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ABSTRACT
With greater prevalence of social media, there is an increas-
ing amount of user-generated data revealing consumer pref-
erences for various products and services. Businesses seek
to harness this wealth of data to improve their marketing
strategies. Bundling, or selling two or more items for one
price is a highly-practiced marketing strategy. In this pa-
per, we address the bundle configuration problem from the
data-driven perspective. Given a set of items in a seller’s in-
ventory, we seek to determine which items should belong to
which bundle so as to maximize the total revenue, by mining
consumer preferences data. We show that this problem is
NP-hard when bundles are allowed to contain more than two
items. Therefore, we describe an optimal solution for bundle
sizes up to two items, and propose two heuristic solutions
for bundles of any larger size. We investigate the effective-
ness and the efficiency of the proposed algorithms through
experimentations on real-life rating-based preferences data.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Applications]: Data Mining

Keywords
bundling; revenue maximization; willingness to pay

1. INTRODUCTION
With the increasing prevalence and richness of social me-

dia, there is a fast-growing wealth of data about consumer
preferences. For instance, a consumer rates an item or writes
an online review for various products and services, be it a
consumer electronic on Amazon, a hotel on TripAdvisor, or
a restaurant on Yelp. There are also rich consumption data
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that reveal the implicit preferences of consumers, such as
the amount of time a user spends listening to various songs,
or watching various videos. Businesses are interested in har-
nessing this wealth of data on consumer preferences to esti-
mate market demand, as well as to learn insights that help
them in catering their offerings closer to consumer wants.

One marketing strategy that businesses frequently engage
in is bundling, or selling two or more items for one price.
This practice is pervasive across many industries. Comcast
and many other cable television companies worldwide sell
subscriptions not only for individual channels, but also for
bundles of channels. Telecommunication providers, such as
AT&T, frequently offer a bundle of services, including ca-
ble, telephone, and Internet subscriptions. Travel packages
commonly bundle airfare, hotel stay, and attractions.

One important issue is how to design bundles based on
consumer demand, so as to achieve a business objective, e.g.,
maximizing profit or revenue. Given N items, how would
a seller determine which items to sell as a bundle, and at
what price? We call this the bundle configuration problem.

The traditional business approach is to rely on preferences
elicited directly from consumers, e.g., through surveys or
market research [25]. This approach does not scale up well
due to both the cardinality M of consumers whose prefer-
ences are to be elicited, and the cardinality N of items to
be bundled. For N items, there could be up to 2N −1 possi-
ble bundles (including “bundles” containing a single item).
Moreover, to obtain a bundle configuration, we further need
to consider various combinations of these possible bundles.

The large scale of data poses significant data management
and computational challenges. To elicit consumer prefer-
ences in a scalable manner, we propose a data-driven per-
spective, by mining the ever available preference data, such
as ratings and reviews on the Internet. To determine the op-
timal bundle configuration in a tractable manner, we seek
efficient algorithms to find the bundle configuration maxi-
mizing a utility function based on consumer preferences.

Utility Maximization. We introduce several terminolo-
gies to help define the objective of bundling. Willingness to
pay is the maximum amount that a consumer is willing to
give up in exchange for an item. We represent consumer u’s
willingness to pay for an item A as wu,A ∈ R+

0 . The unit
can be any measurement of value, such as dollars. In Sec-
tion 3.1, we discuss how willingness to pay can be estimated
from consumer preferences. Table 1 shows an example of
three consumers u1, u2, and u3 and two items A and B. For
instance, u1 is willing to pay $12 for A, whereas u2 and u3

are willing to pay only $8 and $5 respectively.



Consumer Willingness to Pay Components Pure Bundling Mixed Bundling
wu,A wu,B wu,AB pA = $8.00 pB = $11.00 pAB = $15.20 pA = $8.00 pB = $11.00 pAB = $15.20

u1 $12.00 $4.00 $15.20 X X X
u2 $8.00 $2.00 $9.50 X X
u3 $5.00 $11.00 $15.20 X X X
Revenue $27.00 $30.40 $38.20

Table 1: Positive Example of Bundling

For any one item, the seller charges all consumers the same
price. A transaction occurs when the buyer’s willingness to
pay exceeds or equals the price [1]. For Table 1, the price
of A is pA = $8, which results in u1 and u2 purchasing
A, earning the seller a revenue of 2 × $8 = $16. Since u1

values the item higher than the price, u1 obtains a consumer
surplus of $12 − $8 = $4. It follows that u2 does not enjoy
any consumer surplus. Because u3’s willingness to pay of
$5 is below pA, she does not engage in a transaction, which
benefits neither u3 nor the seller. This uncaptured revenue
of $5 is deadweight loss. This example assumes that each
consumer demands up to one unit of each item, and the
seller has an unlimited supply (see Section 3.2).

We approach the problem from the seller’s point of view.
For the seller, both profit and consumer surplus are impor-
tant and necessary to keep the business going. We adopt the
objective of maximizing the following utility function, where
α ∈ [0, 1] is the relative weight between the two factors:

α× profit+ (1− α)× surplus

Without loss of generality, in the following discussion we
assume that α = 1, i.e., maximizing profits while still leaving
some consumers with surplus (from higher willingness to pay
than the price). Our technique will still apply for any α.

To maximize profit, we need to maximize revenue minus
costs. While there are two types of costs (fixed cost and
variable cost), only variable cost is affected by the quantity
sold (which in turn is affected by pricing), i.e.,

profit ∝
∑

each bundle

quantity sold× (price− variable cost)

If each consumer requires one unit (see Section 3.2), the
quantity sold is the number of consumers purchasing the
item. When the variable cost is zero or very small, such as
in certain markets like digital goods (e.g., cable TV, video
on demand) [3], profit maximization is equivalent to revenue
maximization. We will focus on such cases. This is without
loss of generality, because the technique described can still
use profit maximization when the variable costs are known.

While we frame the discussion of “utility” in monetary
terms, the only assumption is that utility is additive. In
some scenarios, e.g., data marketplaces, the objective may
be non-monetary. An example of data marketplace is where
the “seller” is a Data as a Service (DaaS) provider who pro-
vides content to consumers. Bundling corresponds to group-
ing correlated data and content (such as selling a hotel list
and a review database), or data sets and related analysis re-
ports, etc. Non-monetary utility may be “user satisfaction”,
measured by the aggregate preference for a group of items.

Bundling Configuration. Suppose the seller is deal-
ing with an inventory of N items. One avenue towards a
higher revenue is through bundling. There are three main
bundling strategies [1], which we will illustrate using the
example willingness to pay shown in Table 1.

• Components is when the seller sells only the individ-
ual items. Revenue maximization leads to the optimal
prices pA = $8 and pB = $11, which result in $16 of
revenue from A (earned from u1 and u2) and $11 of
revenue from B (earned from u3), for a total of $27.

• Pure bundling is when the seller sells only the bundle.
u1 is willing to pay wu1,AB = $15.20 for the bundle
{A,B}, which is the same as u3. u2 is willing to pay
$9.50. The optimal price is therefore pAB = $15.20,
which nets a revenue of $30.40 (from u1 and u2).

• Mixed bundling is when the seller makes both the bun-
dle and the components available. Consumers choose
to buy any component (A or B), or the bundle {A,B},
or none. The seller thus can capture additional rev-
enue from consumers who is willing to pay only for one
item (e.g., u2), resulting in a total revenue of $38.20.

