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Detecting anomaly collections using extreme
feature ranks

Hanbo Dai · Feida Zhu · Ee-Peng Lim ·
HweeHwa Pang

Abstract Detecting anomaly collections is an important task with many applications, 
including spam and fraud detection. In an anomaly collection, entities often operate 
in collusion and hold different agendas to normal entities. As a result, they usually 
man-ifest collective extreme traits, i.e., members of an anomaly collection are 
consistently clustered toward the top or bottom ranks on certain features. We 
therefore propose to detect these anomaly collections by extreme feature ranks. We 
introduce a novel anomaly definition called Extreme Rank Anomalous Collection or 
ERAC. We propose a new measure of anomalousness capturing collective extreme 
traits based on a statisti-cal model. As there can be a large number of ERACs of 
various sizes, for simplicity, we first investigate the ERAC detection problem of 
finding top-K ERACs of a predefined size limit. We then tackle the follow-up ERAC 
expansion problem of uncovering the supersets of the detected ERACs that are more 
anomalous without any size constraint. Algorithms are proposed for both ERAC 
detection and expansion problems, followed by studies of their performance in four 
datasets. Specifically, in synthetic datasets, both ERAC detection and expansion 
algorithms demonstrate high precisions and recalls.
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In a web spam dataset, both ERAC detection and expansion algorithms discover web
spammers with higher precisions than existing approaches. In an IMDB dataset, both
ERAC detection and expansion algorithms identify unusual actor collections that are
not easily identified by clustering-based methods. In a Chinese online forum dataset,
our ERAC detection algorithm identifies suspicious “water army” spammer collec-
tions agreed by human evaluators. ERAC expansion algorithm successfully reveals
two larger spammer collections with different spamming behaviors.

Keywords Anomaly collection · Extreme feature rank · Anomaly cluster ·
Outlier group · Spam detection · Spam cluster

1 Introduction

According to Barnett and Lewis (1994), an anomaly or outlier is a data instance or
subset of data instances which appears to be inconsistent with the remainder of that
set of data. In general, an anomaly can be classified as point anomaly or anomaly
collection. A point anomaly usually lies in a sparse region or is far away from normal
ones, whereas an anomaly collection are formed by similar entities, which as a whole
is inconsistent with the rest. In practice, this inconsistency often implies different
agendas from normal entities such as fraudulent activities or spamming campaigns.

In this paper, we detect anomaly collections by their extreme feature ranks, based
on the observation that members in an anomaly collection often collaborate with each
other and they manifest extreme traits. A good example is web spammer collections. As
reported by Fetterly et al. (2004), Castillo et al. (2007) and Gyöngyi et al. (2004), web
spammers adopt spamming strategies to boost the ratings of their pages. For example,
they stuff the pages with popular keywords and anchor texts that are unrelated to one
another. They also generate pages from similar templates on the fly in order to perform
“link spam”. As a result, when measured by those characteristics or features, spammer
hosts consistently demonstrate very extreme traits and form an identifiable anomalous
collection, in contrast to normal web hosts.

To illustrate, Fig. 1 shows 30 web hosts {e0, . . . , e29} with three host features
{ f0, f1, f2}, reflecting the aforementioned spamming strategies: f0 represents the
average number of popular keywords, f1 is the variance of the word count, and f2
captures the average fraction of anchor text. For each feature, we rank all the web
hosts in descending order by their feature values. We can then identify {e5, e7, e12} as
an anomaly collection because all of its entities appear at the top positions on features

.....

.....

.....e16 e5 e24 e7 e12 e9 e1 e27 e8

e8 e12 e5 e4 e7

e7 e5 e12 e1 e15 e6 e29 e20 e21 e8

f0

f1

f2

e19

e29

e22 e18e2 e14

Fig. 1 An example of ERAC. 30 entities {e0, . . . , e29} are ranked according to each 3 features { f0, f1, f2}. 
In this example, {e5, e7, e12} is an ERAC
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f0 and f2, and at the bottom positions on feature f1. The fact that e5, e7 and e12
collectively display extreme traits across the three features is a strong evidence that
they are likely to be web spammers.

As another example, groups of fraudulent users in online marketplaces are anomaly
collections with extreme traits. A fraudulent user would create sufficient low-price
transactions with other accomplice accounts in a short time in order to gain credibility,
before performing fraud transactions involving large sums of money according to Chua
and Wareham (2004) and Pandit et al. (2007). Consequently, they are likely to rank at
extreme positions with respect to features such as average number of transactions and
transaction rate.

To better study this kind of anomaly collections, we propose a novel definition,
Extreme Rank Anomalous Collection or ERAC. An ERAC is an entity subset clustered
toward the top or bottom ranks, when entities are ranked on certain features. ERACs
cannot be easily detected by existing anomaly detection approaches, because they
either focus on single point anomalies, or they are not optimized to detect collections
with extreme characteristics.

Note that a set of single point anomalies does not always form an ERAC, because
not every entity in an ERAC may appear at extreme positions. For example, in Fig. 1,
e12 is not very extreme by itself although it is part of an ERAC {e5, e7, e12}. In contrast,
e8 is very anomalous as a single entity, since it appears at extreme positions on all
three features, but it does not form an extreme cluster with any other entities. ERACs
therefore cannot be discovered by simply grouping single point anomalies found by
existing approaches.

To detect ERACs, Dai et al. (2012) propose to model an ERAC by the hyperge-
ometric distribution. The anomalousness of an ERAC is quantified by a statistical p
value. Due to the large number of ERACs of various sizes, Dai et al. (2012) tackle the
ERAC detection problem of discovering top-K ERACs with a predefined size limit,
which is set to small values for efficiency reasons. Nevertheless, after being offered
with the top ERACs of a predefined size, users may want to further explore the most
anomalous supersets of some detected top-K ERACs. For example, in the webspam
case, users may find the detected ERAC {e5, e7, e12} of interest as they have the com-
mon spamming strategy of using lots of popular keywords, with very little variance on
the word count, and high fraction of anchor text. It is natural to ask, can we detect the
superset of this ERAC that are even more anomalous with similar sets of spamming
strategies?

Therefore, in this paper, we not only explore the ERAC detection problem, but also
propose the ERAC expansion problem to uncover the supersets of the detected ERACs
that are more anomalous than the original top-K ones. Unlike the ERAC detection
problem, ERAC expansion is done without predefined size constraints.

We summarize our contributions as follows:

– We are the first to detect anomaly collections by their extreme feature ranks. We
measure the anomalousness of a collection by how extremely ranked it is with
respect to any feature set.

– We develop both exact and heuristic algorithms to find the top-K anomalous col-
lections of a predefined size limit on different pruning strategies under the feature
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independence assumption. We then provide algorithms for coping with the more
general situations with dependent feature sets.

– We propose the follow-up problem of ERAC expansion to uncover the anomalous
supersets of the detected ERACs. We also design efficient greedy algorithms to
solve the expanding problem without having to specify the size limit.

– We propose an exploratory scheme for searching ERACs, making use of the algo-
rithms developed in both ERAC detection and expansion problems.

– We apply our ERAC detection approach on synthetic datasets with injected ERACs
and on three real datasets including a web host graph, a movie dataset and a Chinese
online forum dataset. In synthetic datasets, our proposed heuristic algorithm scales
well with large dataset and at the same time maintains high precisions and recalls.
For the web spam dataset with labeled true spammers, our approach discovers
spammer collections that are more anomalous while achieving higher precisions,
compared to existing approaches in both spam detection and anomaly detection.
In the movie dataset, we detect unusual actor collections that are more anomalous
than clustering-based method. User evaluation shows our approach successfully
finds opinion spammer collections in the Chinese forum dataset.

– We also apply our ERAC expansion algorithm in all datasets. The results demon-
strate that in the synthetic datasets, the injected ERACs are retrieved with high
success rate; in web host dataset, the algorithm achieves higher precision than
existing methods; in the movie dataset, the expansion reveals larger anomalous
actor collections that cannot be discovered by the clustering-based approach; in the
Chinese online forum dataset, the expansion uncovers larger spammer collections
of coherent unusual behaviors.

The rest of the paper is organized as follows. Section 2 discusses related work.
After introducing the problem formulation in Sects. 3 and 4 presents our ERAC detec-
tion algorithms for both independent and dependent feature sets. Section 5 describes
our ERAC expansion problem and its algorithms. Section 6 discusses an exploratory
scheme for searching ERACs. Section 7 reports on experiments on both ERAC detec-
tion and expansion. Finally, Sect. 8 concludes the paper and discusses limitations and
feature work.

2 Related work

According to a survey by Chandola et al. (2009), most of the studies on anomaly
detection focus on point anomalies. A handful of approaches are proposed such as
a classification-based one by Castillo et al. (2007), a distance-based one by Knorr
and Ng (1998), a density-based one by Breunig et al. (2000) and clustering based
ones by Ester et al. (1996) and Guha et al. (1999). Since these approaches assume that
anomalies appear in sparse regions or are far away from the normal entities, anomalous
collections that are dense or are close to the normal entities may escape detection.

Duan et al. (2009), He et al. (2003) and Loureiro et al. (2004) use clustering based
approach for anomalous collection detection, assuming that normal entities belong to
large and dense clusters, whereas outliers form small or sparse clusters. According to
Duan et al. (2009) and He et al. (2003), anomalous clusters are the smaller ones that
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together constitute less than 10 % of the population. Loureiro et al. (2004) claim that
the threshold is half of the average cluster size. However, the assumption that small or
sparse clusters are anomalous may not hold in many real datasets. Furthermore, these
algorithms do not consider collective extreme traits.

Liu et al. (2010) detect anomaly collections by a data structure called isolation
forest. The work assumes that after data points are projected to some hyperplane, the
anomalous points follow one distribution while the normal points follow a different
distribution. The two distributions are further assumed to be separable by minimiz-
ing their dispersions. However, these assumptions do not always hold, especially for
datasets with multiple similar extreme patterns.

Arias-Castro et al. (2011) use a statistical model to detect in a graph an anomaly
collection in which the node features have a different distribution than the rest of the
nodes. This work takes the assumption that only one anomalous cluster exists in the
whole graph, and only one feature can be attached to each node.

Detecting anomalous collections is also related to the task of subgroup discovery
proposed by Klösgen (1996) and Wrobel (1997). A survey done by Herrera et al. (2011)
summarizes the task as to discover the subgroups of the entity population that are
statistically “most interesting” with respect to the class labels of entities. The subgroups
are induced by rules, which are a conjunctive or disjunctive of attribute-value pairs.
However, the anomaly collection of interest in this paper is not representable by the
rules. This is because, (i) not all members of an anomaly collection satisfy rules; (ii)
entities satisfying rules may not be members of an anomaly collection. Moreover, the
anomalousness we use to measure an anomaly collection does not involve the class
labels, whereas the interestingness measure used for subgraph discovery usually does.

3 Extreme rank anomalous collection

Dai et al. (2012) have shown that the anomalousness of a collection is better measured
directly at collection level, instead of measuring individually on entity level followed
by aggregating over the whole collection. Here we adopt that definition. Table 1 sum-
marizes notations introduced below.

