we could then derive
the loss and mistake bounds for the three variants of PAA algorithm. For convenience,
we introduce the following notation: M = {t|t ∈ [T ], ŷt 6= yt}, and L = {t|t ∈ [T ], ŷt =
yt, ℓt(wt; (xt, yt)) > 0}, where [T ] denotes {1, 2, . . . , T}.

Lemma 1 Let (x1, y1), . . . , (xT , yT ) be a sequence of input instances, where xt ∈ R
n and

yt ∈ {−1,+1} for all t. Let τt be the stepsize parameter for either of the three PAA variants
as given in Eqn. (1). Then, the following bound holds for any w ∈ R

n

T
∑

t=1

Zt2τt
[

Lt(α− |pt|) +Mt(α+ |pt|)
]

≤ α2‖w‖2 +

T
∑

t=1

τ2t ‖xt‖
2 +

T
∑

t=1

2ατtℓt(w),

where Mt = I(t∈M), Lt = I(t∈L), I is an indicator function, and α > 0.

Proof First of all, we need to prove the following inequality holds for every t

(LtZt2τt(α− |pt|) +MtZt2τt(α+ |pt|)

≤ (‖wt − αw‖2 − ‖wt+1 − αw‖2) + τ2t ‖xt‖
2 + 2ατtℓt(w).

To prove that, we enumerate all the possible cases for discussions as follows:
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Case 1: “Zt = 0” It is clear that the inequality holds with equality since wt = wt+1 and
τt = 0.

Case 2: “Zt = 1 and Mt = 0” The label is requested, but no mistake occurs.

Sub-case 2.1: “Lt = 0” Since ℓt(wt) = 0, τt = 0 and wt+1 = wt. Thus, the inequality holds.

Sub-case 2.2: “Lt = 1” Since ℓt(wt) > 0, we have

‖wt − αw‖2 − ‖wt+1 − αw‖2 = −2τtytwt · xt + 2τtαytw · xt − τ2t ‖xt‖
2.

Since ℓt(w) = max(0, 1 − ytw · xt) ≥ 1− ytw · xt, we have

‖wt − αw‖2 − ‖wt+1 − αw‖2 + τ2t ‖xt‖
2 + 2ατtℓt(w) ≥ 2τt(α− ytwt · xt).

Also Mt = 0 and ℓt(wt) > 0 implies 0 ≤ ytwt · xt < 1. Thus, we have the inequality

|wt − αw‖2 − ‖wt+1 − αw‖2 + τ2t ‖xt‖
2 + 2ατtℓt(w) ≥ 2τt(α− |pt|).

Case 3: “Zt = 1 and Mt = 1” It means the label is requested and a mistake occurs, but
Lt = 0. Similarly, we have

‖wt − αw‖2 − ‖wt+1 − αw‖2 + τ2t ‖xt‖
2 + 2ατtℓt(w) ≥ 2τt(α− ytwt · xt).

Since Mt = 1 implies ytwt · xt ≤ 0 and −ytwt · xt = |pt|, we have

‖wt − αw‖2−‖wt+1 − αw‖2+τ2t ‖xt‖
2+2ατtℓt(w) ≥ 2τt(α+ |pt|).

Combining the above cases for all t = 1, . . . , T , we have

T
∑

t=1

(LtZt2τt(α− |pt|) +MtZt2τt(α+ |pt|)

≤

T
∑

t=1

(‖wt − αw‖2− ‖wt+1 − αw‖2) + τ2t ‖xt‖
2+ 2ατtℓt(w)

≤ α2‖w‖2 +
T
∑

t=1

τ2t ‖xt‖
2 +

T
∑

t=1

2ατtℓt(w) .

Based on Lemma 1, we first derive the expected mistake bound for the PAA algorithm in
the separable case. We assume there exists some w such that yt(w · xt) ≥ 1, ∀t ∈ [T ].

