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Abstract—A document network refers to a data type that
can be represented as a graph of vertices, where each vertex
is associated with a text document. Examples of such a data
type include hyperlinked Web pages, academic publications with
citations, and user profiles in social networks. Such data have
very high-dimensional representations, in terms of text as well
as network connectivity. In this paper, we study the problem
of embedding, or finding a low-dimensional representation of a
document network that “preserves” the data as much as possible.
These embedded representations are useful for various applica-
tions driven by dimensionality reduction, such as visualization
or feature selection. While previous works in embedding have
mostly focused on either the textual aspect or the network aspect,
we advocate a holistic approach by finding a unified low-rank
representation for both aspects. Moreover, to lend semantic inter-
pretability to the low-rank representation, we further propose to
integrate topic modeling and embedding within a joint model. The
gist is to join the various representations of a document (words,
links, topics, and coordinates) within a generative model, and
to estimate the hidden representations through MAP estimation.
We validate our model on real-life document networks, showing
that it outperforms comparable baselines comprehensively on
objective evaluation metrics.

Keywords—document network; embedding; visualization; topic
modeling; generative model; dimensionality reduction;

I. INTRODUCTION

We are increasingly leaving a greater amount of digital
footprints. Most of this content is unstructured, primarily in
the form of text, but also with a high degree of connectivity
among different pieces of content. We refer to this data type
that can be described as a network of entities, where each
entity is associated with text content, as a document network.
There are examples abound of such data type. For one, we are
familiar with academic publications and the citations linking
them. For another, we frequently encounter Web pages and the
hyperlinks among them. In social networks, such as LinkedIn,
Facebook, or Twitter, we have user profiles and connections.

Due to their importance and wide applicability, document
networks have been an intensive subject of research, particu-
larly in information retrieval and link analysis. Relatively less
attention has been paid to much-needed methods for conduct-
ing exploratory analysis on document networks. Analyzing a
document network is very challenging because of the high-
dimensional nature of the data. In one sense, a document can
be expressed in terms of the occurrences of words (i.e., the
dimensionality of text). In another sense, a document can also
be expressed in terms of its connectivity to the other documents
(i.e., the dimensionality of network).

Problem. In this work, we focus on the embedding problem.
Given a document network, our objective is to “embed” (or
reduce) the documents’ high-dimensional representations (both
in terms of text as well as network connnectivity) in a low-
dimensional space that would still preserve as much of the
“properties” of the original data as possible.

The resulting low-dimensional representations have sev-
eral important applications. One major application towards
exploratory analysis that we focus on is visualization. By
interpreting the documents’ reduced representations as coordi-
nates on a two or three-dimensional space, we can produce a
scatterplot visualization that is spatially informative in terms of
the relative similarities or differences among entities. This form
of visualization is grounded on the principle of dimensionality
reduction [1], [2], rather than on aesthetics ground [3]. Such
a visualization may serve as a component within a larger
document organization system to assist users in categorizing
documents, or as a part within a larger retrieval system. Other
than visualization, the low-dimensional representations can
also be used as a form of lossy compression, or for feature
selection in learning tasks such as clustering or classification.

Embedding is a well-recognized problem in machine learn-
ing (see Section II). However, existing methods have not
been designed with a document network in mind. We identify
two issues that affect the fittingness of these methods for
embedding a document network. The first issue is the lack
of connection between text and network. Most methods have
been designed either for embedding text documents, or for
embedding a network. Obtaining either one embedding alone
may offer a potentially distorted or incomplete view of the
data. Obtaining both embeddings separately may produce two
different representations that are not easily reconciled.

The second issue is the relative lack of semantic in-
terpretability. Previous embedding methods produce low-
dimensional representations that are not easily interpretable
(other than as axes of the scatterplot visualization). In this
respect, we are inspired by topic modeling [4], which obtains
low-rank representations (i.e., topics) that are semantically
interpretable (through high-probability words of each topic).
However, topic modeling is not a solution to the embedding
problem. For instance, to produce two-dimensional (2D) visu-
alization, we can represent documents’ topic distributions on
a 2D simplex space, but this is only possible for three topics,
which would be severely limiting as most applications of topic
modeling require tens, if not hundreds, of topics [4].

Proposed Approach. To address the above issues, we propose
a holistic and integrated approach based on two key princi-



ples. The first principle is to embed both text and network
representations of a document into a single unified low-rank
representation. This is grounded in the intuition that text
content and network connectivity can inform each other. On
one hand, text content can help to resolve ambiguities in the
network. For instance, unobserved edges in a network may
indicate either a genuine absence or a missing presence. If
two documents are different in text content, the former is more
likely than the latter. On the other hand, network connectivity
can help to resolve the ambiguities in text through observed
edges among documents that use different words for the same
concept (synonymy), or missing edges among documents that
use common words to refer to different concepts (polysemy).

The second principle is to incorporate both a topic model
and an embedding model within a single joint model. To
make our discussion more concrete, without loss of generality,
we assume that the low-rank embedding takes the form of
2D visualization coordinates. This joint modeling is mutu-
ally beneficial to both topic modeling and visualization. By
incorporating a topic model, we can infuse the visualization
with semantic interpretability. Each point on a 2D scatterplot
can be associated with the most likely topics or words [5].
By incorporating an embedding model, the mapping between
topics and visualization may eventually offer a natural interface
for user interaction to tune the underlying topic model [6].