Let E denote the universal entity set, and F a set of features. rank f (e) denotes the
rank of entity e in E w.r.t. feature f . In Fig. 1, rank(e8) = 1 and rank(e7) = 30 on
feature f1. An extremity index r refers to an extreme region, and S f (r) denotes the
set of entities in S which appear in top r rank positions w.r.t. feature f ,

Table 1 Notations

Notation Meaning Notation Meaning

E The universal entity set F A feature set { f }
S An entity collection r An extremity index

Rank f (e) The ranking of e w.r.t. f S f (r) Entities in S within r on f

p f (S, r) p value of S w.r.t. r on f p̂ f (S) S′ representative p value on f

r f (S) Representative r of S on f
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S f (r) = {e | ∀e ∈ S, rank f (e) ≤ r}

In Fig. 1, suppose S = {e5, e7} and r = 2, we have S f0(r) = {e5}. Similarly, suppose
S = E and r = 3, E f1(r) = {e8, e2, e14} the top 3 entities on f1.

The extremity of any collection S ⊂ E can be quantified by |S f (r)|, which is a
random variable following the hypergeometric distribution. Thus the probability of
observing |S f (r)| common entities shared by S and E f (r) is:

Pr(|S f (r)|, |E |, |E f (r)|, |S|) =
(|E f (r)|
|S f (r)|

) · (|E |−|E f (r)|
|S|−|S f (r)|

)

(|E |
|S|

)

The p value of S w.r.t. extremity index r and feature f , denoted as p f (S, r), is the
probability of observing at least |S f (r)| common entities between a random collection
of size |S| and E f (r).

p f (S, r) =
min(|E f (r)|,|S|)

∑

i=|S f (r)|
Pr(i, |E |, |E f (r)|, |S|)

Among all choices of r , we call the one which gives the smallest p value representative
extremity index of S w.r.t. f , which is defined as:

r f (S) = argmin0<r<|E |/2 p f (S, r)

The corresponding representative p value of S w.r.t. f is denoted as p̂ f (S), i.e.,
p̂ f (S) = p f (S, r f (S)). The smaller the representative p value, the more anomalous
(i.e., extremely ranked) the collection is. In Fig. 1, we compare S = {e5, e7} with S′ =
{e7, e12} by their representative p values for f0. p̂ f0({e7, e12}) = p f0({e7, e12}) =
0.023. Since p̂ f0({e5, e7}) = 0.013 is smaller than p̂ f0({e7, e12}), {e5, e7} is more
anomalous than {e7, e12} w.r.t. f0; this is intuitive as {e5, e7} sits more towards the top
positions than {e7, e12} on f0.

Given a universal entity set E and an entity set S s.t. S ⊂ E, 1 < |S| < |E |/2,
a set of independent features F and a threshold α, we say S is an Extreme Rank
Anomalous Collection (ERAC) w.r.t. F if (i) ∃F S ⊆ F such that |F S| > 1 and
∀ f ∈ F S, p̂ f (S) ≤ α; (ii) 1 < |S| < |E |/2.

The definition is based on a global null hypothesis of multiple hypothesis tests,
where each test corresponds to one feature. S is anomalous w.r.t. F , if the derived p
values are smaller than a predefined significance level1 α in at least two tests (i.e.,
|F S| > 1).

Note that when we reject the null hypothesis and say that S is anomalous, S may not
be significant for every feature. We call F S the significant features of S. We impose

1 In order to control the type 1 error (false positive), the significance level for each individual test should be 
adjusted. We adopt the Bonferroni Correction by Dunnett (1955) to adjust the significance level to α/|F |.
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the condition 1 < |S| < |E |/2, as an anomalous collection should contain more than
one entity and yet remain the minority of the population.

The definition also requires a set of independent features F . We define the depen-
dency of any two features f, f ′ ∈ F based on the statistic of Kendall Tau rank
correlation coefficient Kendall (1948).

dep( f, f ′) = |3(nc − nd)|√|E | · (|E | − 1) · (2|E | + 5)/2

where nc is the number of concordant pairs of entities and nd is the number of dis-
cordant pairs of entities in the entity lists, which are generated by ranking all entities
on feature f and f ′ respectively. As the dependency statistic is expected to follow
the standard normal distribution, we compute the z-score value λ corresponding to
any given significance level of a two tailed test. For example, if the significance level
is 0.05, the z-score is 1.96. Therefore, given f and f ′, if the dep( f, f ′) score is not
greater than λ, then f and f ′ are independent of each other. Note that cases with
dependent features will be dealt in the following section.

As the representative p value measures how anomalous an ERAC is for a single
feature, we define the anomaly score of an ERAC S for a set of features F as the
product of the representative p values for all the significant features in F . As the
probability value tends to be very small, we take the log form:

�(S, F) = −
∑

f ∈F S

log p̂ f (S)

This definition reflects that the more features S is extremely ranked against, the more
anomalous it is.

With the anomaly score defined, we formulate our ERAC detection problem as
follows: Given an entity universe set E , an independent feature set F , a target collection
size N (N < |E |/2) and K , find the top-K most anomalous ERACs of size at most N .

As there are potentially large number of ERACs in a large population E , we focus
on the top-K ERACs. We require a predefined size limit N of small values, as the
anomalous collections are by definition the minority in the population anyway.

4 ERAC detection algorithms

In this section, to tackle the ERAC detection problem, we develop an exact algorithm
in Sect. 4.1 and two heuristic algorithms in Sects. 4.2 and 4.3. The more general case
of dependent features is discussed in Sect. 4.4.

Before we dive into details of these algorithms, we first analyze high level strategies
to guide our algorithm design. A naive way to find the top-K ERACs of size at most
N , is to enumerate all collections of size up to N , sort them by anomaly score in
decreasing order, and return those with the top-K ranks. This approach is obviously
infeasible due to its combinatorial nature. Therefore, a better strategy is to successively
generate larger ERAC candidates from smaller ones, maintaining a current top-K list
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and pruning unpromising candidates. Since Agrawal and Srikant (1994) have proposed
a proven way of generating candidates for frequent item-sets level by level from single
entities to collections of target size N , we adopt his approach. However, for Apriori it is
safe to prune any candidate from future consideration whenever it is found to fall below
the threshold set by the last collection in the current top-K list, whereas our anomaly
score of ERAC does not enjoy this downward closure property to support the standard
pruning strategy in top-K computation. This is because for any collection S, even
when the anomaly score �(S, F) is less than the least one in the current top-K list, we
cannot conclude that for all super-sets S′ of S, the anomaly score �(S′, F) ≤ �(S, F)

and therefore safely prune S. The absence of this property on the anomaly score poses
a difficulty to our bottom-up search approach.

4.1 An exact algorithm ERAC_E

Based on the analysis above, it seems that we would actually have to keep all collections
of size n to generate candidates of size n + 1 to guarantee the completeness of the
mining result. Fortunately, despite the absence of downward closure property on the
anomaly score which precludes setting an upper-bound on �(S′) for all super-sets S′
of S, it is possible to derive an upper-bound on �(S′) for those super-sets of S of a
given size n. Intuitively, the most anomalous super-set S′ of S, carrying this upper-
bound can be formed by adding to S exactly |S′| − |S| entities which are ranked the
most extreme positions.

Formally, given a collection S, size n, (|S| < n ≤ |E |/2), and a feature f , the
most anomalous super-set of S is denoted as Ŝn , and defined as Ŝn( f ) = S ∪ S∗,
where |S∗| = n − |S| and ∀e′ ∈ S∗,∀e ∈ E − Ŝn, rank f (e′) ≤ rank f (e). Following
the example in Fig. 1, suppose S = {e5, e12}, we have Ŝ4( f0) = {e16, e5, e24, e12}
because, on f0, e16 and e24 are the two entities ranked the most extreme in the top
positions, excluding the entities already in S.

Accordingly, given F and S, the upper-bound with size-constraint n for S is
defined as:

̂�(S, F, n) = −
∑

f ∈F

log p̂ f (Ŝn( f ))

To show that ̂�(S, F, n) indeed represents the upper-bound on the anomaly score
of all super-sets of S of size n, we first introduce a property of p value.

Property 1 Given any feature f , collections S and S′ and extremity indices r and r ′,
if |S| = |S′|, |E f (r)| = |E f (r ′)| and |S f (r)| > |S′

f (r
′)|, then p f (S, r) < p f (S′, r ′).

Proof By definition, we have p f (S, r) = ∑min(|E f (r)|,|S|)
i=|S f (r)| Pr(i, |E |, |E f (r)|, |S|) and

p f (S′, r ′) = ∑min(|E f (r ′)|,|S′|)
i=|S′

f (r
′)| Pr(i, |E |, |E f (r ′)|, |S′|).

Since |S| = |S′|, |E f (r)| = |E f (r ′)| and |S f (r)| > |S′
f (r

′)|, we have p f (S′, r ′) =
p f (S, r) + ∑|S f (r)|−1

i=|S′
f (r

′)| Pr(i, |E |, |E f (r)|, |S|).



Detecting anomaly collections 9

As Pr(i, |E |, |E f (r)|, |S|) > 0, we have p f (S, r) < p f (S′, r ′). �
Property 1 can be explained as, with all other parameters kept constant, the larger the

number of entities in S that fall into the extreme positions, the smaller the p value is.
Now we arrive at the following Theorem 1 stating ̂�(S, F, n) is indeed the upper-

bound on the anomaly score of all super-sets of S of size n.

Theorem 1 Given S, 0 < |S| < |E |/2, ∀S′ such that S ⊂ S′ and |S′| < |E |/2, we
have �(S′, F) ≤ ̂�(S, F, |S′|)
Proof Suppose S and S′ are two collections s.t. S ⊂ S′. To prove �(S′, F) =
−∑

f ∈F log p̂ f (S′) ≤ ̂�(S, F, |S′|) = −∑

f ∈F log p̂ f (Ŝ|S′|( f )), we need to show

that for any f , p̂ f (S′) ≥ p̂ f (Ŝ|S′|( f )). Let ̂S denote Ŝ|S′|( f ).
Since |̂S| = |S′|, |̂S ∩ E f (r f (S′))| ≥ |S′ ∩ E f (r f (S′))|. According to Property 1,

we have p f (S′, r f (S′)) ≥ p f (̂S, r f (S′)). By definition, p f (̂S, r f (̂S)) ≤ p f (̂S, r).
So we have p f (̂S, r f (̂S)) ≤ p f (̂S, r f (S′)).

Thus, p f (S′, r f (S′)) ≥ p f (Ŝ|S′|( f ), r f (Ŝ|S′|( f ))), and �(S′, F) ≤ ̂�(S, F, |S′|).
�

Based on the upper-bound with size-constraint, we propose an exact algorithm that
incorporates the following pruning strategy.

Pruning technique 1 In generating candidates of size n +1, only those collections S
with anomaly score upper-bound for size-constraint n +1, i.e., �̂(S, F, n +1), larger
than �t are grown.