Theorem 1 Let (x1, y1), . . . , (xT , yT ) be a sequence of input instances, where xt ∈ R
n and

yt ∈ {−1,+1} and ‖xt‖ ≤ R for all t. Assume that there exists a vector w such that
ℓt(w) = 0 for all t. Then the expected number of mistakes made by the PAA algorithm on
this sequence of examples is bounded by

E[

T
∑

t=1

Mt] ≤ E[

T
∑

t=1

Mtℓt(wt))] ≤
R2

4
(ρ+

1

ρ
+ 2)‖w‖2.
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By setting ρ = 1, we can obtain the best upper bound as follows:

E[
T
∑

t=1

Mt] ≤ E[
T
∑

t=1

Mtℓt(wt))] ≤ R2‖w‖2.

Proof Since ℓt(w) = 0, ∀t ∈ [T ], according to Lemma 1, we have

T
∑

t=1

Zt2τt
[

Lt(α−|pt|) +Mt(α+|pt|)
]

≤α2‖w‖2 +

T
∑

t=1

τ2t ‖xt‖
2.

Further, the above inequality can be reformulated as:

α2‖w‖2 ≥

T
∑

t=1

Zt2τt
[

Lt(α− |pt|) +Mt(α+ |pt|)
]

−

T
∑

t=1

τ2t ‖xt‖
2

=
T
∑

t=1

Zt2τt
[

Lt(α− |pt|−
τt
2
‖xt‖

2)+Mt(α+ |pt|−
τt
2
‖xt‖

2)
]

=

T
∑

t=1

Zt2τt
[

Lt(α− |pt| −
ℓt(wt)

2
) +Mt(α+ |pt| −

ℓt(wt)

2
)
]

=

T
∑

t=1

Zt2τt
[

Lt(α−|pt|−
1− ytpt

2
)+Mt(α+|pt|−

1− ytpt
2

)
]

=
T
∑

t=1

Zt2τt
[

Lt(α−|pt| −
1− |pt|

2
) +Mt(α+|pt| −

1 + |pt|

2
)
]

=

T
∑

t=1

LtZt2τt(α−
1 + |pt|

2
) +

T
∑

t=1

MtZt2τt(α−
1− |pt|

2
).

Plugging α = ρ+1
2 , ρ ≥ 1 into the above inequality results in

(
1 + ρ

2
)2‖w‖2 ≥

T
∑

t=1

MtZtτt(ρ+ |pt|),

since when Lt = 1, |pt| ∈ [0, 1), (α− 1+|pt|
2 ) = ρ−|pt|

2 > 0, and (α− 1−|pt|
2 ) = ρ+|pt|

2 .
In addition, combining the fact τt = ℓt(wt)/‖xt‖

2 ≥ ℓt(wt)/R
2 with the above inequality

concludes:

(
1 + ρ

2
)2‖w‖2 ≥

1

R2

T
∑

t=1

MtZtℓt(wt)(ρ+ |pt|).

Taking expectation with the above inequality results in

E[
1

R2

T
∑

t=1

Mtℓt(wt)Zt(ρ+ |pt|)] = E[
1

R2

T
∑

t=1

Mtℓt(wt)(ρ+ |pt|)EZt]

=
1

R2
E[ρ

T
∑

t=1

Mtℓt(wt)] ≤ (
1 + ρ

2
)2‖w‖2.
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The above mistake bound indicates that the expected number of mistakes is proportional to
the upper bound of the instances norm R and inversely proportional to the margin 1/‖w‖2,
which is consistent with existing research (Crammer et al., 2006). One disadvantage of the
above theorem is the linear separable assumption, since real world datasets are usually not
separable. To solve this problem, we present the expected mistake bound for the PAA-I
algorithm, which is suitable for the non-separable problem.