We are thus motivated to tie together the four represen-
tations of each document in a document network, namely:
the two high-dimensional representations in terms of word
occurrences and network connectivity respectively, the inter-
mediate representation in terms of a topic distribution as in
topic modeling, as well as the low-rank representation in terms
of visualization coordinates as in embedding. One framework
to join these disparate representations is generative modeling,
a probabilistic model for the generation of observable data
through modeling random variables (that encode the represen-
tations mentioned above). Generative modeling has been the
bedrock for much of the topic modeling works that build on
[4], though it has not been as widely applied to embedding.

Contributions. First, our novelty arises from the holistic
approach to topic-based embedding of document networks.
In comparison, previous works, reviewed in Section II, have
attempted this as separate segments, namely: embedding of
documents, embedding of networks, or topic modeling, but
have not recognized the embedding of a document network as
a distinct problem to be addressed in its own entirety.

Second, to address this problem, we develop a generative
modeling approach, and propose a model called PLANE,
which stands for Probabilistic LAtent Document Network
Embedding. In Section III, we describe the process of gener-
ation of observable data (text and network) from latent repre-
sentations (topics and visualization coordinates). In Section IV,
we outline an MAP inference algorithm to estimate the hidden
parameters of this model through EM.

Third, to validate this model, we conduct comprehensive
experiments (Section V) on four real-life document networks
derived from a benchmark collection of academic publications.
We compare our model, quantitatively as well as qualitatively,
against comparable baselines on both aspects (embedding and
topic modeling) on a number of objective evaluation metrics.

II. RELATED WORK

In terms of embedding. While we focus on embedding a
document network, there are previous efforts on embedding
documents, or embedding a network, which we review below.

To embed documents, we can employ embedding tech-
niques, which take as input M high-dimensional vectors
{vi}Mi=1 and generate as output M low-rank vectors {xi}Mi=1.
For instance, the vi’s may be the bag-of-words representations
of documents, and the xi’s may be visualization coordinates.
Good embedding produces xi’s that represent the vi’s “faith-
fully”. In traditional embedding [7], [8], [9], this criterion is
frequently formulated as preserving the distances among vi’s
in the distances among xi’s. More recent approaches [2], [10]
formulate this in terms of probabilities.

Recent works advocate having an intermediate representa-
tion, which is the topic space. The closest one to ours is PLSV
[5], which pioneers the integration of topic modeling and
visualization in a joint model. Figure 1(a) shows the graphical
model of PLSV. Its generative process is as follows. For each
topic z, we draw its word distribution βz from a Dirichlet
with parameter λ, as well as its coordinate φz from a Normal
distribution with mean 0 and variance ϕ−1. For each document
vi, we draw its coordinate xi from Normal with mean 0 and
variance γ−1. To generate each of the Ni words in vi, we draw
a topic zi,n based on the relative distance between xi and topic
coordinates, and draw a word from the selected topic’s word
distribution βzi,n . Since PLSV models only documents, our
model builds on it by integrating a network model.

There also exist other joint embedding models that focus
on orthogonal features that complement, rather than compete
with this work. Their innovations center around manifold reg-
ularization [11] or spherical representation [12], which could
potentially be incorporated into our problem independently.
Importantly, these works do not seek to model network links.

To embed a network, we can employ graph embedding
techniques, of which there are broadly two main categories of
approaches. The first category is spectral embedding, where
the focus is on dimensionality reduction. For instance, the
adjacency matrix representing the graph can be used as input
to SVD [13] or PCA [1], whose objective is compressibility
(preserving the variance in the data). To produce a low-
dimensional embedding, the first few principal eigenvectors
(with the largest eigenvalues) can be used as the coordinates
{xi}Mi=1. This approach has been widely used for various
large-scale graphs [14]. Building on this, SPE [15] attempts
to preserve the neighboring structure as well, but since it is
formulated as semidefinite programming, it is computationally
very expensive for large-scale graphs [14].

The second category is spring embedding, also known as
force-directed graph drawing. One example is the Fruchter-
man and Reingold layout [16] (FR-layout), which simulates
a force system where spring-like attractive forces on links
pull connected nodes together. The simulation is repeated
iteratively till a mechanical equilibrium state is reached (energy
minimization). Another approach Kamada and Kawai layout
[17] (KK-layout) is also based on the idea of a balanced
spring system and energy minimization, but achieves faster
convergence due to the use of derivatives. These layouts are
commonly found in graph visualization programs [18], [19].
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Fig. 1. Graphical Models of PLSV (a), RTM (b) and PLANE (c)

In terms of topic modeling. Topic modeling is originally
designed for documents [4], where each document is asso-
ciated with a topic distribution, and each topic is associated
with a word distribution. There also exists similar statistical
modeling of networks as surveyed in [20]. For instance,
in mixed membership stochastic blockmodel [21], each user
is associated with a distribution over “communities”, which
explain the generation of links among users.