Although the absence of downward closure property creates issues, with our pruning
strategy, the upper-bound is computed with a size-constraint which increases in tandem
with the size of candidates being generated. It has several advantages: (i) when the size
is small, an upper-bound with the same small size-constraint is more likely to fall below
�t ; (ii) as the size grows, �t increases monotonically as well, continually pushing the
bar higher for the upper-bound to beat. The ERAC_E algorithm for computing top-K
ERACs of size up to N is shown in Algorithm 1, followed by a running example in
Table 2 to illustrate the pruning techniques applied on the example in Fig. 2.

Step 6 of Algorithm 1 applies Theorem 1 in excluding from S those collections with
upper-bounds smaller than the threshold. Moreover, through join(), the supersets of
collections with anomaly score upper-bounds smaller than the threshold are excluded
from S. The join(S(i), S(i)) function compute S1

⊗

S2 for each (S1, S2) pair derived
from S(i), where the operation

⊗

combines two size-i collections with identical i −1
elements to a size-(i + 1) collection (and is implemented similarly as in the Apriori
Algorithm by Agrawal and Srikant (1994)).
Running example. Figure 2 shows the top 15 entities ranked by f0 out of a universe
of 30 entities. Suppose K = 1 and N = 3. Table 2 shows the execution of Algorithm 1
with the changes in S(i), S

∗ and �t .
When n = 1, S

∗ is updated to keep the current most anomalous collection after
Step 3: {e16}. �t is updated to �({e16}, { f0}) = − log p̂({e16}) = 3.40. At Step
4 of Algorithm 1, since S(1) = ∅, S contains all the singular sets. At Step 6,
the set of selected collections of size 1 is S = {{e16}, {e5}, {e24}, {e7}, {e12}} by
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Table 2 Algorithm 1 running
on the example shown in Fig. 2

n S(i) S
∗ (�t )

1 S(1) = {{e16}, {e5}, {e24}, {e7}, {e12}} {{e16}} (3.4)

2 S(1): same as above {{e16, e5}}
S(2) = {{e16, e5}, {e16, e24}, {e16, e7}, (6.08)

{e16, e12}, {e5, e24}, {e5, e7}, {e5, e12},
{e24, e7}, {e24, e12}, {e7, e12}}

3 S(1): same as above {{e16, e5, e24}}
S(2): same as above (8.31)

S(3) = {{e16, e5, e24}, {e16, e5, e7},
{e5, e24, e7}}

e16 e5 e24 e7 e12 e17 e13 e0 e3e18 .....e19 e21 e14 e15e6

Fig. 2 Top 15 entities ranked according to f0 in Fig. 1

comparing their upper-bounds and �t . {e18} is not eligible as ̂�({e18}, { f0}, 2) =
− log p̂({e16, e18}) = 3.37 < �t . In Step 8, we get S containing 10 collections.
When n = 2, S

∗ is updated to {{e16, e5}} and �t = �({e16, e5}, { f0}) = 6.08.
S contains the remaining singular collections from {e18} to {e15} in the ranked
list. This time i goes from 1 to 2. When i = 1, at Step 6, the algorithm tries
to pick out the previous leftover singular entities that may be selected to generate

̂

̂

collections of size 3. However, even �({e18}, { f0}, 3) = − log p({e16, e5, e18}) = 
5.31 < �t , meaning none of them is selected for now. When i = 2, in Step 6,
we get S = {{e16, e5}, {e16, e24}, {e16, e7}, {e5, e24}, {e5, e7}, {e24, e7}}. After Step 8, 
S = {{e16, e5, e24}, {e16, e5, e7}, {e5, e24, e7}}. Finally, we get the top-1 ERAC of size 
no greater than 3 on feature f0: {e16, e5, e24} with anomaly score 8.31.

In this example, a standard Apriori algorithm without our Pruning Strategy 1 would 
have to traverse the entire search space of all the candidates up to size 3, visiting
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altogether
(15

1

)+ (15
2

)+ (15
3

) = 575 nodes in the search lattice. In comparison, we only
visit 5 + 10 + 3 = 18 nodes in total, saving the visit to 96 % of the nodes even in this
small example.
Efficient anomaly score computation. To calculate �(S, F), for a given S and a
feature f , we compute p̂ f (S), which is decided by the representative extremity index
of S w.r.t f . It seem that we need to scan through all |E |/2 possible indices so as to
find this representative extremity index. Fortunately, the following property of the p
value allows us to avoid checking all the extremity indices.

Property 2 Given any feature f , collections S and S′, and extremity indices r and r ′,
if |S| = |S′|, |S f (r)| = |S′

f (r
′)| and |E f (r)| > |E f (r ′)|, then p f (S, r) > p f (S′, r ′).

Proof Suppose |E f (r)| = |E f (r ′)| + 1 = r0 + 1 and |S f (r)| = |S′
f (r

′)| = i0,

(1 − p f (S, r)) ·
(|E |

|S|
)

=
i0−1
∑

i=0

(

r0 + 1

i

)

·
(|E | − r0 − 1

|S| − i

)

(by definition)

=
i0−1
∑

i=0

(

(

r0

i

)

+
(

r0

i −1

)

) ·
(|E | − r0 − 1

|S| − i

)

(Pascal’s triangle)

=
i0−1
∑

i=0

(

r0

i

)

·
(|E |−r0 − 1

|S| − i

)

+
i0−1−1
∑

i=0

(

r0

i

)

·
(|E |−r0 − 1

|S|−i −1

)

Similarly, (1 − p f (S′, r ′)) · (|E |
|S|

) = (1 − p f (S, r)) · (|E |
|S|

) + ( r0
i0−1

) · ( |E |−r0−1
|S|−(i0−1)−1

)

.
Thus, we have

p f (S, r) = p f (S′, r ′) +
( r0

i0−1

) · ( |E |−r0−1
|S|−(i0−1)−1

)

(|E |
|S|

)

= p f (S′, r ′) +
(|E f (r)|−1
|S f (r)|−1

) · (|E |−|E f (r)|
|S|−|S f (r)|

)

(|E |
|S|

)

In general, for any given E f (r) and E f (r ′) such that |E f (r)| > |E f (r ′)|,

p f (S, r) = p f (S′, r ′) +
|E f (r)|−|E f (r ′)|−1

∑

j=0

(|E f (r)|−1− j
|S f (r)|−1

) · (|E |−|E f (r)|+ j
|S|−|S f (r)|

)

(|E |
|S|

)

As the second part
∑|E f (r)|−|E f (r ′)|−1

j=0

(
|E f (r)|−1− j

|S f (r)|−1 )·(|E |−|E f (r)|+ j
|S|−|S f (r)| )

(|E |
|S|)

> 0, we hence have

p f (S, r) > p f (S′, r ′). �
Property 2 suggests that with all the other parameters kept constant, the smaller

the extremity index, the smaller the p value is. It also suggests us to check only those



12 H. Dai et al.

extremity indices corresponding to the ranking of an entity in S. For example, in Fig. 1,
for S = {e5, e7} and f0, we just check r = 2 and r ′ = 4; the other extremity indices
can be skipped. Take r ′′ = 3 for example, as |S f0(r

′′)| = |S f0(r)| but |E f (r ′′)| = 3 >

|E f (r)| = 2, according to Property 2, we have p f0(S, r) < p f0(S, r ′′). Thus, we do
not need to consider r ′′. Similarly, all other extremity indices that do not correspond to
the rank of any entity in S can be proven to have larger p values than the extremity index
corresponding to the rank of some entity in S. Therefore, to compute the representative
p value p̂ f (S) for each f ∈ F , we examine only O(|S|) extremity indices instead of
O(|E |).
Time Complexity. As proposed by Wu (1993), the p value p f (S, r) can be calculated
in O(min(|E f (r)|, |S|)) steps by recursion and factorial acceleration. Thus, the total
time complexity of computing �(S, F) is O(|S|2 ·|F |), assuming min(|E f (r)|, |S|) =

̂|S|. Similarly, by definition the time complexity of �() is on the same order as �(S, F). 
Step 6 takes O(|S| ·  n2 · |F |). Step 8 can be implemented by a hash tree and thus is 
of O(|S(i)|2). The size of S(i) is data dependent, which in the worse case is |E |i . Let  
|S| denote the average size of S(i) for all i and all n. The running time of the “for” 
loop is O(|S|2 + |S| ·  n3 · |F |). Therefore, the total running time of Algorithm 1 is 
O(|S|2 + |S| ·  N 4 · |F |).

4.2 A naive heuristic algorithm: ERAC_N

The number of seeds selected in Step 6 of the ERAC_E algorithm may be large and it 
may grow exponentially as the collection size increases. To further prune the potential 
candidates, we take the naive heuristic that only the top-m most anomalous potential 
candidates are selected as seeds to generate the collections of larger sizes.

With this heuristic, we add one more step: “S = top m · |E | most anomalous 
collections in S” after Step 6 in Algorithm 1 with 0 < m < 1. We thus obtain 
ERAC_N, a naive heuristic algorithm to detect top-K ERACs with independent feature 
set with m as additional parameter.

Since the naive heuristic fixes the number of seeds for collections of all sizes, it 
is expected to be much faster than the exact algorithm. Suppose on average we have 
m · |E | number of collections producing at most (m · |E |)2 potential candidates in the 
join() step, the running time of the “for” loop is O(m2 ·|E |2 +|E |·n3 ·|F |). Therefore, 
the time complexity of the heuristic algorithm is O(m2 · |E |2 + |E | ·  N 4 · |F |). The  
choice of m, which directly affects running time and the anomalousness of the top-K 
results, will be studied in Sect. 7.

4.3 A more sophisticated heuristic algorithm: ERAC_H

Since the bound given in Sect. 4.1 could be rather loose and gives little pruning 
power, and the assumption taken in the naive heuristic may be too strong and miss 
many anomalous ERACs, we now show a more sophisticated pruning technique that 
exploits our Apriori-style candidate generation.

Suppose we are at the stage of generating candidates of size n, and we know these 
candidates have anomaly scores that are no smaller than x . Now if we are examining
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two size-(n − 1) collections S1 and S2, and conclude from our computation that the
upper-bound on the anomaly score of the resultant collection from combining S1 and
S2 is still less than x , then it is unnecessary to combine them.

For simplicity, we denote |S f (r)| as i . For any given p value and size n, we represent
i and r according to the p value formula by denoting the p value as p f (i, r, n), or just
p(i, r, n) when the context is clear.

Let Sx denote the ERAC realizing x (i.e., �(Sx , F) = x). Since the anomaly score
is the sum of the negative logarithm of the representative p values for every feature, we
derive for each feature f ∈ F , the corresponding representative p value p f (i x , r x , n)

for Sx . We then check whether, for feature f , combining S1 and S2 will achieve a
representative p value that is even smaller than p f (i x , r x , n). If so, combining S1 and
S2 will achieve a higher anomaly score than x . The process of decomposing x into a
set of p values is discussed later in this section. For now, we assume p f (i x , r x , n) is
known for any f .