In this example, both pure and mixed bundling result in
higher revenues than Components. One explanation con-
cerns the variance in willingness to pay between different
users for the same item. This variance results in a flat-
ter distribution of combined willingness to pay for the bun-
dle. However, bundling does not always increase revenue.
Whether it does so requires inspection of the willingness to
pay. The large numbers of items and consumers lead to a
huge number of potential bundles, and a combinatorial ex-
plosion of various combinations of bundles.

Contributions. We make the following contributions.

• We advocate addressing the bundle configuration prob-
lem by mining willingness to pay from the ever-growing
and available user-generated preference data, such as
ratings. This is a major difference from the traditional
business approach where explicit solicitation from con-
sumers is frequently required, which does not work in
large scale.

• We make a major algorithmic contribution towards ad-
dressing the computational complexity of the bundling
problem without pre-fixing the search space. In Sec-
tion 3, we formulate the k-sized bundling problem for
any k. We show that optimal pure bundling config-
uration is NP-hard for bundle sizes greater than 2.
Moreover, we propose two efficient heuristic solutions
in Section 5 that apply for both pure bundling and
mixed bundling.

• To model the uncertainty in adoptions, we design a
stochastic model for adoptions in Section 4, which gen-
eralizes the deterministic step function used in previ-
ous work.

• We comprehensively validate the efficacies of our pro-
posed approach through experiments on user-generated
rating data in Section 6.



2. RELATED WORK
Bundling is of interest in both management sciences (e.g.,

economics and marketing), as well as computer science.
Economics, Marketing, and Management Sciences.

The seminal work in [1] established bundling as an effective
device in a market with diverse consumers’ willingness to
pay. This is followed by a body of subsequent works in-
vestigating bundling strategies as covered by the more re-
cent survey in [28]. A focus of these works is on the study
of factors related to pricing, such as heterogeneity in con-
sumers’ reservation prices, extent of correlation of pricing,
complementarity or substitutability [27], nature of compe-
tition. Other factors include varying prices based on the
bundle size [10].

In comparison to these works, our work has two main
distinctions. For one, these works rely on traditional solici-
tation of consumers’ willingness to pay. Inspired by the wide
availability of customer preference data online, we rely on
mining these preferences from sources such as online ratings.
For another, most of these works focus only on size-2 bun-
dles, and few consider larger bundles, which are computa-
tionally much more challenging. For instance, [19] considers
very small problem sizes (five to ten items). In contrast, we
solve the utility-maximizing bundling problem without pre-
fixing the search space, and directly address the scalability
of considering a much larger number of items.

Computer Science. We also review related work in
computer science on bundling and utility maximization.

In terms of bundling. One category of related work is
concerned with finding a group of items maximizing a cer-
tain objective, or satisfying certain constraints. Product
design deals with finding an optimal configuration of fea-
tures in designing a new product [4]. In [12], the problem
is to design a new item (or k new items) that can attract
the maximum number of the tags specified in a query. High
utility itemset mining [24] returns itemsets with total util-
ity larger than a pre-defined threshold. Yet another set of
works consider grouping items based on compatibility [26],
for instance constructing composite itemsets including one
main product and its accessories [6]. These works are mostly
attribute-oriented, while ours is a pricing-oriented problem,
where the optimization objective depends not just on how
we group items, but also on how we price the bundles.

Bundle recommendation [30, 23] recommends a group of
items that maximize a user’s aggregate preferences for those
items. A key distinction is that bundling aims at maximizing
profit by considering willingness to pay and prices, whereas
recommendation considers rating data and does not have a
mechanism like pricing to model adoptions.

In terms of utility maximization. There are non-bundling
ways to increase revenue. In combinatorial auction [13], each
bidder places bids for a subset of the items. Since the auc-
tioneer has only one unit for each item, the problem is to
find an allocation of items to bidders that maximizes the
auctioneer’s revenue. Our work considers a different market
setting where the seller has multiple units to serve multiple
consumers. Another line of work that considers a similar
market setting as ours is the pricing problem [5, 17], which
is concerned with determining prices for single items, based
on various assumptions on which subset of items are desired
by each consumer. Unlike ours, such works do not deal with
the computational complexity of forming bundles.

3. OVERVIEW
We consider a set of M consumers U = {u1, . . . , uM} and

a set of N items or components I = {i1, . . . , iN}. W is an
M×N matrix, where each element wu,i ∈ R+

0 indicates how
much a consumer u is willing to pay for an item i.

3.1 Willingness to Pay
In this work, we adopt a data-driven approach to bundle

configuration by mining willingness to pay from consumer
preferences data. Estimating willingness to pay is complex,
and encompasses a whole research area [7]. Broadly speak-
ing, the major approaches are revealed preference (actions
such as auction bids or purchase transactions) and stated
preference (statements such as surveys and ratings). The
former requires transaction data (not widely available). The
latter, with methods such as conjoint analysis [16] and the
Nobel prize-winning discrete choice theory [25], relies on
careful experiments to elicit consumer responses. We adopt
the stated preference approach, but instead of relying on di-
rect elicitation of consumer responses (which is not scalable),
we rely on the wealth of user-generated data indicative of
consumer preferences. In particular, we describe how the
matrix W can be derived from ratings data in Section 6.1.1.

Since the matrix W only specifies the willingness to pay
for the individual items, we also need to define the willing-
ness to pay for a bundle. Suppose we define a bundle b ⊆ I
as a set of items. Ideally, a consumer u’s willingness to pay
for a bundle b, denoted wu,b, can be obtained directly as
well. This is however impractical and too demanding, as
it requires obtaining willingness to pay for all possible bun-
dles. The current accepted approach is to derive wu,b as a
function of the willingness to pay for individual items in the
bundle, i.e., {wu,i}i∈b. In this work, we adopt the function
proposed by [27], which is shown in Equation 1.

wu,b =
∑
i∈b

wu,i × (1 + θ) (1)

The bundling coefficient θ models the interaction between
the items being bundled. If the items are independent (e.g.,
a book and a toaster), then the willingness to pay for one
item does not affect the others, i.e., θ = 0. This is the
setting used in most of the previous works [1]. If the items
are substitutes (e.g., two fiction books), then θ < 0, and the
willingness to pay for the bundle would be less than paying
for both items individually. This scenario is probably quite
common, as different items (especially non-necessities) are
to some extent substitutes for one another. For the example
in Table 1, the bundling coefficient is θ = −0.05. If the
items are complementary (e.g., ski rental and training), then
θ > 0, i.e., a consumer has higher willingness to pay for both
items together than separately.

The appropriate setting of θ is correlated to the issue of
compatibility between different items, which is an orthog-
onal research issue. Compatibility is a focus of study in
bundling literature in economics and marketing, in the form
of complementarity or substitutability [27]. With the pa-
rameter θ, our framework could leverage the results in that
literature. Here, we do not make any assumption about a
specific θ, and study various θ settings later in Section 6. It
is also advantageous to have a θ that can be specified for a
marketing or domain expert to simulate the revenue/profit
maximization under different θ assumptions.