Recognizing the wide availability and applicability of doc-
ument networks as a distinct data type, subsequent works
seek to combine text and networks. One example is through
a regularization framework [22], which however is not a
joint model, and therefore does not model the generation of
links. Yet others [23], [24], [25], [26] focus on modeling the
generation of both text documents and network links jointly.

Our work builds on the Relational Topic Model (RTM)
[23], which we review briefly below. Its graphical model is
shown in Figure 1(b). Each document vi is associated with
a topic distribution θi. To generate the nth word in vi, we
first pick a topic zi,n from θi, then pick a word wi,n from
zi,n’s topic multinomial βzi,n . θi and βz have Dirichlet priors
of α and λ respectively. In turn, each link yij between a pair
of documents vi and vj is generated from a link probability
function based on the topics that occur in vi and vj . The more
they share common topics, the more likely there to be a link
between them. There are a number of key differences between
RTM and PLANE. Most importantly, we need to consider the
low-rank embedding objective. We also model link generation
based on coordinates instead of topic distributions. In our
model likelihood, we also incorporate “virtual” negative links,
not just observed positive links (see Section III).

There are also some works on visualizing topic models
[27], [28], [29], [30], where the focus is on visualizing which
topics are important in a corpus, or which words are important
in a topic. While they convey some information visually, they
are orthogonal to our objective. They are not low-rank embed-
ding techniques, and do not produce a low-rank representation
for each document, which can also be used in non-visualization
applications such as dimensionality reduction or compression.

III. GENERATIVE MODEL

Here, we describe the framework and the generative pro-
cess of our proposed model PLANE, whose graphical repre-
sentation in terms of a plate diagram is shown in Figure 1(c).

Framework. We consider as input a document network, repre-
sented as a graph G = (V,E). V is a set of M vertices. Each
vertex vi ∈ V refers to a document, and is associated with a
bag of words. We denote wi,n to be the nth word token in vi,
and Ni to be the total number of word tokens in vi. Each token
has a symbol drawn from the vocabulary of words W . In turn,
E is a set of edges in G, where each edge eij ∈ E connects two
vertices vi and vj . In this work, we would model an undirected
graph, i.e., eij = eji, as our emphasis is on connectivity, rather
than on directionality. The model could still apply to directed
graphs by dropping the edge directions. In this paper, we use
the term “edge” and ”link” interchangeably.

As output, we aim for dual objectives as follows.

• Embedding: For each vertex vi, we seek to learn its
low-rank representation xi, expressed as coordinates
on a D-dimensional space. In this paper, which is
framed in terms of embedding in a visualization space,
we assume D = 2, without loss of generality.

• Topic Modeling: For each vertex vi, we also seek to
learn its representation in the topic space, expressed
as a probability distribution {P(z|vi)}Zz=1 over a spec-
ified number of Z topics, where D � Z � |W | is
expected in most cases. Correspondingly, each topic
z is associated with βz , a probability distribution
over words {P(w|βz)}w∈W , where words with high
probabilities provide semantic meaning to the topic.

To unify the dual objectives above, we need to concretely
define how the two objectives are correlated with each other.
This can be achieved by a mapping function from the visualiza-
tion space to the topic space. Towards realizing this mapping,
we associate each topic z with a visualization coordinate φz in
the same D-dimensional space. If we model each φz to be the
mean of a unit-variance Gaussian, and xi to have been drawn
from a mixture of Gaussians centered at φz’s (with uniform



mixture weights), we can express P(z|vi) as the responsibility
of the z’s component of the Gaussian mixtures [31], as shown
in Equation 1, which has also been used in [10], [5]. Here, ||·||
is the Euclidean norm defined on the visualization space, and
Φ = {φz}Zz=1 refers to the collection of all topic coordinates.

P(z|vi) = P(z|xi,Φ) =
exp(− 1

2
||xi − φz||2)∑Z

z′=1 exp(− 1
2
||xi − φz′ ||2)

(1)

This mapping has an intuitive meaning. The closer is xi to
φz in the visualization space, the greater is the probability of
topic z in vertex vi. It follows that if two vertices are close
in the visualization space, they will also share similar topic
distributions, thus encoding the above-mentioned embedding
objective of finding similar low-rank representations for doc-
uments with similar high-dimensional representations.

Generative Process. We now describe the full generative
process of our proposed model PLANE below.

1) For each topic z = 1, . . . , Z:
a) Draw z’s word distribution:

βz ∼ Dirichlet(λ)

b) Draw z’s coordinate:

φz ∼ Normal(0, ϕ−1I)

2) For each vertex vi, where i = 1, . . . ,M :
a) Draw vi’s coordinate:

xi ∼ Normal(0, γ−1I)

b) For each word wi,n, where n = 1, . . . , Ni:
i) Draw a topic:

zi,n ∼ Categorical({P(z|xi,Φ)}Zz=1)

ii) Draw a word:

wi,n ∼ Categorical(βzi,n)

3) For each pair of vertices vi and vj :
a) Draw eij’s binary indicator:

yij ∼ Bernoulli (P(yij = 1|xi, xj , η))

Step 1 shows the generation of the parameters for each
topic z. Like classical topic models [4], its word distribution βz
has a Dirichlet prior (with hyper parameter λ). Its visualization
coordinate φz has a Normal prior (centered at 0 with precision
ϕ). The mean at 0 determines the locality of the visualization.