Our task is to compute, for any given feature f , the bound on the representative
p value of the resultant collection from combining S1 and S2, and compare against
p f (i x , r x , n).

We first examine the following p value Property 3.

Property 3 Given any feature f , collections S and S′ and extremity indexes r and r ′,
if |S f (r)| = |S′

f (r
′)|, |E f (r)| = |E f (r ′)| and |S| > |S′|, then p f (S, r) > p f (S′, r ′).

According to Harkness (1965), the role of |S f (r)| and |E f (r)| are interchangeable
in hypergeometric distribution, Property 3 can be proven similarly to Property 2.
Property 3 suggests that with all the other parameters kept constant, the smaller the
collection size, the smaller the p value is.

We now show the following Lemma stating that the combination of S1 and S2 is
warranted, i.e., the resultant collection’s p value is smaller than p f (i x , r x , n), only
when each of them has a p value that is at most p(i x − 1, r x , n − 1).

Lemma 1 For any feature f , given any representative p value p(i, r, n) of some
collection S of size n, the representative p values of S’s subsets of size n − 1 that
generate S is at most p(i − 1, r, n − 1).

Proof Let S1 and S2 denote the generating subsets of S. We have |S1| = |S2| = n −1,
|S1 ∩ S2| = |S1| − 1, |S1 − S2| = 1 and S1 ∪ S2 = S. According to the definition
of p(i, r, n), S has i entities in E(r). Hence S1 and S2 must have either i or i − 1
entities in E(r). Therefore, S1 and S2 must have p value of either p(i − 1, r, n − 1) or
p(i, r, n−1). According to Property 2, we know that p(i −1, r, n−1) ≥ p(i, r, n−1).
Hence, p(i − 1, r, n − 1) is the largest possible p value among S1 and S2, since the
representative p value is smaller than or equal to p(i − 1, r, n − 1) by definition. We
therefore proved that the upper-bound on the representative p values of S’s subsets of
size n − 1 that generate S (i.e., S1 and S2) is p(i − 1, r, n − 1). �

An illustration of Lemma 1 is as follows. Suppose |E | = 30, there exists a collection
S of size n = 4 whose representative p value indicates that it has 3 members (i.e.,
i = 3) ranked among the top 8 (i.e., r = 8). Thus we have p(3, 8, 4) = 0.048. A
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collection (e.g., S1) that can generate S must have at least 2 entities ranked among the
top 8. This means p(i −1, r, n −1) = p(2, 8, 3) = 0.166 must be one of the p values
of S1. By definition, S1’s representative p value is therefore no greater than p(2, 8, 3),
which we conclude to be the upper-bound.

Investigating deeper into the relationship between p(i, r, n) and p(i − 1, r, n − 1),
we arrive at the following:

Property 4 p(i1 − 1, r1, n − 1) − p(i1, r1, n) = n−i1+1
n · Pr(i1 − 1, |E |, r1, n).

Proof

p(i, r, n) = p(i − 1, r, n) − Pr(i − 1, |E |, r, n) (by definition of p value)

= p(i − 1, r, n − 1) +
( n−1

i−1−1

) · ( |E |−n
r−(i−1)

)

(|E |
r

) − Pr(i − 1, |E |, r, n) (Property 3)

Therefore, we have p(i1 − 1, r1, n − 1) − p(i1, r1, n)

= −
( n−1

i1−1−1

) · ( |E |−n
r1−(i1−1)

)

(|E |
r1

) +
( n

i1−1

) · ( |E |−n
r1−(i1−1)

)

(|E |
r1

)

= −
( n−1

i1−1−1

) · ( |E |−n
r1−(i1−1)

)

(|E |
r1

) + (
(n−1

i1−1

) + ( n−1
i1−1−1

)

) · ( |E |−n
r1−(i1−1)

)

(|E |
r1

)

=
(n−1

i1−1

) · ( |E |−n
r1−(i1−1)

)

(|E |
r1

) = n − i1 + 1

n
· Pr(i1 − 1, |E |, r1, n).

�
It is important to note that the bound we derived is for the particular size-n collection

S generated from combining its size-n − 1 subsets S1 and S2. It does not generalize
to the case where S1 and S2 are arbitrary collections of size n − 1. For example,
p(1, 2, 3) = 0.284 > p(3, 10, 3) = 0.1053, but the collections of size 4 generated
from p(1, 2, 3) is p(2, 2, 4) = 0.0315, which is smaller than p(4, 10, 4) = 0.043.
This suggests although p(i − 1, r, n − 1) is the upper-bound on collections of size
n − 1 for generating the particular collection of p(i, r, n), it may not be the upper-
bound for generating any collections that have a p value smaller than p(i, r, n). We
need to carefully examine all possible relationships between different r and i .

For any i1, i2, r1 and r2, we have 9 possible cases chosen from {i1 < i2, i1 = 
i2, i1 > i2} × {r1 < r2, r1 = r2, r1 > r2}. Given two representative p values p(i1 − 
1, r1, n − 1) and p(i2 − 1, r2, n − 1) of collections of size n − 1, and the condition
p(i1 − 1, r1, n − 1) >  p(i2 − 1, r2, n − 1), there are 4 cases that do not satisfy
the condition. {i1 = i2} × {r1 = r2, r1 < r2} violates the condition according to
Property 2. {i1 > i2} × {r1 = r2, r1 < r2} is not possible according to Property 1 and
Property 2. The rest of the cases are addressed by the following two lemmas:

Lemma 2 Given two representative p values p(i1−1, r1, n−1) and p(i2−1, r2, n−1)

of collections of size n − 1, and p(i1 − 1, r1, n − 1) >  p(i2 − 1, r2, n − 1), if
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(i1 = i2 and r1 > r2) or (i1 < i2 and r1 = r2) or (i1 < i2 and r1 > r2), then
p(i1, r1, n) > p(i2, r2, n).

Proof For i1 = i2 and r1 > r2, we have p(i1, r1, n) > p(i2, r2, n), according to
Property 2.
For i1 < i2 and r1 = r2, we have p(i1, r1, n) > p(i2, r2, n), according to Property 1.

For i1 < i2 and r1 > r2, we have p(i1, r1, n) > p(i2, r2, n), according to Property 1
and Property 2. �
Lemma 3 Given two representative p values p(i1−1, r1, n−1)and p(i2−1, r2, n−1)

of collections of size n − 1, and p(i1 − 1, r1, n − 1) > p(i2 − 1, r2, n − 1), if (i1 < i2
and r1 < r2) or (i1 > i2 and r1 > r2) and (n − i1 + 1) · Pr(i1 − 1, |E |, r1, n) <

(n − i2 + 1) · prob(i2 − 1, |E |, r2, n), then p(i1, r1, n) > p(i2, r2, n).

Proof According to Property 4, we have

p(i1, r1, n) − p(i1 − 1, r1, n − 1) = −n − i1 + 1

n
· Pr(i1 − 1, |E |, r1, n), and

p(i2, r2, n) − p(i2 − 1, r2, n − 1) = −n − i2 + 1

n
· Pr(i2 − 1, |E |, r2, n).

Since (n − i1 + 1) · Pr(i1 − 1, |E |, r1, n) < (n − i2 + 1) · Pr(i2 − 1, |E |, r2, n), we
have p(i1, r1, n) − p(i1 − 1, r1, n − 1) > p(i2, r2, n) − p(i2 − 1, r2, n − 1). With
p(i1−1, r1, n−1) > p(i2−1, r2, n−1), we therefore have p(i1, r1, n) > p(i2, r2, n).

�
In Lemma 3, if we impose on i2 such that ∀r ′, �i ′ < i2 with p(i ′, r ′, n) <

p(i2, r2, n), then for the case of i1 < i2 and r1 < r2, we always have p(i1, r1, n) >

p(i2, r2, n) by definition.
Therefore, according to Lemma 2 and Lemma 3, for a given representative p value

x = p(i x , r x , n), such that �i ′ < i x with p(i ′, r ′, n) < p(i x , r x , n) for any r ′, we can
compute the lower-bound on the p value of collections of size n−1 by p(i x −1, r x , n−
1). Except for the case of i1 > i x , r1 > r x and p(i x−1, r x , n−1) < p(i1−1, r1, n−1),
we need to further check whether p(i x , r x , n) < p(i1 − 1, r1, n − 1) still holds. If it
no longer holds, we need to increase our upper-bound from p(i x − 1, r x , n − 1) to
p(i1 − 1, r1, n − 1). This guarantees the true upper-bound.

However, this additional checking is costly. We therefore heuristically take p(i x −
1, r x , n − 1) as the upper-bound on p value of collections of size n − 1. With p(i x −
1, r x , n −1), we take p(i x −2, r x , n −2) as the upper-bound on p value of collections
of size n − 2, and so on.

Thus, given an anomaly score x of any size-n collection and a collection size
n′, n′ < n, we define the lower-cut with score-size constraint (x, n) as

�∗(x, n, n′) = −
∑

f ∈F

log p f (i
x − (n − n′), r x , n′)

After computing these lower-cuts for collections of size n′ along each feature, we
sum negative log values of the bounds to get a lower-cut on the anomaly score of the
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collections; any collections of size n′ with anomaly score below this lower-cut can be
pruned.

We arrive at the following pruning strategy.

Pruning technique 2 Given an anomaly score threshold x for collections of size n,
and its correspondent representative p value p f (i x , r x , n) for each feature f ∈ F, we
use p f (i x − (n − n′), r x , n′) to derive the lower-cut �∗(x, n, n′) and prune away any
collection of size n′, n′ < n, such that its anomaly score is smaller than �∗(x, n, n′).

Overall our heuristic algorithm works as follows. Given a target size N , we first
estimate a threshold �N for collections of size N by the anomaly score of the collection
comprising the top-N anomalous singular entities, which is a valid candidate collection
to start with. It is possible that this estimated initial bound �N is too aggressive and is
even higher than the true �t of the final top-K result. As remedy, we first run with this
initial �N to obtain a preliminary top-K result, then set the smaller one between the
initial �N and this preliminary �t as the new threshold �N to reboot the algorithm.

With this new threshold �N and its correspondent set of p f (i x , r x , n), we compute
the sequence of lower-cuts �∗(�N , N , i) for all levels 1 ≤ i < N . Another trick is that
in generating candidates of size n, it could be that the anomaly score of the least one
in the current top-K list (i.e., �t ) can provide a better cut, i.e., �∗(�t , n + 1, n) >

�∗(�N , N , n). Using the better cut, we can prune away current ERACs of size n
before trying to combine any two of them to generate candidates of size n + 1. The
details are shown in Algorithm 2.
Running example. Setting K = 1 and N = 3 again, we show how Algo-
rithm 2 executes on the example in Fig. 2. The algorithm estimates �N as
�({e16, e5, e24}, { f0}) = 8.31, since these three entities are the top-3 anomalous
singular entities. When n = 1, the algorithm checks whether each collection of size 1
can beat the current �t by Pruning technique 2. As �∗(8.31, 3, 1) = − log p(1, 3, 1),
only {e16}, {e5} and {e24} are selected to generate collections of size 2. After the join
step, S = {{e16, e5}, {e16, e24}, {e5, e24}}. The algorithm goes on to find {e16, e5} as
the current top-1 ERAC. When n = 2, Step 7 finds all elements in the current S are eli-
gible to generate collections of size 3. The join() generates the collection {e16, e5, e24}
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and keeps it as the top-1 ERAC. Since the current �t is equal to the estimated threshold
�({e16, e5, e24}, { f0}), the algorithm stops and returns {e16, e5, e24} as the final result.