3.2 Problem Formulations
The revenue rb of a bundle b can be expressed in terms

of the optimal price pb, and the number of consumers who
would adopt b, as shown in Equation 2. This number of
consumers is a function F(pb,W, θ) of the price charged pb,
consumers’ willingness to pay for b (determined by the will-
ingness to pay for items W , and the bundling coefficient θ).
The definition of this function will be discussed in Section 4.

rb = max
pb∈R+

pb ×F(pb,W, θ) (2)

We now define the k-sized bundle configuration problem.
There are two instances corresponding to pure bundling and
mixed bundling. In terms of notation, a size-k bundle refers
to a bundle b of exactly |b| = k component items. A k-sized
bundle refers to a bundle b of size 1 ≤ |b| ≤ k.

Problem 1 (k-sized Pure Bundling). Given W , θ,
and an integer k ≥ 1, find the bundle configuration XI ,
containing k-sized bundles meeting the following conditions:

1.
⋃
XI = I, i.e., the union of sets in XI is I

2. ∀b1, b2 ∈ XI , b1 ∩ b2 6= ∅ implies b1 = b2

3.
∑

b∈XI
rb is maximized, i.e., there is no other parti-

tioning of I with a higher overall revenue.

XI = argmax
X is a configuration of I

∑
b∈X

rb (3)

The bundle configuration that meets the above conditions
is called optimal. The parameter k limits the maximum size
of the bundles. For information goods (e.g., cable televi-
sion), bundle sizes can grow very large, e.g., hundreds [3].
For physical goods (e.g., books), smaller bundle sizes may
be more appropriate. The first condition specifies how the
collection of all bundles should make up the full set of items.
The second condition characterizes the pure bundling strat-
egy, by requiring that XI is a strict partition of I, i.e., no
overlap between bundles. This prevents having both a bun-
dle, as well as its component items both available. For in-
stance, a cable TV provider (e.g., Starhub, SingTel) may
partition a large number of cable TV channels into a small
number of non-overlapping bundles. There may be other
scenarios requiring overlapping bundles, and such scenarios
are out of the scope of the current work. Finally, the last
condition specifies the revenue maximization objective.

Mixed bundling has the distinction of allowing both a bun-
dle and its component items being available. This is done
by the subsumptions in the second condition in Problem 2.

Problem 2 (k-sized Mixed Bundling). Given W , θ,
and an integer k ≥ 1, find the bundle configuration XI , con-
taining k-sized bundles meeting the following conditions:

1.
⋃
XI = I, i.e., the union of sets in XI is I

2. ∀b1, b2 ∈ XI , b1 ∩ b2 6= ∅ implies b1 ⊆ b2 or b2 ⊆ b1

3.
∑

b∈XI
rb is maximized, i.e., there is no other parti-

tioning of I with a higher overall revenue.

XI = argmax
X is a configuration of I

∑
b∈X

rb (4)

Assumptions. We list some assumptions in this paper,
which are conventionally used in the bundling literature [3].

• Single Price: Each unique bundle has one price, i.e.,
the seller demands the same price from consumers.

• Single Unit: Each consumer demands 0 or 1 unit of an
item. This assumption can be relaxed if the number
of units demanded is specified in the data.

• No Budget Constraint: Consumers are able to pur-
chase any item, given sufficient willingness to pay.

• No Supply Constraint: Seller can sell to any number of
consumers. For information goods, the marginal cost
of providing an item to one more consumer is very low.

Proposed Approach. Our objective to arrive at the
optimal bundle configuration can be decomposed into two
sub-problems dealing with specific research issues. In Sec-
tion 4, for a single bundle b, we seek to find its maximum
revenue rb. This requires us to model how a consumer may
adopt a bundle at a particular price, and how to arrive at
the price that maximizes the revenue. In Section 5, given
a set of candidate bundles {b} defined over I, and their
corresponding maximum revenues {rb}, we seek to find the
configuration XI that results in the maximum revenue.

4. SINGLE BUNDLE
Conventionally, a consumer adopts an item if the con-

sumer’s willingness to pay equals or exceeds the price [1].
We adopt this convention, but relax it with stochastic per-
turbations. We associate a random variable νu,b with a con-
sumer u and a bundle b, i.e., νu,b = 1 (u adopting b) and
νu,b = 0 (u not adopting b). P(νu,b = 1|pb, wu,b) denotes the
probability that u will adopt b, conditioned on the price pb
and u’s willingness to pay wu,b. This probability is higher
for higher wu,b or lower pb. Therefore, the expected number
of consumers who will adopt b is as shown in Equation 5.

F(pb,W, θ) =
∑
u∈U

P(νu,b = 1|pb, wu,b) (5)

Together, Equation 2 and Equation 5 give the maximum
revenue rb of a bundle b. We first describe the modeling of
P(νu,b = 1|pb, wu,b), and then discuss how to estimate the
optimal price pb that results in the maximum rb efficiently.

4.1 Modeling Adoptions Stochastically
To model P(νu,b = 1|pb, wu,b), a suitable probability func-

tion is the sigmoid function, which is commonly used to
model binary outcomes. The probability P(νu,b = 1|pb, wu,b)
can thus be expressed as in Equation 6. Parameters γ, α,
and ε can be tuned to reflect different adoption decisions.

P(νu,b = 1|pb, wu,b) =
1

1 + exp {−γ(α · wu,b − pb + ε)} (6)

The original sigmoid has γ = 1, α = 1, ε = 0. The red
curve in Figure 1(a) shows how the adoption probabilities
vary with the price pb for a consumer with wu,b = 10. At
pb = 10, the willingness to pay is exactly the same as the
price, and the probability of adoption is 0.5. As price de-
creases, i.e., pb → 0, the probability of adoption increases.
As price increases, i.e., pb →∞, the probability decreases.
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Figure 1: Modeling Probability of Adoption

Sensitivity to Price. To model consumers’ sensitivity
to price, the shape of the curve is parameterized by γ. This
is illustrated by Figure 1(a), which contrasts γ = 1 with
γ = 10 and γ = 0.1. As we decrease γ < 1, the curve gets
more linear, representing a reduced sensitivity to price in
making adoption decisions. As we increase γ > 1, the curve
gets steeper. When γ → ∞, we get the step function as
a special case. To effect a step function’s instant increase
from 0 to 1, we add a small noise and set ε = 10−6.

Bias for Adoption. To model consumers’ bias towards
(or against) adoption, the curve is parameterized by α. This
is illustrated by Figure 1(b), which contrasts α = 1 with
α = 0.75 and α = 1.25. As we decrease α < 1, the curve
shifts to the left, representing bias against adoption. As we
increase α > 1, there is a bias towards adoption, as indicated
by the greater probability at any price point.

4.2 Determining Price and Revenue
Discretized Price Levels. The search for the optimal

price involves investigating each candidate price pb. In real-
life scenarios, the seller would have a price list of T price
levels. At worst, the price levels are the smallest atomic unit
(e.g., cents). More commonly, it varies by larger increments.

Given such a price list, we associate each price level with a
bucket and place each of the M consumers into a bucket ac-
cording to her willingness to pay wu,b. Identifying the bucket
can be done through hashing (if equi-distanced price levels),
or binary search (if arbitrary price levels). The optimal price
level is determined by iterating through the T buckets. The
number of buckets is usually fixed as a constant, and does
not grow with the problem size. For experiments, we use
100 buckets, as we find that larger numbers do not result in
much higher revenue. The complexity of pricing is O(M).