Step 2a shows the generation of parameter for each vertex
vi, which is its visualization coordinate xi, from a Normal dis-
tribution with mean 0 and precision γ. Following Equation 1,
this coordinate is mapped to vi’s representation in the topic
space, which is a probability distribution over the Z topics,
i.e., {P(z|xi,Φ)}Zz=1.

Step 2b encodes the document embedding step, where the
“embedded” low-dimensional representation xi generates the
high-dimensional text representation (bag of words). Based on
xi’s topic space representation, we repeatedly draw a topic zi,n
from {P(z|xi,Φ)}Zz=1, followed by drawing a word wi,n from
the topic’s word distribution βzi,n .

Step 3 encodes the network embedding step, where the
“embedded” low-dimensional representation xi generates the
high-dimensional network representation (i.e., which other
vertices vi is connected to). We associate each edge eij with
a binary random variable denoted by yij , with a value of 1
if the edge is present (eij ∈ E), and 0 otherwise (eij /∈ E).
This random variable is drawn from a Bernoulli distribution.
The Bernoulli parameter is denoted by P(yij = 1|xi, xj , η) ∈
[0, 1], which determines the probability that an edge exists
between two vertices based on the vertices’ latent coordinates
xi and xj , and a parameter η (to be defined shortly).

Naturally, for network embedding, we desire that connected
vertices would share similar embedded parameters. In that
sense, the more similar are xi and xj , the higher is the
P(yij = 1|xi, xj , η). Since xi and xj are coordinates, their
“similarity” can be measured in terms of Euclidean distance
||xi−xj ||. To transform this distance into a probability value,
we adopt the exponential probability function [31], as shown in
Equation 2, where η is a parameter to be learned. In this work,
we seek to study the connectivity hypothesis itself. While there
could be other ways to realize the edge probability function,
we keep the exploration in that direction to future work.

P(yij = 1|xi, xj , η) = exp(−η · ||xi − xj ||2) (2)

Our modeling of edge probability function based on dis-
tance ties together all the representations (document, networks,
visualization coordinates, topics). This sets us apart from
others that model only subsets of these representations (e.g.,
documents and networks but not visualization [23], documents
and visualization but not networks [5]).

Model Likelihood. PLANE’s graphical model in Figure 1(c)
shows how the various representations are related to one
another. Importantly, the observed (shaded) variables are only
the words {wi,n} in vertex vi, as well as the edges’ indicators
{yij}. Equation 3 shows the log-likelihood function for gener-
ating these observed variables in the input graph G = (V,E)
based on the hidden parameters, such as embedding coordi-
nates {xi} and topic multinomials {βz}. The first component
corresponds to the text associated with vertices in V . The
second component corresponds to the edges.

L(G) =

M∑
i=1

Ni∑
n=1

log

Z∑
z=1

P(wi,n|βz)P(z|xi,Φ)+∑
ij

log P(yij |xi, xj , η) (3)

We need to decide how to model observed and unobserved
edges. One way is to set yij = 1 when an edge is observed
between vertices vi and vj , and yij = 0 otherwise. As stated
in [23], this approach may be inappropriate when the absence
of an edge cannot be used as evidence for yij = 0. To resolve
this, they decided to model only observed edges (i.e, yij is
either 1 or unobserved) [23]. While doing so can speed up
computation, it falls short of the full discriminating power
because the hidden structure of the corpora cannot be described
fully only based on the positive observations (yij = 1). The
negative observations (yij = 0) should also be considered.



Due to the reason above, we decide to model both observed
and unobserved edges. We treat observed edges as positive
observations (yij = 1). For unobserved edges, we assume that
only a subset of them would be negative (yij = 0). It is not
necessary to specify which particular edges are negative. Let
ρ be the expected number of these “virtual” negative observa-
tions (to be learned from the data), and U = M×(M−1)

2 − |E|
be the total number of unobserved edges. The expected log
likelihood of these negative observations is as follows.

ρ

U

∑
eij /∈E

log P(yij = 0|xi, xj , η) (4)

Therefore, the final log-likelihood of our model will be
computed as follows.

L(G) =

M∑
i=1

Ni∑
n=1

log

Z∑
z=1

P(wi,n|βz)P(z|xi,Φ)+∑
eij∈E

log P(yij = 1|xi, xj , η)+

ρ

U

∑
eij /∈E

log P(yij = 0|xi, xj , η) (5)

IV. PARAMETER ESTIMATION

We estimate the parameters based on maximum a posteriori
(MAP) estimation using EM algorithm [32]. The parameters
that need to be estimated are the word probabilities {βz}Zz=1,
the topic coordinates Φ, the vertex coordinates {xi}Mi=1. η and
ρ will also be learned from data. Since η and ρ are positive,
let η = η2sqr and ρ = ρ2sqr. Instead of directly learning η and
ρ, we will learn ηsqr and ρsqr to avoid imposing the positivity
constraints when optimizing the likelihood. We denote the
collection of the unknown parameters as Ψ.