Theorem 2 Let (x1, y1), . . . , (xT , yT ) be a sequence of examples where xt ∈ R
n and yt ∈

{−1,+1} and ‖xt‖ ≤ R for all t. Then, for any vector w ∈ R
n , the expected number of

prediction mistakes made by PAA-I on this sequence of examples is bounded from above by

E[

T
∑

t=1

Mt] ≤ β

{

(
ρ+ 1

2
)2‖w‖2 + (ρ+ 1)C

T
∑

t=1

ℓt(w)

}

,

where β = 1
ρ
max{ 1

C
, R2} and C is the aggressiveness parameter for PAA-I. Setting ρ = 1

leads to the following bound

E[
T
∑

t=1

Mt] ≤ max{
1

C
,R2}

{

‖w‖2 + 2C
T
∑

t=1

ℓt(w)

}

.

Setting ρ =

√

1 +
4C

∑
T

t=1
ℓt(w)

‖w‖2
leads to the following bound

E[
T
∑

t=1

Mt] ≤ max{
1

C
,R2}







1

2
‖w‖2 + C

T
∑

t=1

ℓt(w) +
1

2
‖w‖

√

√

√

√‖w‖2 + 4C
T
∑

t=1

ℓt(w)







.

Proof According to Lemma 1, we have

α2‖w‖2 +

T
∑

t=1

2ατtℓt(w) ≥

T
∑

t=1

Zt2τt
[

Lt(α− |pt|) +Mt(α+ |pt|)
]

−

T
∑

t=1

τ2t ‖xt‖
2

=
T
∑

t=1

Zt2τt
[

Lt(α− |pt|−
τt
2
‖xt‖

2)+Mt(α+ |pt|−
τt
2
‖xt‖

2)
]

≥

T
∑

t=1

Zt2τt
[

Lt(α− |pt| −
ℓt(wt)

2
) +Mt(α+ |pt| −

ℓt(wt)

2
)
]

=

T
∑

t=1

LtZt2τt(α−
1 + |pt|

2
) +

T
∑

t=1

MtZt2τt(α−
1− |pt|

2
).

Similar with Theorem 1, plugging α = ρ+1
2 , ρ ≥ 1 into the above inequality will result

in

(
ρ+ 1

2
)2‖w‖2 +

T
∑

t=1

(ρ+ 1)τtℓt(w) ≥

T
∑

t=1

MtZtτt(ρ+ |pt|).
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Since τt ≥ min{C, 1
R2 }, the above inequality implies:

(
ρ+ 1

2
)2‖w‖2+

T
∑

t=1

(ρ+1)τtℓt(w)≥min{C,
1

R2
}

T
∑

t=1

MtZt(ρ+|pt|).

Taking expectation with the above equality and re-arranging the result conclude the theo-
rem.

This theorem shows that the number of expected mistakes is bounded by a weighted
sum of the model complexity ‖w‖2 and the cumulative loss

∑T
t=1 ℓt(w) suffered by it.

Finally, we present the mistake bound for the PAA-II algorithm in the following theorem.

Theorem 3 Let (x1, y1), . . . , (xT , yT ) be a sequence of examples where xt ∈ R
n and yt ∈

{−1,+1} and ‖xt‖ ≤ R for all t. Then, for any vector w ∈ R
n , the expected number of

prediction mistakes made by PAA-II on this sequence of examples is bounded from above by,

E[

T
∑

t=1

Mt] ≤ γ
1

ρ
{(
ρ+ 1

2
)2‖w‖2 + 2C(

ρ+ 1

2
)2

T
∑

t=1

ℓt(w)2},

where γ = {R2 + 1
2C } and C is the aggressiveness parameter for PAA-II. By setting ρ = 1,

we can further have

E[
T
∑

t=1

Mt] ≤ {R
2 +

1

2C
}{(‖w‖2 + 2C

T
∑

t=1

ℓt(w)2}.

Proof Define O = α
2‖w‖2 +

∑
T

t=1
τ
2

t ‖xt‖2 +
∑

T

t=1
2ατtℓt(w), P =

∑
T

t=1
α( τt√

2Cα
−

√
2Cαℓt(w))2 and

Q = α
2‖w‖2+∑

T

t=1
τ
2

t (‖xt‖2+ 1

2C
)+

∑
T

t=1
2Cα

2
ℓt(w)2, then it is easy to verify that O ≤ O+P = Q.