Pure vs. Mixed Bundling. The above applies both
to a bundle and to a component. For pure bundling, only a
bundle or its components are on offer. For mixed bundling,
a consumer’s response to a bundle depends not only on the
bundle’s price, but also on the prices of its components.
For example, u1 may be willing to pay wu1,A = $12 and
wu1,B = $4. Correspondingly, we have wu1,AB = $15.20 (as-
suming θ = −0.05). Suppose that mixed bundling offers the
following prices: pA = $8, pB = $8, and pAB = $15.20. One
may think u1 would purchase the bundle, because wu1,AB ≥
pAB . That would be a counter-intuitive outcome [1]. u1

could purchase A alone for $8. To “upgrade” from A to
the bundle {A,B} would incur an implicit price for B of
pAB − pA = $7.20, more than u1’s willingness to pay for
B ($4). Therefore, u1 would purchase item A alone. In an
alternative scenario where the offer is: pA = $12, pB = $4,
and pAB = $15.20, u1 would purchase the bundle instead.

In other words, for pure bundling, the adoption decision is
determined based on whether pAB ≤ wu1,AB , which means
that the pricing of a bundle and its components can be done
independently. In contrast, for mixed bundling, it is based
on whether pAB − pA ≤ wu1,B and pAB − pB ≤ wu1,A. This
induces dependencies between prices of a bundle (pAB) and
its components (pA and pB). In most application scenarios,
we expect that components are by default on offer, and the
seller seeks greater revenue through bundling. Therefore,
for mixed bundling, we adopt an incremental policy where
the prices of components are determined first, and the price
of a bundle is conditioned on the prices of components. We
would investigate a relaxation of this policy as future work.

We apply the usual constraints for mixed bundling [18] to
ensure a bundle would be a viable alternative to its compo-
nents. First, ∀i ∈ b, pb > pi, i.e., the bundle price must be
higher than any of its component’s. Second, pb <

∑
i∈b pi,

i.e., the bundle price is lower than the sum of its compo-
nents’ prices. These are not applicable to pure bundling.

5. BUNDLE CONFIGURATION
In the following, we first address the 2-sized bundle con-

figuration problem, before addressing the case of k ≥ 3.

5.1 Optimal Solution for 2-sized Bundling
For k = 2, the bundle configuration may contain bundles

of size 1 or 2. There are N candidates of the former, and
N(N−1)/2 candidates of the latter. Out of these candidate
bundles, we need to select a subset of them to make up the
bundle configuration XI with the highest revenue.

First, we describe the pure bundling strategy. Bundles in
XI do not overlap with each other (see Section 3.2). If we
model each item as a node in a graph (i.e., each bundle of
two as an edge between two nodes, and each bundle of one as
an edge from a node to itself), a valid bundle configuration
is a set of edges, such that no two edges are incident on the
same node and these edges collectively need to cover all the
nodes, i.e., non-overlapping and no overage. In graph theory,
such a collection of edges are known as a graph matching.

2-sized bundling can thus be reduced to graph matching.
We construct a “complete” graph G(V,E), where each ver-
tex in V corresponds to an item in I, i.e., |V | = N . The set
of edges E contains N+N(N−1)/2 edges. There is one edge
from a vertex to itself (a candidate bundle of size 1). There
is also an edge between any pair of vertices (a candidate
bundle of size 2). Every edge is weighted by the maximum
revenue of the item or bundle (see Section 4). It is easy to
see that the optimal 2-sized bundling configuration is a max-
imum weight matching in G, with the highest sum of edge
weights (total revenue). The advantage of this formulation
is the existence of polynomial time algorithms for maximum
weight matching, e.g., the Edmonds algorithm [14], with

a complexity of O(|E||V |
1
2 ). For experiments, we use the

LEMON library (http://lemon.cs.elte.hu/trac/lemon).
To compute the edge weights (Section 4.2), we need to scan
the M users once for each edge, which takes O(MN2). The
complexity of this algorithm is thus O(MN2 +N2.5).

For mixed bundling, a similar formulation applies, with an
adjustment whereby the edge weight between two different
vertices is the maximum revenue expected from offering both
a bundle and its two components (see Section 4.2). A bundle
is feasible if offering both the bundle and its components
bring in more revenue than offering its components alone.

http://lemon.cs.elte.hu/trac/lemon


5.2 Complexity of k-sized Bundling
Complexity. The case for k ≥ 3 is more complex. Find-

ing the optimal selection of potential bundles is intractable.

Theorem 1. 3-sized pure bundling problem is NP-hard.

Proof Sketch. 3-sized pure bundling problem can be
expressed in terms of finding a maximum matching in a hy-
pergraph containing edges of size-1, size-2, and size-3. We
now show that 3-sized pure bundling problem is NP-hard
through a reduction from the maximum 3-uniform hyper-
graph matching (known to be NP-hard [20]).

For any instance of maximum 3-uniform hypergraph match-
ing problem for a hypergraph H, we can construct an in-
stance of maximum hypergraph matching problem for H ′,
where H ′ is not necessarily 3-uniform. H ′ is created as fol-
lows. For each original edge in H, we create an edge in H ′

with the weight 3 + ∆, where ∆ is a fixed positive constant.
In addition, we add “dummy” edges of size-1 (weight 1),
size-2 (weight 2), and size-3 (weight 3) to H ′ that are not
already in H. S′ is a maximum matching in H ′, if and only
if S is a maximum matching in H. Since finding the maxi-
mum matching S in H is NP-hard, finding the solution S′ in
H ′ (the 3-sized pure bundling problem) is also NP-hard.

Because pure bundling is a special case of mixed bundling
where a bundle and its components are not allowed to co-
exist, mixed bundling is likely as complex as, if not more
complex than pure bundling, because a mixed bundling con-
figuration may contain both a bundle and its components.

Connection to Weighted Set Packing. If we first enu-
merate all the K = 2N −1 potential bundles, the problem of
pure bundling configuration among these potential bundles
can be reduced to an instance of weighted set packing [9],
for which there exists a solution with a known approxima-
tion bound. In weighted set packing, the input consists of K
sets, where each set bj has a known weight wj . The objec-
tive is to find a collection of sets (that are pairwise disjoint)
resulting in the highest aggregate weight. In our case, a set
is a candidate bundle, and its weight is its revenue.

Optimal Solution. The optimal solution to weighted set
packing, and thus to pure bundling problem, can be com-
puted using the following Integer Linear Program (ILP). For
every potential bundle bj , we associate it with a binary vari-
able xj , which takes the value of 1 if bj is selected as part
of the solution, and 0 otherwise. Each bj is also associated
with a real-valued positive weight wj , which represents its
revenue. The objective is to determine xj ’s to maximize the
revenue using a combination of non-overlapping bundles.

maximize

K∑
j=1

xj × wj

subject to
∑

bj : i∈bj

xj ≤ 1, for all i = 1, . . . , N

xj = {0, 1}, for all j = 1, . . . ,K

This program is intractable for large N , which generates
K = 2N − 1 candidate bundles. In turn, the ILP has to find
a solution within a space of 2K − 1 possible settings of xj ’s.
In practice, it is computable only for very small problem
sizes. For experiments, we use the Gurobi ILP solver (http:
//www.gurobi.com/).

Approximable Solution. Because weighted set packing it-
self is also NP-hard, there exists approximation algorithms.