For the same example, we have shown that the exact algorithm ERAC_E visits 18
nodes in total, whereas the heuristic algorithm ERAC_H only visits 3 + 3 + 1 = 7
nodes, saving the visit to 61 % of nodes over the exact algorithm.
Time complexity. We now analyze the time complexity of Algorithm 2. Let |S′| denote
the average size of S for all n. Since Step 6 is O(|S′| · n2 · |F |) and Step 7 is O(|S′|2),
the time complexity of Algorithm 2 is O(|S′|2 + |S′| · N 3 · |F |), lower than that of
Algorithm 1 as N 3 < N 4 and as we expect |S′| in Algorithm 2 to be much smaller
than the counterpart |S| in Algorithm 1.
Anomaly score decomposition. We now describe how to derive representative
value p f (i x , r x , n) for each feature f ∈ F from a given anomaly score x . Ide-
ally, we aim to obtain the set of p values that minimize �∗(x, n, n′), subject to (i)
x ≤ −∑

f ∈F log x f ; (ii) �i ′ < i x with p(i ′, r ′, n) < p(i x , r x , n).
For efficiency purpose, we approximate the minimum value of �∗(x, n, n′) by

assuming the anomaly score x is evenly divided across features. We first compute

e− x
|F | , then find p f (i x , r x , n) such that (i) p f (i x , r x , n) ≤ e− x

|F | ; (ii) �i ′ < i x with

p(i ′, r ′, n) < p(i x , r x , n); (iii) �r ′ < r x with p(i x , r ′, n) < e− x
|F | . Condition (i)

guarantees that x ≤ −∑

f ∈F log x f . Condition (ii) is required in the heuristic. Con-
dition (iii) is based on Property 2. As i x is fixed, we choose the larger r x so that
the corresponding p(i x − (n − n′), r x , n′) is larger, which in turn leads to a smaller
anomaly score.

4.4 Handling dependent features

So far, we have assumed that features in F are independent of each other. The more
general case of dependant features needs to be studied. We say a feature set F is an
Independent Feature Set or IFS, if |F | > 1 and ∀ fi , f j ∈ F , fi is independent of
f j . The dependency of any two features is computed as its definition in Sect. 1. As
there are potentially multiple IFS alternatives, we focus on the maximal IFSs.

An IFS F is a maximal IFS if � an IFS F ′ s.t. F ⊂ F ′. Given a feature set F , the
set of all maximal independent feature sets derived from F is denoted as F.

With F, the overall anomaly score of S is aggregated by taking the largest anomaly
score across all maximal IFSs in F:

�(S) = max
F ′∈F

�(S, F ′)

We propose two algorithms shown in Algorithm 3 to find ERACs involving a
dependent feature set F based on the exact and heuristic algorithms for independent
features. We denote the algorithm using ERAC_E as ERACD_E and the one using
ERAC_H as ERACD_H. In both ERACD_E and ERACD_H, we first generate all
maximal IFSs from F . For each maximal IFS, we call ERAC_E or ERAC_H. Finally,
we get the top-K collections of size up to N by aggregating the top-K collections across
all maximal IFSs. The algorithm returns both the ERACs and their associated maximal
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IFSs. We use a priority queue of maximum length of K as before, but with composite 
elements 〈S, F ′〉, where S is an ERAC and F ′ is the maximal IFSs that make S most 
anomalous. We constrain the priority queue to have distinct collections only.

Note that in Step 3, we need to compute all maximal IFSs F. If we represent each 
feature as a node and each dependency relation between two features as an edge 
between the corresponding two nodes, we transfer the problem of finding all maximal 
IFSs to that of computing all maximal independent set in a graph, which is a well-
shown NP-hard problem according to Lawler et al. (1980) or the survey by Bomze et al.
(1999). We adopt the algorithm by Eppstein et al. (2005) for an approximation, which 
proposes an efficient algorithm based on Avis and Fukuda (1993)’s reverse search 
paradigm with a novel data structure and a “parent” operation for quickly testing 
whether certain subsets of the vertices of the graph is maximal. When applied to our 
problem, the complexity of this algorithm is O(|F |2−1/|F |) per generated maximal 
independent feature set, where |F | is the total number of features.

We now analyze the complexities of ERACD_E and ERACD_H. The two algo-
rithms differ only in Step 5, calling ERAC_E and ERAC_H respectively, whose 
complexities are analyzed in previous sections. Step 2 takes O(|F |2) time, and Step 
3 takes sub-quadratic time O(|F |2−1/|F |) by the algorithm of Eppstein et al. (2005).

Therefore, the complexity of algorithm ERACD_E is O(|F |2 + |F |2−1/|F | · |F| +  
|F| · (|S|2 +|S| ·  N 4 · |F |+  K · N 2 · |F |)), and the complexity of algorithm ERACD_H 
is O(|F |2 +|F |2−1/|F | · |F|+ |F| · (|S|2 +|S| ·  N 3 · |F |+  K · N 2 · |F |)). As before, |S|
denotes the average size of candidate collections processed in Algorithm ERAC_E 
and ERAC_H.

5 ERAC expansion

With the aforementioned algorithms, users are able to find top-K ERACs of size no 
greater than a predefined N . It is natural to wonder if the identified ERACs can be
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expanded to larger, more anomalous ERACs. For example, after seeing some identified
top-K spammer collections, users may be interested in supersets of these spammer
collections, which are even more anomalous.

One way to derive the larger ERACs is to rerun the ERAC detection algorithms
with a larger N . However, users often have little idea about the exact size of the larger
ERACs to set, hence a trial and error strategy is non-ideal. Moreover, it is possible
that some interesting ERAC in the top-K list for N may disappear in the top-K list
of a larger N with the current K setting. This makes it even harder to track down the
superset of the ERAC of interest.

In this section, we propose the problem of expanding an ERAC to the most anom-
alous superset of any size. We then propose algorithms to solve the problem.

The ERAC expansion problem is defined as follows: Given an ERAC S, find
S′ ⊂ E − S such that (i) S ∪ S′ is an ERAC; (ii) �(S ∪ S′, F) > �(S, F); (iii)
∀S′′ ⊂ E − S, we have �(S ∪ S′, F) ≥ �(S ∪ S′′, F).

The definition states that expanding an ERAC S will produce the superset of S
having the largest anomaly score among all of S’s supersets.

5.1 ERAC expansion algorithms

With little modification, the algorithms in Sect. 4 for detecting top-K ERACs of size
no greater than N can be applied to expand the ERACs. Specifically, given an ERAC
S to be expanded, for the exact algorithm ERACD_E, we first set N = |E |/2 and
K = 1. Then in the process of computing the upper-bound of the supersets of any
candidate collection S′, we compute the upper-bound of S ∪ S′ instead. According to
the analysis in Sect. 4.1, the complexity is O(|S|2 + |S| · E4 · |F |).

For the sophisticated heuristic algorithm ERACD_H, we also set N = |E |/2 and
K = 1. When computing the lower-cut using Sx , we use S ∪ Sx instead. According
to the analysis in Sect. 4.3, the complexity is O(|S′|2 + |S′| · E3 · |F |).

As the modified ERACD_E and ERACD_H are still costly, we propose below
more efficient algorithms for ERAC expansion.

5.1.1 A greedy algorithm

We design a greedy algorithm to add one entity at a time until no further expansion
can produce a more anomalous ERAC. In each step, we add one entity such that the
resultant ERAC gives the highest anomaly score.

This greedy scheme is based on the observation that members of an ERAC behave
like each other and most likely occupy the extreme positions of a similar set of features.
Thus, given a subset of an ERAC, the rest of the members of this ERAC are expected
to have similar extreme behavior as the subset.

A naive way of choosing an entity to join S is to try out every entity in E and
select the one that gives the largest anomaly score after joining with S. This is costly,
as each insertion of an entity to S entails scanning through all the entities in E . A
more efficient approach only needs to try out the entities within the extremity index at
each insertion step, which can be easily derived by the existing p values of S on each
feature.
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Specifically, for any feature f , we know the corresponding p(i, r, n) for S on f . To
insert into S an entity that gives a larger anomaly score, we want p(i +1, r ′, n+1) to be
smaller than p(i, r, n). Since there can be many r ′ that satisfy the condition, we define
the upper-bound on r ′, r(S, f ), to be the largest extremity index such that adding any
entity within r(S, f ) produces a smaller p value than p(i, r, n) on feature f . Note that
these p values can be pre-computed and sorted for efficient retrieval. Thus finding the
right r(S, f ) can be done in constant time.

Given S and F , we define the candidate pool A(S, F) as the set of entities within
r(S, f ) for all f ∈ F . That is, A(S, F) = ⋃

f ∈F E f (r(S, f )), where E f (r) is the
set of entities within r(S, f ) defined in Sect. 3.

Lemma 4 ∀e ∈ E − A(S, F), we have �(S ∪ {e}, F) < �(S, F).

This lemma states that we only need to check the entities in the candidate pool
instead of all entities in E to guarantee we find the entity e that gives the largest
anomaly score after joining S.

The lemma can be easily proven. Since r(S, f ) is the upper-bound on the extremity
index for feature f , each entity in A(S, F) when joining S will give a smaller p value
in at least one feature than that of S alone. Thus, every entity in A(S, F) has a chance
to produce a more anomalous superset after joining S. On the other hand, every entity
in E − A(S, F) has no chance to produce a more anomalous superset, as any resultant
superset is less anomalous than S w.r.t every feature in F . Since the final anomaly
score is the sum of the anomaly scores w.r.t. all significant features, each entity in
E − A(S, F) when joining with S will give a smaller anomaly score than that of S.

With this lemma, we propose the following greedy algorithm for expanding S.
The algorithm is given an initial collection S0 to expand and outputs the resultant S,

which is the most anomalous superset of S0 of any size. In each loop of i in Algorithm 4,
a new X (i.e., A(S, F)) is computed and entities in X are visited to find the one that
boosts the anomaly score the most. If the resultant anomaly score still increases, the
size of S is incremented by one.

⋃

We now analyze the complexity of Algorithm 4. In Step 7, suppose | f F E f 
(r(S, f ))| = r · |F |, where r is the average number of entities within the e 

∈
xtremity 

index across all features. Given that computing �(S ∪ {e}, F) is O((|S| + 1)2 · |F |), 
Step 7 takes O(r · |F | ·  (|S| + 1)2 · |F |).