The conditional expectation of the complete-data log like-
lihood in MAP estimation with priors is:

Q(Ψ|Ψ̂) =

M∑
i=1

Ni∑
n=1

Z∑
z=1

P(z|i, n, Ψ̂) log
[
P(z|xi,Φ)P(wi,n|βz)

]
+

M∑
i=1

log(P(xi)) +
Z∑

z=1

log(P(φz)) +
Z∑

z=1

log(P(βz))

+
∑

eij∈E

log P(yij = 1|xi, xj , η)+

+
ρ

U

∑
eij /∈E

log P(yij = 0|xi, xj , η)

Ψ̂ is the current estimate. P(z|i, n, Ψ̂) is the class posterior
probability of the ith document and the nth word in the current
estimate. P(βz) is a symmetric Dirichlet prior with parameter
λ for word probability βz . P(xi) and P(φz) are Gaussian priors
with a zero mean and a spherical covariance for the document
coordinates xi and topic coordinates φz . We set the hyper-
parameters to λ = 0.01, ϕ = 0.1M and γ = 0.1Z as in [5].

In the E-step, P(z|i, n, Ψ̂) is updated as follows.

P(z|i, n, Ψ̂) =
P(z|x̂i, Φ̂)P(wi,n|β̂z)∑Z

z′=1 P(z′|x̂i, Φ̂)P(wi,n|β̂z′)

In the M-step, by maximizing Q(Ψ|Ψ̂) w.r.t βzw, the next
estimate of word probability βzw is as follows.

βzw =

∑M
i=1

∑Ni
n=1 I(wi,n = w)P(z|i, n, Ψ̂) + λ∑W

w′=1

∑M
i=1

∑Ni
n=1 I(wi,n = w′)P(z|i, n, Ψ̂) + λW

.

I(.) is the indicator function. φz and xi cannot be solved
in a closed form, and are estimated by maximizing Q(Ψ|Ψ̂)
using quasi-Newton [33].

We compute the gradients of Q(Ψ|Ψ̂) w.r.t φz , xi, ρsqr,
ηsqr respectively as follows.

∂Q

∂φz
=

M∑
i=1

Ni∑
n=1

(
P(z|xi,Φ)− P(z|i, n, Ψ̂)

)
(φz − xi)− ϕφz

∂Q

∂xi
=

Ni∑
n=1

Z∑
z=1

(
P(z|xi,Φ)− P(z|i, n, Ψ̂)

)
(xi − φz)− γxi

−
∑

eij∈E

4η2sqr(xi − xj)

+
4ρ2sqrη

2
sqr

U

∑
eij /∈E

(xi − xj)
exp(−η2sqr · ||xi − xj ||2)

(1− exp(−η2sqr · ||xi − xj ||2))

∂Q

∂ρsqr
=

2ρsqr
U

∑
eij /∈E

log(1− exp(−η2sqr · ||xi − xj ||2))

∂Q

∂ηsqr
= −2ηsqr

∑
eij∈E

||xi − xj ||2

+
2ρ2sqrηsqr

U

∑
eij /∈E

||xi − xj ||2
exp(−η2sqr · ||xi − xj ||2)

(1− exp(−η2sqr · ||xi − xj ||2))

V. EXPERIMENTS

The objective of experiments is to validate the effectiveness
of our topic-based embedding method PLANE. First, we
describe the setup, in terms of the datasets (V-A) as well as
the comparable baselines (V-B). Thereafter, we conduct the
primary comparison in terms of the goodness of embedding
coordinates (V-C). This is done both quantitatively by using
the coordinates as features in a classification task, as well
as qualitatively by inspecting some example visualizations.
Finally, we compare the effectiveness of PLANE as a topic
model for document network (V-D).

A. Datasets

For repeatability, we rely on a publicly-available bench-
mark data source, which is a representative example of docu-
ment networks. Cora1 is a collection of academic publications
and their citation networks from various categories [34]. Each
document is an abstract. Two documents are connected by an
undirected edge if one document cites the other. Documents in
Cora are divided into general categories. Following [35], we
use the following categories as four separate datasets: Data
Structure (DS), Hardware and Architecture (HA), Machine
Learning (ML), and Programming Language (PL).

1http://people.cs.umass.edu/∼mccallum/data/cora-classify.tar.gz



TABLE I. DATASETS OF CORA

#classes #documents #edges vocabulary
Data Structure (DS) 9 570 1336 3085
Hardware and Architecture (HA) 6 223 515 2073
Machine Learning (MA) 7 1980 5638 4431
Programming Language (PL) 9 1553 4851 4105

TABLE II. COMPARATIVE METHODS

Document Network Topic Joint
embedding embedding model model

PLANE X X X X
RTM+PE X X X
PLSV X X X
KK X
SVD X

For each dataset, each document is further classified into
one of several sub-fields. For DS, the nine sub-fields are:
Computational Complexity, Computational Geometry, Formal
Languages, Hashing, Logic, Parallel, Quantum Computing,
Randomized, and Sorting. The other three datasets each have
their own respective sub-fields as well. We treat these sub-
fields as class labels, which are not used as input, but rather
for evaluation in Section V-C. We also remove documents that
are not connected to any document within the same dataset.