Combing O ≤ Q with Lemma 1, we get

T
∑

t=1

(LtZt2τt(α− |pt|) +MtZt2τt(α+ |pt|) ≤ Q.

Furthermore, the above formulation can be reformulated as:

α2‖w‖2 +

T
∑

t=1

2Cα2ℓt(w)2 ≥

T
∑

t=1

Zt2τt

[

Lt(α− |pt|) +Mt(α+ |pt|)
]

− τ2t (‖xt‖
2 +

1

2C
)

=
T
∑

t=1

LtZt2τt(α−
1 + |pt|

2
) +

T
∑

t=1

MtZt2τt(α−
1− |pt|

2
)

Similar with Theorem 1, plugging α = ρ+1
2 , ρ ≥ 1 into the above inequality results in

(
ρ+ 1

2
)2‖w‖2 +

T
∑

t=1

2C(
ρ+ 1

2
)2ℓt(w)2 >

T
∑

t=1

MtZtτt(ρ+ |pt|).
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Taking expectation with the above inequality and using τt ≥ 1/γ, will conclude the theorem.

This bound is quite similar with the one for Theorem 2.
Remark. As proven in previous work (Cesa-Bianchi et al., 2006), the expected mistake

bounds for active learning perceptron, which in our notation, could be expressed as follows:

E[

T
∑

t=1

Mt] ≤
(2ρ+R2)2

8ρ
‖w‖2 + (1 +

R2

2ρ
)

T
∑

t=1

ℓt(w).

By setting ρ = 1, they further have

E[

T
∑

t=1

Mt] ≤
(2 +R2)2

8
‖w‖2 + (1 +

R2

2
)

T
∑

t=1

ℓt(w).

We could find that generally speaking, the bounds are similar and it depends on the pa-
rameters to determine which is better. This is similar to the comparison between the
PA bound (Cesa-Bianchi and Lugosi, 2006; Crammer et al., 2006) and Perceptron bound
(Freund and Schapire, 1999). However, the bound for Percetron Based Active learning has
a R4‖w‖2 order term, which may make it inferior to ours.

One problem in the above theorem, is that the value of ρ must be larger than 1, which
may cause many requests, so we propose the following theorem, which can solve this problem

Theorem 4 Let (x1, y1), . . . , (xT , yT ) be a sequence of examples where xt ∈ R
n and yt ∈

{−1,+1} and ‖xt‖ ≤ R for all t. Assume that there exists a vector w such that ℓt(w) = 0
for all t. For the PAA algorithm, if change the parameter for the Bernoulli distribution to
ρ/(ρ+1+ |pt|) and ρ ≥ 0, then its expected number of prediction mistakes on this sequence
of examples is bounded by,

E[

T
∑

t=1

Mt)] ≤ E[

T
∑

t=1

Mtℓt(wt)] ≤ R2(
ρ

4
+

1

ρ
+ 1)‖w‖2.

When setting ρ = 2, we get the best upper bound

E[

T
∑

t=1

Mt] ≤ E[

T
∑

t=1

Mtℓt(wt))] ≤ 2R2‖w‖2.

Proof According to Lemma 1,

α2‖w‖2 +
T
∑

t=1

2ατtℓt(w) ≥
T
∑

t=1

Zt2τt
[

Lt(α− |pt|) +Mt(α+ |pt|)
]

−
T
∑

t=1

τ2t ‖xt‖
2

=

T
∑

t=1

Zt2τt
[

Lt(α−
1 + |pt|

2
) +Mt(α−

1− |pt|

2
)
]

.
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Plugging α = ρ
2 + 1, ρ ≥ 0 into the above inequality results in

(
ρ

2
+ 1)2‖w‖2 >

T
∑

t=1

MtZtτt(ρ+ 1 + |pt|),

since, when Lt = 1, |pt| ∈ [0, 1), (α − 1+|pt|
2 ) = ρ+1−|pt|

2 > 0, and (α − 1−|pt|
2 ) = ρ+1+|pt|

2 .
Taking expectation with the above inequality and using τt ≥ ℓt(wt)/R

2 will conclude the
theorem.