Therefore, the complexity of the whole algorithm is O(|E |·|F |+r ·|F |·|E |3 ·|F |+  
|E |3 · |F |). Recall the complexity of the modified sophisticated heuristic algorithm for 
detecting ERACs is O(|S′|2 + |S′| ·  E3 · |F |). Since |S′| is O(|E |N ), the expansion 
algorithm here is much faster.

5.1.2 A heuristic-based greedy algorithm

Note that the time consuming part of the expansion algorithm is in each loop of i 
computing the anomaly score for all entities in the updated candidate pool A(S, F) in 
Step 7, which has complexity O(r · |F | · |E |2 · |F |). If we can expedite this step, we can 
achieve an even more efficient algorithm. This is possible if we avoid computing the 
value of �(S ∪ {e}, F) for each entity in A(S, F). Instead we choose from A(S, F)
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the entity that gives the largest anomaly score when joining S0, which is pre-computed
for each entity e in E .

We introduce the following expansion heuristic: entity e in A(S, F) that gives the
largest �(S0 ∪ {e}, F) value will also give the largest �(S ∪ {e}, F).

Since our algorithm greedily adds entities to S0 one after another, this heuristic
ignores all entities added to S0 in the expansion process and always select the entity
in A(S, F) that contributes the most to S0 instead of S. Suppose S0 is in fact a subset
of a larger ERAC S, the heuristic has a better chance of retrieving S from S0, if S0

already has a similar extreme pattern as S, i.e., both of them occupy extreme positions
on similar features.

However, S0 may not always have a similar extreme pattern as S, i.e., S0 may
occupy extreme positions of a few more or less features than S does, which is more
likely to happen when the size of S0 is much smaller than S. When this happens, the
expansion heuristic may fail as it favors only the entities that are similar to all members
in S0, which are not necessarily similar to all members in S.

For example, Fig. 3 shows the top-12 positions of four features with seven entities
e1 to e7. The empty positions are occupied by other entities, which are not relevant and
are not shown for simplicity. Suppose the target ERAC is S = {e1, e2, e3, e4, e5, e6}. If
we expand S0 = {e1, e2} with the expansion heuristic, the first entity joining S0 is e7,
which produces the highest �(S0 ∪ {e}, F) value compare to other entities. This will
lead us to a different superset than S. However, if we start with S0 = {e1, e2, e3}, the

e1 e2 e3 e6 e4 e5

e2 e6 e3 e4

e1 e7

f0

f1

f2

e5e1 e7

.....

.....

.....

e2 e7f3 .....

Fig. 3 An illustration of the expansion heuristic. Suppose S = {e1, e2, e3, e4, e5, e6}
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following entities to join S0 are then from among {e4, e5, e6, e7}, as they all produce 
high �(S0 ∪ {e}, F) values. This way, the heuristic will successfully lead us to the 
anomalous superset S.

To incorporate this heuristic, we change Step 7 in Algorithm 4 to “find the entity e 
in X such that �(S0 ∪ {e}, F) is the largest”. We also assume that the corresponding 
anomaly score �(S0 ∪ {e}, F) for each entity e in E is pre-computed. As a result, the 
new Step 7 has complexity O(r · |F |).

Therefore, the complexity of the whole heuristic-based greedy expansion algorithm 
is O(|E | · |F | + |E | · r · |F | + |E |3 · |F |), faster than without the heuristic. We apply 
the more efficient heuristic based greedy algorithm, denoted exp, in the experiments 
to demonstrate the effectiveness of expanding ERACs.

6 Discussion on exploratory search for ERACs

In this section, we discuss an exploratory search strategy for more anomalous ERACs, 
making use of the algorithms developed in both ERAC detection and expansion 
problems.

Ideally, users want to search for more anomalous ERACs regardless of collection 
size. Since the search space grows exponentially with the population size, for effi-
ciency reasons, we propose to first investigate the ERAC detection problem of finding 
top-K ERACs of size less than a predefined N of small values. The detected ERACs 
are treated as “seeds” in the follow-up ERAC expansion problem to retrieve the larger 
and more anomalous ERACs. In this strategy, the ability of discovering more anom-
alous ERACs largely depends on whether the seeds contains any subset of the more 
anomalous ERACs.

A direct way of incorporating more informative seeds is to set a large K and N . 
However, we have shown in Sect. 7 that larger K and N will increase the execution 
time of the ERAC detection algorithms. Moreover, setting the right K and N is not 
trivial. Due to the lack of downward closure property, it is possible that the subsets of a 
less anomalous ERAC are even more anomalous than the subsets of a more anomalous 
ERAC. Thus, one cannot easily predict the proper K and N by any monotonic property.

In this section, we therefore propose an exploratory search strategy that gradually 
increases K and N based on a gain function. Since the gain function is derived based 
on the proposed ERAC detection and expansion algorithms, we first describe the 
combined ERAC algorithm comb in Algorithm 5. C denotes the resultant set of 
ERACs after expanding the top-K ERACs of size no greater than N .
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We denote T (K , N ) as the time required to run comb for a given K and N . The
goal function, denoted as G(K , N ), can be defined according to users’ search goal.
For example, if users want to get the most anomalous ERACs, the goal function is
maxS∈C(�(S, F)). If users want as many anomalous ERACs as possible, the goal
function is

∑

S∈C
(�(S, F)).

Given (K , N ) and (K ′, N ′) with K ′ ≥ K and N ′ ≥ N , corresponding to two runs
of the comb algorithm, the gain function I (K ′, N ′, K , N ) is defined as:

G(K ′, N ′) − G(K , N )

G(K , N )
− T (K ′, N ′) − T (K , N )

T (K , N )

The first part of the gain function captures the change ratio in gain function and the
other capture the change ratio in execution time. This gain function has larger value
if the second run of comb with (K ′, N ′) have larger gain G(K ′, N ′) and smaller
execution time T (K ′, N ′) than the first run with (K , N ). We use the ratio to normalize
the changes so that the change on gain and time are on the same scale.

Now, we describe our high-level search strategy in Algorithm 6. The increase of K
or N is decided by the gain function.

7 Experiments

In this section, we examine the performance of our ERAC detection and ERAC expan-
sion algorithms on four datasets, including the synthetic datasets, a web spam dataset,
a movie dataset and a Chinese online forum dataset. For each dataset, we first report
the results of both our ERAC detection and ERAC expansion algorithms. We are inter-
ested to know (i) How well can our algorithms retrieve the injected ERACs in synthetic
data of various population sizes; (ii) Whether our algorithms can retrieve meaningful
collections in the real-life datasets; (iii) Can our algorithms retrieve more anomalous
collections compared to existing approaches; (iv) Can our algorithms achieve higher
precision where ground truth is available.
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7.1 Results on synthetic data

7.1.1 Synthetic data generation

The input to the algorithm includes population size and number of features. In addition, 
we assume the size of any injected ERAC and the total number of injected ERACs are 
given. The output is the set of entity lists {E L  f } and the set of injected ERACs. We 
begin with randomized entity lists and inject ERACs of various sizes until the entity 
lists are no longer independent of each other. The dependency between entity lists is 
computed according to Kendall (1948). Algorithm 7 shows the detail.

7.1.2 ERAC detection in synthetic data

We compare the exact and heuristic algorithms in terms of effectiveness and efficiency 
by varying the parameter settings and generating synthetic datasets with different 
ground truths.

We fix the number of features at 10, the size of any injected ERAC at 10, and the 
number of injected ERACs at 5. Different synthetic datasets are generated by varying 
the population size |E | from 100 to 300. For each population size, we generate three 
datasets for measuring the average performance of our exact ERAC_E, naive heuristic 
ERAC_N and sophisticated heuristic ERAC_H algorithms.

For all our algorithms, we fix N = 10 and K = 5 according to the synthetic 
data generation parameters. As for ERAC_N, we vary  m that controls the number of 
candidate collections, i.e., m ∈ {0.1, 0.5, 1.0}. A larger m requires more candidate 
collections to be processed.
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Fig. 4 Results on synthetic data

Figure 4a and b report the precision and running time of each algorithm respectively,
averaged over 3 generated datasets for each population size. Note that the precision
here equals recall as the number of injected ERACs equals to the number of anomalous
collections returned. When |E | = 300, the exact algorithm takes more than 24 h, thus
its results are excluded.

We see from Figure 4a that both ERAC_E and ERAC_H are able to retrieve
all injected ERACs and achieve perfect precision. On the other hand, the precision of
ERAC_N drops as m decreases and the population size |E | increases. These precisions
are in general lower than those of ERAC_E and ERAC_H. Figure 4b confirms that
ERAC_H and ERAC_N require much lower execution time than the exact one as
expected. ERAC_N needs more execution time when m decreases. The figures show
that our sophisticated algorithm ERAC_H achieves comparable precisions with much
less execution time than ERAC_E. It also achieves higher precisions although it incurs
a longer running time than ERAC_N.
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Fig. 5 The impact of |F | and N on running time of proposed algorithms

To test the scalability of ERAC_N and ERAC_H, while keeping N = 10, K = 5 
and |F | =  10, we gradually increase the population size up to 50,000, where ERAC_N 
with m = 0.5 and m = 1.0 cannot complete within 24 h. For each population size, we 
again generate three datasets. Besides running time, we also report the anomaly score 
of the K -th most anomalous ERAC identified by each algorithm and the anomaly 
score of the K -th most anomalous injected ERAC, denoted as injected. We plot the  
results in Fig. 4c and d.

We see that ERAC_H scales well with data size. In all the settings, ERAC_H is 
able to retrieve either all the injected ERACs or the ones that are even more anomalous 
than the injected ERACs. It is possible that as the population size goes larger, there 
exist ERACs more anomalous than the injected ones. This is because if any injected 
ERAC is not very anomalous, its subsets are more likely to form more anomalous 
ERACs with other entities. However, ERAC_N cannot even retrieve collections that 
are as anomalous as the injected ones. This shows that the pruning technique used 
in ERAC_H takes good advantage of the properties of the ERACs and render much 
better results than the naive heuristics.

Next, we investigate the impact of the size of the feature set F and the collection 
size N on the execution time of ERAC_N (with m ∈ {0.1, 0.5, 1.0} as before) and 
ERAC_H. According to the result of above experiments, we fix the population size 
|E | to 200, so that ERAC_E can finish in a reasonable period. We first set N = 10, 
K = 5 and vary |F | from 10 to 200. For each choice of |F |, we generate three datasets 
as before. The running time is averaged across datasets and shown in Fig. 5a. We can 
see that the number of features has less impact on the running time of all algorithm 
than population size |E | does as shown in Fig. 4. We then set |F | =  10, K = 5 and 
vary N from 5 to 50. For each choice of N , we also generate three datasets and plot 
the averaged running time in Fig. 5b. We can observe from this figure that N has 
much larger impact on the running time than |F | does, which is in line with the time
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complexity analysis. Note that in Fig. 5, if any run takes more than 24 h, its results are
excluded.