The current best known solution is a greedy approach that
repeatedly selects the next set with the highest average weight
per item and removes other sets that overlap with the se-
lected sets from future consideration. For N items, this ap-
proach is guaranteed to produce a solution within a factor
of
√
N less than the optimal solution [15].

Though this connection to weighted set packing allows us
to establish the approximability of the problem, in practice
existing weighted set packing solutions are still intractable
for our scenario due to the requirement of enumerating and
computing the revenues of all possible candidate bundles be-
forehand, a step that by itself has an O(M ·2N ) complexity.
This is in addition to the complexity of weighted set packing
algorithm (ILP or greedy). Therefore, we develop more effi-
cient heuristic algorithms below, which do not require prior
enumeration of all subsets. We will compare them experi-
mentally to the weighted set packing solutions in Section 6.

5.3 Heuristic Solutions for k-sized Bundling
Here, we propose two heuristic algorithms for k ≥ 3. Both

algorithms can be applied to pure and mixed bundling. For
clarity, we would first describe pure bundling, and highlight
mixed bundling’s differences in Section 5.3.3.

5.3.1 Matching-based Algorithm
Since the problem is tractable for k = 2 but not for k ≥ 3,

instead of solving it directly for k-sized bundles, one promis-
ing approach is to iteratively construct ever larger bundles.
The pseudocode of this matching-based algorithm is given in
Algorithm 1. We describe the pure bundling strategy here.
For now, please ignore the lines specific to mixed bundling.

Each iteration is concerned with finding the best bundle
configuration from the current components. The same Ed-
monds algorithm can be used in each iteration. For example,
in the first iteration, we form size-2 bundles from combina-
tions of size-1 bundles. In the second iteration, we treat
these size-2 bundles as if they are singular items, and create
another instance of 2-bundling problem with the size-1 and
size-2 bundles as initial bundles, allowing a size-3 bundle
to be created from a combination of a size-1 bundle and a
size-2 bundle, or a size-4 bundle to be created from a combi-
nation of two size-2 bundles. This continues till we reach the
maximum size k, or until there is no more gain in revenue.

We apply two pruning strategies to improve efficiency. In
the first iteration, instead of all possible size-2 bundles, we
only consider pairs of items for which at least one customer
has non-zero willingness to pay for both. We cannot extract
any positive remaining willingness to pay for the second item
from customers who each want to buy only one item.

In subsequent iterations, when forming the edges in the
graph, other than self-loop edges (the status quo), the other
pruning strategy is to only introduce a new edge involving
at least one newly-formed vertex in the current iteration.
Edges in previous iterations that do not form a collapsible
vertex will never form a bundle in the subsequent iterations
as they are not favored over their components. Because of
this “diminishing” effect of bundling, the number of itera-
tions will effectively be bounded, as analyzed below.

At the start, there are N vertices and in the order of N2

edges. For any given iteration, an edge between two vertices
is either merged (if selected in the matching) or deleted. In
the worst case, all non self-loop edges will be selected by
the matching. Thus, the maximum number of edges, |E|,

http://www.gurobi.com/
http://www.gurobi.com/


Algorithm 1: Matching-based Algorithm

Initialize XI to be a set of size-1 bundles.
Initialize X ′I to be an empty set.
Initialize R with the revenue of components.
while true do

Construct a graph G with XI as vertices.
Populate G with edges involving newly-formed bundles.
Compute the weight of each edge (see Section 4.2).
Obtain the maximum weight matching S in G.
Compute R’, the weight or revenue of S.
if R′ ≤ R then

Break.
R← R′

for each selected edge in S do
Remove the edge’s vertices from XI .
Collapse the edge into a new vertex in XI .
if mixed bundling then

Insert the edge’s vertices into X ′I .

Return XI ∪ X ′I .

is no more than (N
2

)2 after one iteration, (N
4

)2 after two
iterations, and so on. Taking into account the Edmonds

algorithm’s complexity of O(|E||V |
1
2 ), this is a geometric

series of the form a + ar + ar2 + ..., with a = N2.5 and r =
1
2

2.5
, whose summation is bounded by a

1−r
= N2.5

1− 1
2
2.5 . Since

the denominator is a constant, the complexity of matching
across iterations is effectively still O(N2.5).

To compute the edge weights, we need to scan the database
of M users’ willingness to pay once in every iteration, and
update the revenue computation of all newly-formed bun-
dles. Because the number of edges |E| diminishes in a ge-
ometric series as above, the revenue computation requires
O(MN2). The complexity of this algorithm is O(MN2 +
N2.5). Realistically, the number of items N to be bundled
is not extremely large. The number of users M may in some
cases be large but it may be sufficient to take a significant
sample of users, rather than using the data of all users.

5.3.2 Greedy Algorithm
The above matching-based approach is oriented towards

finding the best configuration globally across all bundles in
the partition XI . An alternative approach is to find only one
best new bundle in each iteration. This new bundle can then
immediately participate in the selection of the next bundle.

Algorithm 2 encapsulates this approach. In each iteration,
it tries to perform a merging operation involving two exist-
ing bundles that result in the highest absolute gain in rev-
enue over the component bundles. This newly merged bun-
dle then participates in the next iteration searching for the
next best merged bundle. This continues until a stopping
condition is met. One natural stopping condition, which we
adopt in this paper, is when there is no more revenue gain.
An alternative stopping condition is to continue anyway till
there is only a single bundle of N items, and then travers-
ing all previous solutions to find the one with the maximum
revenue. Empirically, this would increase running time sig-
nificantly without producing meaningful revenue gain.

The algorithm may take up to N outer iterations, because
in each iteration, the number of bundles in the configuration
reduces by exactly 1, by collapsing two existing bundles into
a new bundle. The first iteration involves O(N2) revenue
computations, as the revenues of all candidate bundles of

Algorithm 2: Greedy Algorithm

Initialize XI to be a set of size-1 bundles.
Initialize X ′I to be an empty set.
Initialize R with the revenue of components.
while true do

for every pair of elements b1, b2 ∈ XI do
Form a candidate bundle b′ = b1 ∪ b2 of size ≤ k.
Compute the absolute gain in revenue:
r∆ = rb′ − rb1 − rb2 (see Section 4.2).

Let b′ = b1 ∪ b2 be the candidate bundle with highest
absolute revenue gain r∆.
if r∆ ≤ 0 then

Break.
XI ← XI − {b1, b2}
XI ← XI ∪ b′

R← R+ r∆

if mixed bundling then
X ′I ← X

′
I ∪ {b1, b2}

Return XI ∪ X ′I .

size-1 and size-2 need to be computed. In each subsequent
iteration, we only need up to N revenue computations, in-
volving the new bundle with an existing bundle. Each rev-
enue computation itself will need O(M) (see Section 4.2).
There is also the cost of picking the bundle with the maxi-
mum gain in each iteration, which differs in complexity de-
pending on the specific implementation (e.g., priority queue
involves O(logN) per insertion/removal). Therefore, the
overall complexity is approximately O(MN2 +N2 logN)).

5.3.3 Pure Bundling vs. Mixed Bundling
The above matching-based and greedy algorithms are ap-

plicable for both bundling strategies (pure and mixed), with
several differences. For one thing, the key difference between
the two is how the revenue of a bundle is computed (see
Section 4.2). Beyond that, another difference, as shown in
Algorithm 1 and Algorithm 2, is that for mixed bundling, we
retain in X ′I the subset of bundles replaced in previous itera-
tions. These represent components that are also available to
consumers, in addition to the subsuming bundles, which are
finally returned as outputs of the algorithms. In contrast,
for pure bundling, X ′I remains an empty set throughout.