5. Experimental Results

In this section, we evaluate the empirical performance of the proposed Passive Aggressive
Active Learning (PAA) algorithms for online active learning tasks.

5.1. Compared Algorithms and Experimental Testbed

We compare the proposed PAA algorithms with the Perceptron-based Active learning, and
their random variants, which are listed as follows:

• “RPE”: the Random Perceptron algorithm (Cesa-Bianchi and Lugosi, 2006);

• “RPA”: the Random Passive-Aggressive algorithms, including RPA, RPA-I, RPA-II,
which will uniformly randomly query labels;

• “PEA”: the Perceptron-based Active learning algorithm (Cesa-Bianchi et al., 2006);

• “PAA”: the Passive-Aggressive Active learning algorithms, including PAA, PAA-I,
PAA-II.

To examine the performance, we conduct extensive experiments on a variety of bench-
mark datasets from web machine learning repositories. Table 1 shows the details of twelve
binary-class datasets used in our experiments. All of these datasets can be downloaded
from LIBSVM website 1 and UCI machine learning repository 2. These datasets are chosen
fairly randomly in order to cover various sizes of datasets.

All the compared algorithms learn a linear classifier for the binary classification tasks.
The penalty parameter C is searched from 2[−5:5] through cross validation for all the al-
gorithms and datasets. The smoothing parameter ρ is set as 2[−10:10] in order to examine
varied sampling situations. All the experiments were conducted over 20 runs of differ-
ent random permutations for each dataset. All the results were reported by averaging
over these 20 runs. For performance metrics, we select F-measure, which is defined as
F -measure = 2 Precision∗Recall

P recision+Recall
.

1. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
2. http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 1: Summary of datasets in the experiments.
Dataset #Instances #Features

a8a 32561 123
codrna 271617 8
german 1000 24
gisette 7000 5000
ijcnn1 141691 22
magic04 19020 10
mushrooms 8124 112
spambase 4601 56
splice 3175 60
svmguide1 7089 4
svmguie3 1243 21
w8a 64700 300

5.2. Performance Evaluation

Next we evaluate the performance of online active learning tasks. Figure 1 summarizes the
average performance of the eight different algorithms for online active learning. Several
observations can be drawn from the results in Figure 1.

First of all, we observe that all the active learning algorithms outperform their corre-
sponding random version in terms of F-measure results, which validates the efficacy and
advantage of the active learning strategies.

Second, we found that the two soft-margin PAA algorithms (i.e., PAA-I and PAA-II)
achieve similar F-measure performance on all the datasets, while the hard-margin PAA
usually performs slightly worse, which may be caused by overfitting on noisy training data,
since PAA conducts a more aggressive update and is thus more sensitive to noise.

Third, we found that under the same fraction of queried labels, the two soft PAA
algorithms always achieve significantly higher F-measure than those of the PEA algorithm,
while PAA is usually comparable with PEA. This promising result indicates that our PAA
strategy can effectively exploit those requested labeled data, especially those instances that
are correctly classified but with low confidence.

Fourth, we observe that the F-measure usually increases as the fraction of queried labels
increases at the beginning, but saturates quickly after the fraction of queried labels exceeds
some value. This result indicates the proposed online active learning strategy can effectively
explore those most informative instances for updating the classifiers in a rather effective and
efficient way.

Finally, it is interesting to see that on some datasets (e.g., ijcnn1, magic04, svmguide1,
etc.), the F-measures achieved by PAA and PEA could decrease when increasing the fraction
of queried labels. This seems a little bit surprising as we usually expect the more the labeled
data queried, the better the predictive performance. We suspect this was mainly caused
due to the overfitting issue on the noisy training data because the other two soft-margin
algorithms (PAA-I and PAA-II) tend to be able to avoid such situations.