We also study the pruning power of the proposed algorithms by measuring the
number of collections evaluated. The fewer the number of collections being evaluated,
the large pruning power an algorithm has. We fix N = 10, K = 5, |F | = 10 and vary
the population size |E | from 100 to 300 as before for the purpose of cross checking.
We generate three datasets for each setting of |E |, the results are plotted in Fig. 6,
which shows our heuristic algorithms ERAC_H and ERAC_N has larger pruning
power than the exact one as expected.

7.1.3 ERAC expansion in synthetic data

Here we demonstrate the effectiveness of expanding ERACs on synthetic data using
the algorithm proposed in Sect. 5.1. We are interested to know whether the expand-
ing algorithm ERAC_exp can retrieve the injected ERACs from the top-K ERACs
identified by the detection algorithm ERAC_H.

For the synthetic data generation, we set |E | = 200, |F | = 10 and the size of the
injected ERAC to 10. For simplicity, we inject one ERAC into each synthetic data. We
run the synthetic generation algorithm five times so that we have 5 synthetic datasets,
each with one injected ERAC.

Next we apply the ERACD_H with N = 3, 5, 7, 9 and K = 10 on each of the five
synthetic datasets. It turns out that for each setting of N , all top-10 ERACs returned
are subsets of the corresponding injected ERAC.

For each of the five synthetic datasets, we expand top-10 ERACs for each setting
of N = 3, 5, 7, 9 and run our expanding algorithm ERAC_exp. Thus, we run it 200
(5*4*10=200) times altogether. To measure the performance of the algorithm, we
measure the “success rate” of the algorithm in retrieving exactly the injected ERAC
over the five synthetic datasets. Otherwise, we give a zero score.

We observe in Table 3 that when N gets larger, ERAC_exp successfully retrieves
the injected ERAC for all the five synthetic datasets. When N = 3, there are 15 cases
out of 200 where the algorithm fails to expand some top-K ERACs to the original
injected ERAC of size 10. This is because, when N is small, the detected ERAC of
size N is likely to have extreme patterns dissimilar with the injected ERAC. Thus, in
the greedy expansion process, the heuristic in ERAC_exp does not favor the other
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Table 3 The results of ERAC expansion in five synthetic datasets

N 3 5 7 9

Success rate 35/50 50/50 50/50 50/50

Success rate reflects the ratio of successfully retrieving the injected ERAC by exp in five synthetic datasets

members in the injected ERACs and ends up with a different expanded ERAC than
the injected one. When N is larger, it is more likely for the detected ERACs to have
similar extreme pattern as the injected ERAC, leading to a very high success rate.

7.2 Results on web spam data

As reported by Becchetti et al. (2008), spammers often try to game the search result
ranking by fabricating incoming links from link farms, which are usually also spam-
mers deploying the same spamming strategies. Moreover, these incoming spammer
pages are often created from the same web page template at a very low cost.

As a result, the incoming neighborhoods of spammers are extremely homogeneous
or heterogeneous compared to those of normal ones that are gradually built up. In other
words, web spammers are expected to be ranked at the top or bottom as measured by
the homogeneity of their incoming neighborhood.

Given a node e, we define the incoming Neighborhood Feature or iNF of a feature
f in such a way that a node with homogeneous incoming neighborhood has a small
iNF value, while a node with heterogeneous incoming neighborhood has a large iNF
value. Specifically,

i N F( f, e) = mediane′,e′′∈i N B R(e),e′ �=e′′ �=edist (e′. f, e′′. f )

where dist (e′. f, e′′. f ) = |e′. f −e′′. f |, and i N B R(e)denote node e’s 1-hop incoming
neighborhood.

Intuitively, a node with a small iNF value has a more homogeneous incoming
neighborhood, whereas a node with a large iNF value has a more heterogeneous
incoming neighborhood.

We extract the web host graph from the WEBSPAM-UK2006 dataset2 published
by Yahoo! Research. We adopt the 96 content features provided by Castillo et al.
(2007) and Becchetti et al. (2008), where the features of a host are represented by
its home page as well as the page with the highest PageRank score on the host. We
compute 6 structural features at the host level, including the number of 1-hop and 2-
hop incoming neighbors. The incoming neighborhood features are derived from these
content and structural features. These iNFs are used to rank web hosts in the following
experiments.

We iteratively remove entities with less than 2 incoming neighbors, assuming they
are not spammers. This is because spammers are more likely to have many incoming

2 http://barcelona.research.yahoo.net/webspam/datasets.

http://barcelona.research.yahoo.net/webspam/datasets
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neighbors and those spammers having few incoming neighbors are of little spamming
power anyway. This leaves one big connected web host graph, with 5634 nodes (1709
spammers) associated with 102 features.

Since some of the 102 features in the web spam dataset are dependent on each
other, we apply algorithm ERACD_H designed for dependent feature set to compute
the top-K ERACs of size no greater than N in real-life datasets.

7.2.1 Effectiveness of ERAC detection algorithm

Applying the ERACD_H algorithm with K = 1000 and N = 12, ERACD_H finishes
in 5225 seconds, less than 2 h. It returns 258 maximal IFSs from the 102 features.
Among the maximal IFSs, 21 are of size 3, the largest size of all. The top ERAC returned
by ERACD_H consists of 12 hosts, all true spammers (including englandguide.co.uk
and posters.co.uk that are still actively spamming despite having been labeled as
spammers since 2006). This collection is associated with the maximal IFS {“Number
of words”, “Top 100 corpus precision”, “Independent LH” }, where corpus precision
refers to the fraction of words that appear in the set of popular terms, and Independent
LH is a measure of the independence of the distribution of trigrams in the page content.

Moreover, we use representative extremity indices of this collection to explain why
it is anomalous. It turns out that the web hosts in this collection are clustered in the
top 18 positions on “Number of words”, top 22 on “Top 100 corpus precision” and
top 45 on “Independent LH”. This suggests that the neighborhood of each host in this
collection is very homogeneous in terms of number of words, tendency to use very
popular keywords, and pattern of using many unrelated keywords.

7.2.2 Comparison to spam detection approaches

We now compare our ERACD_H algorithm with unsupervised TrustRank in the work
of Gyöngyi et al. (2004) and Gyöngyi et al. (2006); and supervised decision tree tech-
niques employed by Castillo et al. (2007) and Becchetti et al. (2008). Note that these
spam detection approaches aim at detecting individual spammers, not spam collec-
tions. We therefore treat the websites in our top-K ERACs as individual spammers to
compare with the precisions of those of TrustRank and decision tree based methods.

TrustRank starts with a seed set of trusted nodes, and propagates their scores by
simulating a random walk with restart to the trusted pages. The estimated non-spam
mass of a page used by Gyöngyi et al. (2006) is the amount of score it receives from
trusted pages. We refer to this non-spam mass as the trustrank score. The lower the
trustrank score of a node, the more likely it is a spammer.

To select the trusted nodes, we follow the guidance of Castillo et al. (2007) and
randomly sampled 3800 hosts from the .UK domain in the Open Directory Project.3

In computing the trustrank score, we set the probability of following an out-link from
a trusted web page to 0.85. We then rank web hosts in ascending order by the trustrank
score of their respective home page (hp), as well as the page with the highest page rank

3 http://rdf.dmoz.org/.

http://rdf.dmoz.org/
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(mp). Thus, the hosts at the top are likely to be spammers. We denote the approach
involving home pages as TR_hp and the ranked list it produces as E L(TR_hp). The
approach involving the pages with the highest page rank is denoted as TR_mp and its
ranked list as E L(TR_mp).

For decision tree DT, we use J48 of Weka4 with 5-fold cross validation. The features
used are the same set of derived neighborhood features for ERACD_H. To derive a
ranked list of web hosts for comparing with other approaches, we sort the hosts in
descending order of the prediction values assigned to them by the decision tree. The
ranked list is denoted as E L(DT).

Our heuristic algorithm works incrementally such that each loop of n from 1 to
N outputs the top-K ERACs of size no greater than n, denoted as S

∗(n, K ). We
therefore are able to compare the ERACD_H approach with collections of various
sizes by keeping the intermediate top-K ERACs produced by ERACD_H for various
n ≤ N . In the following experiments, we set n ∈ {4, 8, 12}.

Given n and K , let τ(n, K ) = | ⋃e∈⋃

S∈S∗(n,K )
e| denote the number of distinct

websites in S
∗(n, K ). We assume that all the websites in S

∗(n, K ) are spammers and
compare the top-τ(n, K ) websites of each approach. Let E L(O, τ (n, K )) denote the
top-τ(n, K ) websites returned by approach O ∈ {ERACD_H, TR_hp, TR_mp, DT}.
The precision of the top-τ(n, K ) websites is defined as |E L(O,τ (n,K ))∩true_spammer_set |

|E L(O,τ (n,K ))| .
Figure 7a, b and c plot the precision against K for ERACD_H versus {DT, TR_hp

and TR_mp}. In the figures, ERACD_H is represented by a solid line, while the
competing approaches are in doted lines.

As we observe in the figures, ERACD_H outperforms DT, TR_hp and TR_mp for
all n settings. This demonstrates that our approach, although not specifically designed
to detect spammers, still outperforms the other methods in precision.

The recall levels achieved by our approach are all around 0.03 for n = 4, 8, 12
respectively and with K = 1,000. The low recall levels are expected, as our approach
is designed to discover anomalous collections of websites sharing collective extreme
trait, not spammers of all types with or without collective extreme trait.

Next, to check whether spammer with collective extreme traits detected by our
approach can be discovered by others, we compute the overlap between the top-
τ(n, K ) websites returned by our approach and that of each competing approach.

The overlap ratio as |E L(ERACD_H,τ (n,K ))∩E L(O,τ (n,K )|
τ(n,K )

, where O ∈ {TR_hp,
TR_mp, DT}. For K = 1,000 and n ∈ {4, 8, 12}, all the overlap ratios are smaller
than 0.05, indicating ERACD_H detects unique spammer hosts with collective trait
that are missed by the competing methods.

7.2.3 Comparison to anomaly detection approaches

The general density-based and clustering-based anomaly detection approaches are
relevant state of the art to compare with. The density-based approach returns individual
websites whereas the clustering-based one returns collections of websites. We evaluate

4 www.cs.waikato.ac.nz/ml/weka.

www.cs.waikato.ac.nz/ml/weka


Detecting anomaly collections 31

0

0.5

1

1 250 500 750 1000

0

0.5

1

1 250 500 750 1000

0

0.5

1

1 250 500 750 1000

ERACD_H_N=4

DT_N=4

DT_N=8

DT_N=12

ERACD_H_N=8 ERACD_H_N=12

(a)

(b)

(c)

TR_hp_N=4

TR_hp_N=8

TR_hp_N=12

TR_mp_N=4

TR_mp_N=8

TR_mp_N=12

P
re

ci
si

o
n

P
re

ci
si

o
n

P
re

ci
si

o
n

K

K

K

Fig. 7 Comparison of ERACD_H to other approaches in terms of precision. a ERACD_H versus DT,
b ERACD_H versus TR_hp, c ERACD_H versus TR_mp

the anomaly score and precision of the collections returned by our approach against
these two approaches.