6. EXPERIMENTS
Our objectives are two-fold. First, we seek to evaluate the

effectiveness of our algorithms as compared to tractable non-
bundling and bundling baselines. Second, we also seek to
evaluate the efficiency of our algorithms through a scalability
study and a comparison to weighted set packing solutions
that attempt to produce optimal or approximable solutions.

6.1 Experimental Setup

6.1.1 Data
The willingness to pay matrix W is difficult to obtain [29].

While a small amount of data may be available to commer-
cial organizations, there is no such publicly available dataset
for research. We observe that the wealth of online ratings
contain important signals about users’ stated preferences,
and simulate willingness to pay based on these ratings.

We use the UIC dataset of ratings crawled from Ama-
zon.com [21]. Each rating is assigned by a user to a product,



on a scale of 1 (lowest) to 5 (highest). From this dataset, we
extract the largest category of products, which is Books.
Since the ratings of some users or some books are very
sparse, we iteratively remove users and items with less than
ten ratings until all users and items have ten ratings each.
After this pre-processing, we have 4,449 users, 5,028 items
(books), and 108,291 ratings. The distribution of ratings is
as follows: 3% are ratings of 1, followed by 5%, 13%, 29%,
and finally 49% are ratings of 5. In terms of the number
of items, this dataset size is comparable or even larger than
most real-life needs. This is because realistically, not all
items in a seller’s inventory are up for bundling.

A consumer’s willingness to pay depends on a number of
factors, including her need or preference for that item, as
well as the value of the item. We assume that the former
is partially indicated by her rating on the item, whereas
the latter is partially indicated by the item’s sales price.
In addition to ratings, the sales price is also known in the
dataset. The distribution of items by price is as follows:
50% of items have a sales price below $10, 45% are between
$10-$20, and a small fraction (4%) are above $20.

We assume a linear relationship between ratings and will-
ingness to pay [11, 22], and propose the following function.
Suppose that p is the listed sales price of an item at Amazon.
Presumably, some consumers would have willingness to pay
below p, and some above p. We assume that the highest will-
ingness to pay of any consumer for that item will be λ×p, for
some conversion factor λ ≥ 1. We equate the highest possi-
ble rating rmax to λ× p. For any other rating r < rmax, the
corresponding willingness to pay is r

rmax
×λ× p. For exam-

ple, if λ = 1.25 and the listed price for an item is p = $10,
a consumer who rated 5 stars is considered willing to pay
5
5
× 1.25× $10 = $12.50 for the item. Ratings of 4, 3, 2, and

1 map to willingness to pay $10, $7.50, $5, and $2.50.

6.1.2 Metrics
To evaluate the effectiveness of an algorithm in terms of

the revenue maximization objective, we rely on two metrics.
Revenue Coverage. One informative measure is how

close we get to the absolute maximum. The aggregate will-
ingness to pay in the input matrix W is effectively the upper
bound of revenue. The revenue coverage of an algorithm is
the ratio (expressed as percentage) of its revenue to the total
amount of willingness to pay. For example, if an algorithm
generates $11 of revenue, while the total willingness to pay
(of all users on all items) is $20, the revenue coverage is
$11
$20

= 55%. The “perfect” score would be 100%.
Revenue Gain. Another measure is how much an al-

gorithm gains over the Components. This quantifies the
direct benefit of bundling, as opposed to selling individ-
ual items. The revenue gain of an algorithm is the frac-
tional gain (expressed as percentage) over the revenue of
Components. For example, if an algorithm generates $11 of
revenue, while Components generates $10, then the revenue

gain is ($11−$10)
$10

= 10%. A good algorithm is expected to
have positive gain. The higher the gain, the better.

6.1.3 Comparative Methods
Our Methods. We compare four versions of our ap-

proach. We have two problem formulations (pure bundling
and mixed bundling), and two algorithms (matching and
greedy), yielding four algorithms, namely: Pure Matching,
Pure Greedy, Mixed Matching, and Mixed Greedy.

λ Optimal pricing Amazon’s pricing
1.00 77.7% 59.0%
1.25 77.7% 75.1%
1.50 77.7% 62.6%
1.75 77.7% 62.8%
2.00 77.7% 54.9%

Table 2: Revenue Coverage at Different λ’s

Notation Description Default Value
λ conversion factor 1.25
θ bundling coefficient for willingness to pay 0
k max size for a bundle ∞ (no size limit)
γ stochastic sensitivity to price 106 (step function)
α stochastic bias for adoption 1 (unbiased)

Table 3: Default Parameter Settings

We compare our methods to two categories of baselines:
methods selling individual items, and bundling baselines.

Non-Bundling Baseline. For Components, there are
two options, whether to determine the optimal pricing (see
Section 4) or to take the sales price in the Amazon dataset.
In Table 2, we compare the revenue coverages resulting from
these two options for different λ. For the optimal pricing,
the revenue coverage remains at around 77.7% across λ’s.
For Amazon’s pricing, revenue coverages vary with λ, with
the highest coverage of 75.1% at λ = 1.25. Optimal pricing
is stronger baseline than Amazon’s pricing. It has higher
revenue coverage at any λ. It is sufficient to compare to
optimal pricing, which is more difficult to beat. We use the
optimal pricing for Components, and set λ = 1.25 for which
Amazon’s pricing comes closest to Components in revenue.

Bundling Baselines. There is a lack of suitable base-
line, as prior work focuses mostly on only 2 items [1]. One
common feature on Amazon and other online shops is “Fre-
quently Bought Together”. We simulate this using frequent
itemsets [2]. We treat the Amazon dataset as transaction
data. Each transaction corresponds to a consumer, contain-
ing the items for which this consumer has non-zero willing-
ness to pay. We mine frequent itemsets using MAFIA [8].

With the frequent itemsets as candidate bundles, we con-
struct a bundle configuration by greedily picking the itemset
with the highest absolute gain in revenue over its compo-
nents. We remove itemsets that overlap with the selected
itemsets, and iteratively pick the next best itemset until we
cover all the items. Individual items are used as candidates
even if they do not meet the minimum support (this favors
the frequent itemset approach). We experimented with vari-
ous minimum supports and found 0.1% to produce the high-
est revenue. We include two baselines for pure and mixed
bundling, i.e., Pure FreqItemset and Mixed FreqItemset.

6.2 Comparison against Baselines
We organize this section by the parameters involved in

our approach. The default settings are given in Table 3.
Bundling Coefficient θ. Willingness to pay for bun-

dles is parameterized by θ (see Section 3.1). Figure 2 shows
the effects of θ on various methods. There are two y-axes:
the left is for revenue coverage, and the right is for revenue
gain. Since θ only applies to bundling, Components is not
affected by θ. Revenue gain, expressed relative to Compo-
nents’s revenue, thus has the same trend as the revenue cov-
erage. For negative θ (substitute), a consumer’s willingness



Figure 2: Experiments with different θ values

Figure 3: Experiments with different γ values

to pay for bundles is discounted, creating a tendency not to
form bundles. Components has the lowest coverage at 77.7%.
Mixed Matching and Mixed Greedy have the highest revenue
coverages, because they can target the segments of the mar-
ket who can afford bundles, while still making the compo-
nents available to whose who cannot. Pure Matching and
Pure Greedy are more sensitive to negative θ. As θ decreases,
they degenerate into Components. The two bundling base-
lines Mixed FreqItemset and Pure FreqItemset also have very
low revenue coverages not much different from Components.