Table I lists the sizes of these datasets in terms of the
number of classes, documents, edges, and the vocabulary sizes.

B. Comparative Methods

In Table II, we list the methods that we will be comparing,
and highlight the properties of each method.

Proposed approach. As a topic-based embedding model,
PLANE is our method that models both document and network
embeddings, as well as topic model in a joint manner.

Pipelined approach. Since there is no other existing model
with all the properties, the most direct baseline is a compos-
ite approach that pipelines two methods. First, a document
network is reduced into a set of topic distributions (one for
each document) by the relational topic model RTM [23]. As
recommended in [23], α is set such that the total mass of
the Dirichlet hyperparameter is 5. λ is set to 0.01 (same as
PLANE and PLSV) following [5]. Then, these topic distribu-
tions are embedded in a 2D visualization space using PE [10],
an embedding approach designed for probability distributions.
This composite, called RTM+PE, is our primary baseline that
allows us to validate the utility of modeling both topics and
embedding jointly, as opposed to modeling them separately.

Document embedding. While document embedding is not a
direct baseline, because it does not model the network aspect,
a comparison to it allows us to evaluate the contribution
of network embedding to our model. As a representative of
document embedding, the closest one to ours is PLSV [5],
which models topic-based document embedding.

Network embedding. Network embedding is not a direct
baseline either, because it models neither documents nor
topics. For completeness, we include a comparison to two
categories of network embedding. As a representative of spring
embedding, we use KK layout [17]. As a representative of
spectral embedding, we use SVD [13]. These are among the
most popular methods in their respective categories.

For the probabilistic methods (i.e., PLANE, RTM+PE,
PLSV), we average the performance numbers across ten inde-
pendent runs. For each run, the parameter estimation is based
on 100 learning iterations. We set the number of iterations
for each Gibbs sampling E-step of RTM to 1000. As much
as possible, we have used public implementations. For RTM,
we use its original authors’ implementation2. For KK, we use
the implementation in the JUNG library3. For SVD, we use
the implementation in R software4. We implement our own
method PLANE, as well as the baselines PE and PLSV5.

C. Embedding

As our primary objective is to embed a document network
in a low-dimensional space, we first evaluate the quality of the
resulting embedding coordinates against all the baselines.

Metric. Since embedding seeks to “preserve” the original
data as much as possible in the reduced dimensions, one well-
accepted means for embedding evaluation is to use the low-
dimensional coordinates as features in a learning task [5], [15].
Since class labels are available (but not used as input), we
conduct evaluation based on classification. The more the fea-
tures help to predict the classes, the more the low-dimensional
coordinates (features) have preserved the properties of the
data (embedding objective). Because what is evaluated are the
features, we use a simple k-nearest neighbor classification. For
each document, we hide its true label, and predict its label
as the majority label among its k-nearest neighbors (based
on Euclidean distance in the embedding coordinates). The
metric accuracy(k) is the fraction of documents for which
the predicted label matches the hidden true label.

Vary number of topics. First, we investigate the effect
of the number of topics Z on accuracy. Figure 2 shows the
accuracy(10) values for the four datasets. Similar observations
regarding the relative standings of various methods can be
made for other k values as well.

The accuracy values are relatively stable across different
numbers of topics. Figure 2(b) for HA shows a small increase
from Z = 10 to Z = 20, after which accuracies remain flat.
For subsequent experiments, we will use Z = 20 by default.

In absolute terms, PLANE achieves high accuracies of
around 0.8 for HA, and 0.7 for DS, ML, and PL. This is
notable as PLANE only uses 2-dimensional features for the
k-NN classification. This helps to validate the quality of the
embedding in preserving the high-dimensional representations.

In relative terms, PLANE has higher accuracies than all
the baselines. This outperformance is statistically significant in
all cases. It outperforms RTM+PE, which helps to validate the
utility of having a joint modeling of embedding and topics. It
also outperforms document embedding (PLSV) and network
embedding (KK, SVD), which justifies embedding documents
and network with a unified low-rank representation.

Among the baselines themselves, there is no consistent
ordering across datasets in terms of which is better. For the

2http://cran.r-project.org/web/packages/lda/
3http://jung.sourceforge.net/
4http://stat.ethz.ch/R-manual/R-devel/library/base/html/svd.html
5We could not find a public or an original implementation by their authors.
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Fig. 2. Accuracy at k = 10 nearest neighbors for varying number of topics Z
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Fig. 3. Accuracy at varying k nearest neighbors for Z = 20 topics

network embedding KK and SVD, accuracies are flat across
different Z’s because they are not topic-based approaches.

Vary neighborhood size. We now investigate how the
accuracy is affected by different neighborhood sizes for the
k-NN classification. Figure 3 shows the accuracy(k) values
for the four datasets when Z = 20. As shown by the earlier
consistency among different Z’s, similar observations can be
made for other number of topics as well. For all the methods,
there is a general tendency that accuracy decreases at larger
k’s. This is reasonable, because as k increases, we use a
greater number of neighbors to arrive at the classification,
which dilutes the quality of classification. Importantly, in
relative terms, the outperformance by PLANE still stands
across different k’s, for the reasons explained above.