276



Online Passive Aggressive Active Learning and Its Applications

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

(a) german (b) mushrooms (c) spambase

0 0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

0 0.2 0.4 0.6 0.8 1
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

Fraction of queried labels
F

−
m

ea
su

re
 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

(d) splice (e) svmguide3 (f) w8a

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

0 0.2 0.4 0.6 0.8 1
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

0 0.2 0.4 0.6 0.8 1
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

(g) ijcnn1 (h) magic04 (i) svmguide1

0 0.2 0.4 0.6 0.8 1

0.4

0.45

0.5

0.55

0.6

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

0 0.2 0.4 0.6 0.8 1
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

0 0.2 0.4 0.6 0.8 1
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Fraction of queried labels

F
−

m
ea

su
re

 

 

RPE
RPA
RPA−I
RPA−II
PEA
PAA
PAA−I
PAA−II

(g) a8a (h) codrna (i) gisette

Figure 1: Evaluation of F-measure against the fraction of queried labels on all the datasets.
The plotted curves are averaged over 20 random permutations.
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Figure 2: Evaluation of F-measure against the fraction of queried labels for text classifica-
tion applications.

Besides, Table 2 shows detailed F-measure and running time cost of the eight different
algorithms for online active learning on several randomly sampled data sets of our testbed.
We adjust ρ to make the percentage of queried instances near 10% and 20% and compare
the all the algorithms on a fair platform. It is easy to see that PAA algorithms always
outperform previous perceptron based algorithms and randomized query approaches, fur-
thermore, the running time cost of PAA and PEA algorithms are similar, as well as in the
same order of magnitude with randomized query algorithms, which validates the efficiency
of the proposed methods. Among all the algorithms, PAA-II performs best in most cases,
which demonstrates the efficacy of soft-margin learning.

5.3. Application to Text Stream Classification

In this section, we apply our proposed Passive-Aggressive Active Learning algorithms to
text stream classification. Our experimental testbed consists of: (i) a subset of the Reuters
Corpus Volume 1 (RCV1) 3 which contains 4,086 documents with 29,992 distinct words;
(ii) 20 Newsgroups datasets 4, we extract the “comp” versus “rec” and “rec” versus “sci”
to form two binary classification tasks, which have a total of 8,870 and 8,928 documents,
respectively. Each document is represented by a feature vector of 26,214 distinct words.
The text classification results are shown in Figure 2. We could see that Passive Aggressive
based algorithms usually outperform the Perceptron based algorithms, which empirically
shows the advantages of large margin approaches for active learning. Among all methods,
PAA algorithms consistently perform better than random querying methods and percep-
tron based active learning methods, which further validates the efficacy of our proposed
approaches.

5.4. Application to Web Data Classification

To further evaluate the PAA algorithms, we apply them to web data classification tasks,
which are (i) URL classification (Ma et al., 2009) which contains 1,782,206 URLs with
3,231,961 features; (ii) webspam classification (Wang et al., 2012a), which have a total of
350,000 instance with 254 features, respectively. These two datasets can be downloaded

3. http://thedatahub.org/dataset/rcv1
4. http://qwone.com/~jason/20Newsgroups/
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Table 2: Evaluation of the PAA algorithms against other baselines on three datasets.