For positive θ (complementary), a consumer’s willingness
to pay is augmented when items are bundled. Pure Matching
and Pure Greedy are especially effective when θ � 0. By
making only the bundle available, the seller can extract a
higher price and thus a higher revenue. Mixed Matching and
Mixed Greedy also increase in revenue because of the higher
willingness to pay for bundles, but not as steeply as pure
bundling. The baselines underperform our corresponding
methods. Mixed FreqItemset is worse than Mixed Matching
or Mixed Greedy. In turn, Pure FreqItemset is worse than
Pure Matching or Pure Greedy.

This shows that bundling is advantageous. The bundling
methods do not go below Components, because they revert
to Components if there is no better solution. Often, bundling
results in higher revenues. Frequent itemsets are not opti-
mized for revenue. By confining to frequent itemsets, we
may miss out on candidate bundles with higher revenue gain.

Among our own methods, we see that the matching-based
algorithms (Mixed Matching and Pure Matching) outperform
their greedy counterparts (Mixed Greedy and Pure Greedy)
slightly in terms of achieving a higher revenue coverage.

For subsequent experiments, we will set θ = 0, which is
also the conventional setting in the literature [1].

Figure 4: Experiments with different α values

We now look at factors affecting the number of adoptions
of a bundle. Since this is stochastic, we average revenues
across ten runs. Adoption is modelled stochastically (Equa-
tion 6 in Section 4.1), with parameters γ and α.

Stochastic Sensitivity γ. Figure 3(a) shows how rev-
enue coverage varies with γ. As γ increases, revenue cover-
age also increases, though at a decreasing rate. Low γ indi-
cates a lot of uncertainty whether a consumer will adopt a
bundle. The price needs to be lower to compensate for this
uncertainty. A high γ reduces this uncertainty, allowing the
seller to set a higher price, and earns a higher revenue.

Figure 3(b) shows the trend of revenue gain, which de-
creases as γ increases. Since revenue gain represents perfor-
mance relative to Components, this implies that bundling is
more robust. Lower γ indicates greater uncertainty, requir-
ing a greater reduction in price and a greater loss in revenue
by Components. Bundling creates a flatter distribution of
willingness to pay, stemming the reduction in revenue.

The relative standing of methods remains as before across
γ’s. As default, we set γ to a high value, i.e., 106 to simulate
the step function (the convention in bundling literature [1]).

Stochastic Bias α. The parameter α indicates a bias
for adoption, by shifting the sigmoid curve (Equation 6).
Higher α results in a higher probability of adoption. The ef-
fects are similar to γ. Both Figure 4(a) for revenue coverage
and Figure 4(b) for revenue gain show similar trends as in
Figure 3. However, the increase is linear in Figure 4(a) as
α can keep increasing the probability. The plateau in Fig-
ure 3(a) is because of reaching a step function in the limit.
As default, we set α = 0, i.e., no bias.

Size Constraint k. In previous experiments, the maxi-
mum size of bundles is unconstrained. Bundles can grow to
any size as long as it produces some gain in revenue. We now
investigate constraining the maximum bundle sizes by vary-
ing k. Because Components is not affected by k, the trend
lines of revenue coverage and revenue gain are the same. We
show both in Figure 5 using dual y-axes.

When k = 1, bundling is equivalent to the Components.
For k = 2, bundling starts to gain over Components. As
we increase k ≥ 3, the revenue keeps growing though at a
slower rate. Previous work focuses mostly on bundles of size
2, and obtaining the optimal bundling configuration of size
3 and above is NP-hard. This experiment shows that while
bundles of size 2 could produce some revenue gain, there is
still a significant additional amount of revenue to be gained
from bundles of larger sizes. This validates our approach in
designing heuristic algorithms to discover larger bundles.



Figure 5: Experiments with different max size k

6.3 Computational Complexity
We briefly comment on the efficiencies of our matching-

based and greedy algorithms. Timing is based on an Intel
Xeon E5-2667 2.9GHz machine with 70GB RAM.

Revenue Coverage vs. Time. For both the matching
and greedy algorithms, each additional iteration seeks to in-
crease revenue, at the cost of increased running time. For
mixed bundling, Figure 6(a) shows that as the number of
iterations increases, both revenue gain and running time in-
crease. Overall, Mixed Matching offers a better trade-off of
revenue vs. time than Mixed Greedy does. For the same rev-
enue gain, Mixed Matching is faster. For the same running
time, Mixed Matching has a higher revenue gain. In total,
Mixed Matching requires 10 iterations over 466 seconds till
the revenue converges. In the first iteration, the revenue gain
is 4.4%. Over the next iterations, revenue coverage further
increases, reaching a total gain of 7%. For Mixed Greedy, the
increase is more gradual, over many more iterations (4347)
and longer time (1241 seconds).

For pure bundling, Figure 6(b) shows as the number of
iterations increases, both revenue gain and running time in-
crease. The trends are similar to the mixed bundling strat-
egy. The matching-based algorithm has much fewer itera-
tions (6 vs. 2131) over a shorter period of time (382 vs. 449
seconds), as compared to the greedy algorithm. The former
also presents a steeper increase in revenue gain over time,
presenting a better trade-off of revenue gain vs. time.

Scalability. To investigate the scalability of the proposed
algorithms, we measure how their running times are affected
by the number of users, as well as by the number of items.

To create larger datasets with the same number of items,
but varying number of users, we clone the users in the same
dataset using a multiplication factor. For example, the orig-
inal dataset has a factor of 100%. For the factor of 200%,
we have the same number of items, and twice as many users
(with the same ratings as the original users). Figure 7(a)
shows how running time varies with different multiplication
factors. All the algorithms scale linearly with the number
of users, which is reasonable since it only affects searching
for the optimal price, which is O(M) (see Section 4.2).

Figure 7(b) shows the scalability with respect to different
multiples of items. Both the x- and y-axes are in log2 scale.
The linear growth in log-log axes indicates that the growth
of running time is polynomial to the number of items, which
is consistent with the complexity analysis in Section 5.

The matching algorithms are more efficient than the greedy
algorithms, because greedy requires more iterations to con-
verge, since in each iteration it only creates one bundle.

Figure 6: Revenue Coverage vs. Time

Figure 7: Scalability of Bundling Algorithms

6.4 Comparison to Weighted Set Packing
We now compare to the weighted set packing solutions de-

scribed in Section 5.2, i.e., the ILP-based optimal solution
(Optimal) as well as the greedy solution with known ap-
proximation bound (Greedy WSP). Our objective is to show
that our tractable algorithms can reach close to the opti-
mal solution, and yet with greater efficiency. The following
comparison includes only pure bundling as the reduction to
weighted set packing is only defined for pure bundling.