Visualization. To gain a sense of the visualization quality
obtained by embedding the documents in a two-dimensional
scatterplot, we show several examples for the various datasets.

We begin with the Data Structure (DS) dataset. Figure 4(a)
shows the visualization generated by PLANE. Each document
is a dot placed in the scatterplot according to their 2D
embedding coordinates. Each dot is painted with a color that
represents its sub-field or class. The legend specifies the colors
assigned to each class. Edges are lines between two connected
documents. There are two key observations. First, note how
the different classes are quite well-separated from one another
(the class information itself was never used for learning). The
red Parallel documents are at the lower right, while the grey
Sorting documents are at the center. Second, note how the
edges are hardly visible, which is a good sign because it
means connected documents are placed as close neighbors in
the visualization space. Otherwise, we would have witnessed
criss-crossing lines all over. These observations support the

hypothesis that having a joint model for embedding documents
and network results in better embedding overall.

Still for the DS dataset, Figure 4(b) for RTM+PE does
not show a good separation between classes, and has many
criss-crossing edge lines. This is because while the network
is used to influence the topic distributions, because of the
disjoint embedding through PE, the network effect does not get
enforced in the embedding process. PLSV in Figure 4(c) looks
more coherent than RTM+PE, but not as clean as PLANE.
For one thing, the grey sorting documents are spread apart,
while in PLANE they are clustered together. For another
thing, there are still criss-crossing edges due to separation of
connected documents as PLSV models text content only. In
contrast, KK in Figure 4(d) models only network embedding.
Thus connected edges are tightly clustered together. However,
because it does not model content, documents of the same class
without connection to each other are spread far apart (e.g., the
red parallel). Due to space constraint, here we do not show
SVD (which has the lowest accuracy for DS in Figure 3(a)).

To show that the observations for PLANE apply to other
datasets as well, in Figure 5, we show PLANE’s visualiza-
tion for HA, ML, and PL datasets. Evidently, PLANE can
group together documents of the same class well, and place
connected documents as neighbors in the visualization space.

D. Topic Modeling

While our main objective is to improve the embedding of
document networks, it is important to ensure that the gains
in embedding and visualization quality have not come at the
expense of the topic model. Since ours is a topic model for a
document network, the appropriate comparison is to a baseline
that also models the generation of both words and links,
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Fig. 4. Visualizations of Data Structure (DS) dataset for Z = 20 (best seen in color)

namely RTM [23]. In the following, we compare PLANE and
RTM, in terms of the topic words, as well as the links.

1) Topic Interpretability: As modeling topics with em-
bedding is to improve the interpretability of embedding, we
evaluate the topics on how interpretable the topic words are.

Metric. Pointwise Mutual Information (PMI) is an estab-
lished measure for how coherent the top words in a topic are
[36]. PMI for two words wi and wj is defined in Equation 6.

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
(6)

PMI uses an external corpus to estimate p(wi, wj) and
p(wi). As in [36], we use Google Web 1T 5-gram Version
1 [37], a corpus of n-grams generated from 1 trillion word
tokens. p(wi) is estimated from the frequencies of 1-grams.
p(wi, wj) is estimated from the frequencies of 5-grams. For
each topic, we average the pairwise PMI’s among the topic’s
top 10 words. For each model, we average the topic-level
PMI’s. Higher PMI indicates that the words in a topic are
correlated, and the topic is more coherent and interpretable.

PMI Scores. Table III shows the PMI scores for the four
datasets for Z = 20 topics. The figures for other numbers

TABLE III. PMI SCORES FOR TOPIC INTERPRETABILITY (Z = 20)

DS HA ML PL Average
PLANE 0.59 0.53 0.43 0.51 0.51
RTM 0.54 0.48 0.51 0.50 0.50

of topics are consistent as well. Averaging across the four
datasets, PLANE and RTM have very similar PMI’s of around
0.5. This suggests that PLANE is at least not inferior to RTM,
even with the constraint of modeling embedding coordinates.
This shows a great promise by PLANE in enriching the
visualization with coherent semantic interpretability.

To get a sense of the topic interpretability, we show in
Table IV the top ten words of each of the 20 topics learned
by PLANE for the DS dataset. These keywords are strongly
suggestive of the various sub-fields/classes in DS. For instance,
topic 0 is probably about Computational Complexity, topic 1
is about Randomized, while topic 4 is about Parallel. Topic 13
are strongly suggestive of Quantum Computing, whereas topic
19 seems to capture Computational Geometry. In general, the
top words in each topic are indeed coherent and meaningful.

2) Link Generation Probability: In addition to words,
both PLANE and RTM also model edges or links. In order
to evaluate their effectiveness in modeling link generation, we
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Fig. 5. PLANE’s Visualizations for Z = 20 (best seen in color)

compare the two methods in terms of link prediction. Note that
this is confined to an evaluation task, and our goal is not to
propose or compare to state-of-the-art link prediction methods.