Data-
set

Algo-
rithm

Request 10% labels Request 20% labels
F-measure Time (s) Query(%) F-measure Time (s) Query (%)

ger-
man

RPE 0.459 ±0.019 0.010 10.450 ±1.202 0.492 ±0.021 0.011 19.600 ±0.283

RPA 0.477 ±0.017 0.012 9.550 ±0.071 0.512 ±0.006 0.013 20.450 ±0.354

RPA-I 0.498 ±0.025 0.012 11.100 ±0.849 0.550 ±0.000 0.013 21.150 ±1.626

RPA-II 0.514 ±0.006 0.012 9.300 ±0.849 0.568 ±0.010 0.013 21.700 ±0.424

PEA 0.523 ±0.013 0.062 11.450 ±0.071 0.512 ±0.020 0.062 22.050 ±0.354

PAA 0.546 ±0.019 0.063 10.200 ±0.990 0.532 ±0.022 0.064 20.800 ±2.263

PAA-I 0.558 ±0.001 0.063 9.750 ±0.212 0.569 ±0.001 0.065 19.400 ±1.556

PAA-II 0.570 ±0.000 0.063 10.700 ±0.283 0.575 ±0.023 0.065 19.800 ±0.424

mush-
rooms

RPE 0.971 ±0.004 0.096 10.210 ±0.287 0.983 ±0.001 0.099 19.861 ±0.061

RPA 0.984 ±0.000 0.099 9.866 ±0.339 0.993 ±0.001 0.102 20.347 ±0.035

RPA-I 0.987 ±0.001 0.099 9.927 ±0.566 0.992 ±0.001 0.103 19.941 ±0.087

RPA-II 0.989 ±0.000 0.099 9.780 ±0.148 0.993 ±0.000 0.103 20.218 ±0.305

PEA 0.991 ±0.000 0.513 10.014 ±0.601 0.993 ±0.000 0.516 19.153 ±2.420

PAA 0.997 ±0.000 0.515 9.564 ±0.052 0.997 ±0.000 0.520 19.879 ±0.679

PAA-I 0.997 ±0.001 0.516 9.521 ±0.827 0.998 ±0.001 0.524 19.485 ±0.209

PAA-II 0.997 ±0.000 0.515 9.847 ±0.244 0.997 ±0.001 0.520 19.116 ±0.609

spam-
base

RPE 0.801 ±0.011 0.049 10.411 ±0.676 0.826 ±0.008 0.049 18.952 ±0.123

RPA 0.830 ±0.023 0.052 10.509 ±0.108 0.846 ±0.010 0.054 20.104 ±0.092

RPA-I 0.854 ±0.001 0.053 9.324 ±0.031 0.870 ±0.007 0.056 20.170 ±0.584

RPA-II 0.861 ±0.002 0.055 10.367 ±0.277 0.881 ±0.008 0.059 19.996 ±0.553

PEA 0.850 ±0.011 0.284 9.965 ±0.200 0.860 ±0.006 0.287 20.680 ±0.323

PAA 0.871 ±0.002 0.288 10.204 ±0.138 0.864 ±0.004 0.292 18.583 ±0.645

PAA-I 0.879 ±0.006 0.290 10.802 ±1.260 0.888 ±0.000 0.295 19.170 ±0.676

PAA-II 0.882 ±0.010 0.290 10.335 ±0.353 0.891 ±0.001 0.297 20.941 ±0.046
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Figure 3: Evaluation of F-measure against the fraction of queried labels for web applica-
tions.
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from the LIBSVM website 5. Similar phenomenon could be observed from the results, as
shown in Figure 3.

6. Conclusion

This paper investigated online active learning techniques for mining data stream. In par-
ticular, we presented a new family of Passive-Aggressive Active (PAA) learning algorithms
for online active learning, which overcomes the drawback of the existing perceptron-based
active learning algorithm that could waste a lot of queried labeled instances that are cor-
rectly classified but with low prediction confidence. We theoretically analyzed the mistake
bounds for the proposed PAA algorithms, which share almost the same mistake bounds
as those regular algorithms when requesting class labels of every instance. Our empirical
study found very encouraging performance by comparing the proposed PAA algorithms
with the state-of-the-art algorithms. For future work, we plan to address the open issues of
online active learning for multi-class classification (Crammer and Singer, 2003) and other
challenging data stream mining tasks with concept drift (Minku and Yao, 2012).
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