Because weighted set packing requires enumeration of all
subsets of items, it is only tractable for small problem sizes.
To produce a small-scale dataset, we randomly select N ∈
{10, 15, 20, 25} items from the universal set of 5,028 items,
but include all the users. Even for this small-scale datasets,
the enumeration and revenue computation for 2N − 1 sub-
sets of items require 0.8 seconds for 10 items, 32 seconds
for 15 items, 24 minutes for 20 items, and 15 hours for 25
items. The 2N − 1 is just the number of potential bundles,
and finding a solution, i.e., a set of pair-wise non-overlapping
bundles covering all items and having the maximum profit,
requires another exponential search in this space. It is pro-
hibitive for any larger number of items, and is not practical
in real scenarios.

Since our algorithms still produce an optimal solution for
2-sized bundling, to test the heuristics for k ≥ 3, we retain
only the samples resulting in at least one bundle of size 3 or
larger. We average the results across 10 random samples.

Comparison to Optimal. Table 4 compares our algo-
rithms Pure Matching and Pure Greedy (using settings in
Table 3) to the weighted set packing solutions in terms of
revenue coverage. Notably, for sample sizes of 10 to 20 our
algorithms reach the same revenue coverage as Optimal for



Revenue Coverage (percent)
N = 10 N = 15 N = 20 N = 25

Pure Matching 78.1% 77.8% 77.9% 77.2%
Pure Greedy 78.1% 77.8% 77.9% 77.2%
Optimal 78.1% 77.8% 77.9% -
Greedy WSP 68.1% 65.2% 64.9% 64.3%

Table 4: Comparison to Weighted Set Packing: Revenue

Running Time (seconds)
N = 10 N = 15 N = 20 N = 25

Pure Matching 0.01 0.01 0.01 0.02
Pure Greedy 0.07 0.10 0.13 0.16
Optimal 0.20 4.60 235.38 -
Greedy WSP 0.02 0.49 24.71 706.28

Table 5: Comparison to Weighted Set Packing: Time

all the random samples. This could well be due to the rela-
tively small sample sizes, but the Optimal solution can only
be computed for small sample sizes.

Table 5 shows how our algorithms are much more effi-
cient than Optimal. The running time of Optimal grows
extremely fast. Importantly, this running time has not even
included the time to enumerate all the subsets, which may
be up to 15 hours for 25 items. Even so, the result for 25
items cannot be computed due to insufficient computing re-
sources to process the 225−1 or 33 million boolean variables
required by the ILP. Extending Optimal to even larger N is
not feasible for the available computational resources.

Comparison to Greedy WSP. Table 4 also shows that
Pure Matching and Pure Greedy outperform the current ap-
proximation solution for weighted set packing Greedy WSP
(with known approximation factor of

√
N). Our methods

have higher revenue coverages across different sample sizes
from 10 to 25. Empirically, it is evident that our algorithms
reach a better approximation of Optimal than Greedy WSP.

This is achieved at greater efficiency as well. Table 5 shows
that not only Greedy WSP takes more time, but the running
time also grows much faster. For N = 25, our algorithms
complete in less than a second. Greedy WSP requires more
than ten minutes (which would be much worse if we include
the 15 hours for the subset enumeration beforehand).

6.5 Case Study
To illustrate bundling, we now provide a small example

case from the real data. Due to space limitation, we only
showcase mixed bundling. Table 6 shows three books: The
Sands of Time, Two Little Lies, and Born in Fire. The
starting point is the prices when the items are sold individ-
ually. The computed optimal price is 7.99 for The Sands
of Time netting 10 buyers, 6.99 for Two Little Lies net-
ting 9 buyers, and Born in Fire netting 9 buyers. In mixed
bundling, individual items are always available for sale.

Next, we consider whether to make any bundle of size
2 available in addition to individual items. Here, we find
that bundling (Two Little Lies, Born in Fire) results in one
additional buyer, who would not purchase individual items
because her willingness to pay for each item is below the in-
dividual price, but would purchase the bundle because her
aggregate willingness to pay for both items meet the bundle
price of 11.20, netting an additional revenue of 11.20. In con-

Bundle Price Add. Add. Selected?
buyers revenue

The Sands of Time 7.99 10 79.90 X
Two Little Lies 6.99 9 62.91 X
Born in Fire 7.99 9 71.91 X

(The Sands of Time, Two Little Lies) 14.97 0 0
(The Sands of Time, Born in Fire) 13.91 1 5.92
(Two Little Lies, Born in Fire) 11.20 1 11.20 X

(The Sands of Time, Two Little Lies,
Born in Fire)

13.91 1 5.92 X

Table 6: Case Study: Mixed Bundling

trast, bundling (The Sands of Time, Born in Fire) only re-
sults in additional revenue of 5.92, and bundling (The Sands
of Time, Two Little Lies) generates no additional revenue.
Since the three bundles are “overlapping”, we select (Two
Little Lies, Born in Fire) for its highest additional revenue.

Finally, we see that by further bundling (Two Little Lies,
Born in Fire) and The Sands of Time into a bundle of size
3, we net an additional revenue of 5.92 from someone who
previously would only purchase Born in Fire alone for 7.99,
but now would purchase the bundle of 3 at the price of 13.91.

6.6 Summary
The experiments consistently produce these findings:

• Our proposed bundling methods outperform the base-
lines in terms of revenue coverage. Bundling outper-
forms, or at least equals, Components, because it re-
verts to Components if it cannot find a better solu-
tion. Our methods also outperform the correspond-
ing bundling baselines based on frequent itemsets, i.e.,
Mixed FreqItemset and Pure FreqItemset for mixed and
pure bundling respectively. The standing among com-
parative methods is consistent and evident from the
Figures 2 to 5 in Section 6.2.

• Mixed bundling and pure bundling are different strate-
gies. Each has its own advantage depending on the
assumption about the complementarity among items
in a bundle (i.e., θ). This is evident from Figure 2.

• For both pure and mixed bundling, the matching al-
gorithm outperforms the greedy algorithm, in terms of
obtaining a higher maximum revenue coverage, as well
as doing so in less time, as shown in Figure 6.

• Both of our algorithms, the matching-based and greedy
heuristic algorithms, are relatively efficient, with run-
ning times growing polynomially with respect to items
and linearly with respect to users, as shown in Fig-
ure 7.

• Our algorithms provide tractable solutions for the bun-
dle configuration problem. Compared to weighted set
packing, our algorithms achieve the same level of rev-
enue coverage as the optimal solution (Optimal), and
outperform the greedy solution with known approxi-
mation bound (Greedy WSP) on all the random sam-
ples tested. Meanwhile, our running times are much
faster, even without taking into account the time to
enumerate all the subsets of items needed by weighted
set packing that effectively renders the weighted set
packing solutions intractable.



7. CONCLUSION
We address the bundle configuration problem by mining

willingness to pay data from user-generated ratings data.
This is a major difference from the traditional business ap-
proach where explicit solicitation from consumers is fre-
quently required, which does not work in large scale. Our
objective is to determine the bundle configuration that max-
imizes the total revenue. We address two variants of this
problem, based on the respective bundling strategies of pure
bundling and mixed bundling. We show that the problem
is NP-hard for pure bundling of size 3 or more, and intro-
duce a couple of effective heuristic solutions based on graph
matching and greedy selection respectively. Experimenta-
tion shows that our approach results in higher revenues than
individual components as well as bundles based on frequent
itemsets. Moreover, the matching-based algorithm outper-
forms the greedy algorithm in effectiveness and efficiency.
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