For each document (with at least three links), we randomly
hide one link. In total, we have around 13%-14% of all
links hidden. The task is thus to predict these hidden links
based on the observations on the texts and the remaining
links. To estimate these hidden links, for PLANE, we use

TABLE IV. TOP 10 WORDS FOR TOPICS IN DS BY PLANE (Z = 20)

ID Top 10 words
0 class, complexity, set, result, measure, prove, study, language, theorem, hierarchy
1 time, log, bound, construction, random, application, work, small, size, construct
2 problem, space, algorithm, time, class, set, competitive, prove, analysis, structure
3 module, approach, paper, program, time, computational, composition, performance,

logic, type
4 parallel, processor, machine, communication, algorithm, model, performance, imple-

mentation, memory, message
5 result, proof, number, approximate, random, paper, program, property, bit, graph
6 code, algorithm, performance, implementation, parallel, matrix, system, computation,

routine, communication
7 algorithm, graph, log, bind, lower, tree, problem, deterministic, network, edge
8 time, structure, query, datum, log, geometric, point, tree, problem, decomposition
9 model, algorithm, parallel, problem, pram, sort, optimal, memory, number, design
10 paper, algorithm, language, matrix, grant, work, number, support, computer, science
11 method, domain, finite, equation, solution, problem, element, mixed, mesh, system
12 function, polynomial, test, proof, program, code, property, interactive, system, testing
13 quantum, problem, computer, machine, computation, model, time, turing, number,

polynomial
14 algorithm, complexity, number, problem, set, polynomial, bind, case, real, space
15 system, hybrid, state, property, control, method, verification, transition, game, linear
16 digraph, vertex, result, algorithm, polynomial, path, problem, number, find, bind
17 type, set, constraint, algebra, result, system, space, term, kleene, program
18 time, automaton, model, clock, logic, simulation, real-time, language, checking, sym-

bolic
19 algorithm, mesh, problem, equation, base, ratio, string, generation, quality, triangulation

the document coordinates to compute the probability of a
hidden link according to Equation 2. For RTM, we compute
the probability of a hidden link according to [23], which shares
a comparable exponential link probability function but based
on topic distributions (instead of latent coordinates).

Metric. One possibility is to compute the likelihood of
generating these hidden links. However, this may not be an
appropriate measure, because we will be computing only the
likelihood of some links being present (but not of links being
absent), thus favoring a model that simply produces higher
probability values across the board for all possible links. For
instance, consider how in Equation 2, one can produce a higher
likelihood simply with a lower η, even while keeping all xi
and xj’s the same, which is inappropriate because the model
complexity is in deriving the coordinates to determine which
documents should (or should not) be neighbors.

Therefore, a more appropriate metric is to evaluate whether
the model assigns a higher probability to the hidden link
(which is factually present, though not used for learning) than
to other unobserved links. For each document with a hidden
link, we rank all the unobserved links of this document in
terms of their generation probabilities. The highest rank is 1.
Intuitively, the hidden link is expected to have a rank as close to
1 as possible, because it is indeed a factual link that was simply
hidden from the model. We borrow a metric from information
retrieval, called mean reciprocal rank [38] or MRR, which is
defined in Equation 7, where E′ is the set of hidden links,
and rank(eij) is the ranking of the hidden link eij among the
unobserved links of the document from which it is hidden. The
higher is the MRR of a method, the better is the method at
placing the hidden links in the high ranks.

MRR =
1

|E′|
∑

eij∈E′

1

rank(eij)
(7)

MRR Scores. Table V shows the MRR scores for the four
datasets for Z = 20 topics. The figures for other numbers of
topics are consistent as well. We see that PLANE produces
significantly higher MRR scores than RTM across all the



TABLE V. MRR SCORES FOR LINK PREDICTION (Z = 20)

DS HA ML PL Average
PLANE 0.328 0.207 0.194 0.219 0.237
RTM 0.005 0.009 0.0001 0.002 0.004

datasets. Averaging across the datasets, PLANE has a score of
0.237, which implies that it generally places the hidden links
in the top 5 in terms of link generation probability. In contrast,
RTM’s score of 0.005 implies that the hidden links tend to be
placed around the two hundredths’ rank positions.

We attribute PLANE’s higher performance in this task to
the way we infer the parameters of the model. As discussed
in Section III, by modeling some amount of “virtual” negative
links we force the model to discriminate between close neigh-
bors (more likely to be positive links) and distant documents
(more likely to be negative links). In contrast, by modeling
only positive links, RTM is not as able to sharply discriminate
genuine neighbors from unrelated documents. The trade-off is
that PLANE requires more run time than RTM, because the
former models both positive as well as “virtual” negative links,
whereas RTM models positive links only (of which there are
relatively few in a sparse network).

VI. CONCLUSION

We address the problem of embedding a document net-
work’s high-dimensional representations in terms of text and
network connectivity in a low-dimensional space. We formu-
late this as a generative model tying together the various
representations of a document (words, links, topics, and co-
ordinates), which we call PLANE. Through comprehensive
experiments on four real-life datasets extracted from the Cora
collection, we show that it outperforms existing baselines in
topic modeling, document embedding, and network embed-
ding, especially in terms of the quality of embedding coordi-
nates (as features in classification and scatterplot visualization).
For future work, we plan to consider extensions such as
generalizing to directed graph, and pursuing computational
optimizations such as hyper-threading or parallel processing.
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