We first show the comparison with the density-based approach proposed by
Breunig et al. (2000). Following the experiment design of the previous section, we
compare the results of ERACD_H with collections of various sizes (n ∈ {4, 8, 12})
and K = 1,000. Figure 8 shows the precision curves, which suggest that the top
websites returned by the density-based approach are mostly non-spammers. This is
because the density-based approach assumes anomalies appear in sparse regions. How-
ever, true spammers are likely to employ common spamming tricks, making them less
likely to appear in sparse regions of the feature space.

On the other hand, clustering-based outlier detection approaches consider “small
clusters” to be anomalous. We follow Loureiro et al. (2004) in defining a small cluster
as the one with a size smaller than half of the average cluster size.

We apply agglomerative hierarchical clustering with complete link and Euclidean
distance to cluster E . The clustering algorithm is run on each maximal IFS calculated
by our approach so as to find the most anomalous cluster across all maximal IFSs.
In clustering for a given maximal IFS, we stop growing the cluster tree once the
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Fig. 9 ERACD_H versus clustering-based method on web spam data in terms of anomaly scores

combination of the next two clusters would cause the average size of all the clusters 
to rise above 2 · N . This is to make sure that all resultant clusters of size smaller than 
or equal to N are “small” clusters by the definition of the clustering-based approach. 
Since the clusters returned by our approach are of size no greater than N , we can make 
a fair comparison with the “small” clusters returned by the clustering-based approach.

In the comparison, we keep the intermediate top-K results as N varies, and show 
the top-1 ERAC and top-1000 ERAC of ERACD_H for each N together with the 
most anomalous cluster discovered by the clustering-based approach.

In Fig. 9, we see that for all N = {2, 4, 6, 8, 10, 12}, the collections discovered by 
our approach are more anomalous than the clustering-based ones, because ERACD_H 
is optimized to collections that exhibit extreme behaviors.

To take a close look of the extremity of the top ERAC and the most anomalous 
cluster produced by the clustering-based approach on each of the three features in the 
maximal IFS, we use star charts to plot the relative rankings of the members in the two 
collections. For better visualization, we select the corresponding ERAC and cluster for 
N = 4. The result is shown in Fig. 10. The center point of each star chart represents 
the middle ranking (i.e., 2,817), as we have 5,634 websites in total. The distance to the 
center represents the extremity in ranking for a feature. It is easy to see that although the 
members in the most anomalous cluster by the clustering-based approach are similar 
to each other, they are not extreme on any of the features. In contrast, members of 
the top ERAC are extreme on all the three features. Interestingly, all the four websites 
in the top ERAC are spammers, whereas all the websites in the cluster are normal 
websites.
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Fig. 10 Top ERAC of size 4 by ERACD_H (in solid lines) versus the most anomalous cluster of size 4 by
clustering-based method (in dotted lines) on web spam data

As for precision, we compute for each given maximal IFS the ratio of the number
of true spammers in all the small clusters over the total number of websites in all
the small clusters. The maximal ratio is selected as the precision across all maximal
IFSs. We also compute this precision for all N = {2, 4, 6, 8, 10, 12}. The results show
that the precision of the small clusters is quite low for each N , with a maximum of
0.35 at N = 10 which is as good as random guess. This suggests that most of the
websites in small clusters are not necessarily spammers. Obviously we cannot rely on
clustering-based anomaly detection techniques to find spammer collections.

7.2.4 ERAC expansion in web spam data

We also apply our expansion algorithm ERAC_exp on this web spam data after we
retrieve the top-1000 ERACs for each parameter setting of N = {4, 8, 12}. For each
setting of N , we feed every top-1000 ERACs into ERAC_exp.

Interestingly, for all settings of N , the top-1000 ERACs are expanded to the same
ERAC of size 79. This suggests the top-1000 ERACs are part of a larger cohesive
ERAC. Note that all detected ERAC of different sizes have the same extreme pattern. In
particular, they are located at the extreme top positions of the maximal IFS, {“Number
of words”, “Top 100 corpus precision”, “Independent LH” }. This is the reason why
the expansion algorithm ERAC_exp is able to retrieve the same ERAC for all the
settings. The anomaly score of the expanded ERAC of size 79 is 1345.34, much larger
than the original ERACs of small sizes, which suggests that ERAC_exp successfully
retrieve the much more anomalous superset.

We also measure the precision of this expanded ERAC and compare with the com-
peting methods {DT, TR_hp and TR_mp}. As the expanded ERAC has a size of 79,
we take the top-79 spammers returned by each approach and measure its precision. As
shown in Table 4, our expansion is still more effective in identifying spammers than
the competing methods.
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Table 4 The precisions of
ERAC expansion and other
competing methods

Method ERAC expansion DT TR_hp TR_mp

Precision 0.80 0.76 0.71 0.69

7.3 Results on IMDB data

From the IMDB dataset,5 we focus on actors and actresses participating in movies
shown between 1990 and 2008. We extract the actors playing non-trivial roles in each
movie by taking only those appearing among the top 10 names in the cast list. We
extracted 6 actor features including number of movies, average rating of all movies,
average salary, average movie budget, average movie box office and average payback
(the ratio of average box office to average salary). After dropping those actors who
have missing feature values, we are left with 183 actors.

7.3.1 ERAC detection in IMDB data

We apply ERACD_H on this preprocessed IMDB dataset with K = 3 and N = 3. We
set K and N to be small so that the results are easier to analyze. ERACD_H finishes
in 202 seconds. There are 12 maximal IFSs extracted from the 6 features, including
two maximal IFSs with the largest size 3. Each maximal IFS returns a top ERAC.
ERACD_H chooses the maximal IFS that leads to the most anomalous ERAC, which
is {number of movies, average movie budget, average payback}.

Using this maximal independent feature set, we also run the clustering-based
approach on the IMDB dataset. Since we set N = 3 for ERACD_H, it is only fair
for the clustering-based approach to assume that clusters of size no greater than 3 are
anomalous. Altogether, the clustering-based approach returned 29 clusters, including
3 anomalous ones, all of which are less anomalous than the top-3 ERACs returned by
ERACD_H.

Specifically, the three anomalous clusters returned by the clustering-based approach
are {Lohan Lindsay, Witherspoon John, Madonna}, {Hudson Kate, Walker Paul,
Crudup Billy} and {Duchovny David, Hawke Ethan}. The top-3 ERACs are {Grint
Rupert, Radcliffe Daniel, Watson Emma}, {Bloom Orlando, Grint Rupert, Watson
Emma}, {Brando Marlon, Grint Rupert, Watson Emma}. We plot their relative fea-
ture rankings in Fig. 11a, b and c. The center point of each star chart represents the
middle ranking (i.e., 91), as we have 183 actors. The distance to the center point
represents the extremity in ranking for a feature. By visual inspection, we find that
the ERACs are more extreme on all the three features, compared to the three clus-
ters returned by the clustering-based approach. This demonstrates again that while
clustering-based approaches could return sets of similar actors, they are not designed
to capture interesting collections that exhibit extreme behavior.

We note that several of the ERACs are potentially useful in practice. For example,
a movie producer may want to find actors who perform in few large-budget movies

5 http://www.imdb.com/interfaces.

http://www.imdb.com/interfaces
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Fig. 11 ERACD_H versus clustering-based method on IMDB data in terms of top-1st collections shown
in (a), top-2nd collections shown in (b), and top-3rd collections in (c)

but have big payback. Our results suggest the producer should go for the Harry Potter
actors, or the other top ERACs.

7.3.2 ERAC expansion in IMDB data

Algorithm ERAC_exp is applied to the top-3 ERACs detected by ERACD_H. Since
all the top-3 ERACs have the same extreme patterns on the maximal IFS {number
of movies, average movie budget, average payback}, they expand to the same ERAC
of size 12, which is {Grint Rupert, Radcliffe Daniel, Watson Emma, Bloom Orlando,
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Brando Marlon, Dane Eric, Donner Richard, Englund Robert, Frakes Jonathan, Gibson
Tyrese, Howard Bryce Dallas, Jackson Janet}. As expected, this expanded ERAC has
the same extreme pattern as the top-3 ERACs. The anomaly score grows from 37.3
for the original top ERAC of size 3, to 53.18 for the expanded superset of size 12.

To compare fairly with our ERAC detection algorithm, the clustering-based algo-
rithm assumes that clusters that are no larger than 12 are anomalous, as our expanded
ERAC is of size 12. Altogether, the clustering-based approach returned 8 clusters,
including 2 anomalous ones. One cluster is of size 12 with anomaly score of 13.7,
which contains {Gere Richard, Chase Chevy, Baldwin William, Jackman Hugh, Zell-
weger Renee, Daniels Jeff, Penn Sean, Barrymore Drew, Hackman Gene, Duchovny
David, Vaughn Vince, Grant Hugh} The other is of size 8 with anomaly score of 6.84,
which contains {Scorsese Martin, Silverstone Alicia, Jackson Samuel L., Farrell Colin,
Kirkland Sally, Bower Michael, Brosnan Pierce, Ryder Winona}. They are much less
anomalous than the expanded ERAC. These results show that our ERAC expansion
successfully retrieves a larger ERAC that is more anomalous than the original ERACs
as well as the anomalous clusters returned by the competing method.

7.4 Results on Chinese online forum data

In this section, we apply our algorithm ERACD_H to identify the infamous Chinese

online “water army” spammers,6 who are hired to post or comment on
threads in many popular online forums, with the aim of influencing public opinion on
targeted events or products. It is reported that during the Qihoo 3607 versus Tencent
QQ8 dispute, both sides hired water armies to post favorable comments on themselves
while disparaging the other.9 Another reported event is in the Chinese dairy industry,
where the brand manager of MengNiu ( ) company was arrested for hiring online
water army to frame the competing company YiLi ( ).10

Water army operates by soliciting various tasks from internet public relations agen-
cies (e.g., shuijunwang.com) and get paid according to the quality and quantity of posts
or comments generated on popular online forums. It is often the case that hundreds or
thousands of spammers are hired to form a water army that participates very actively
in many popular online forums.

Each water army spammer commonly post comments from multiple user accounts.
This helps to hide his/her true identity, as readers may not suspect that these comments
come from the same person due to the different account names. If some lazy spammers
simply copy and paste his message multiple times in the same post or in multiple posts,
they do not get paid by the agencies, as the spammers are instructed not to perform
such easily detectable behavior but to post relevant and meaningful messages using

6 http://en.wikipedia.org/wiki/Internet_Water_Army.
7 www.360.cn, the number 1 computer network security service provider in China.
8 www.QQ.com, the number 1 instant messaging and online community service provider in China. 
9 http://www.chinadaily.com.cn/bizchina/2010-11/05/content_11509557.htm.
10 http://www.chinadaily.com.cn/china/2010-10/21/content_11437735.htm.

http://en.wikipedia.org/wiki/Internet_Water_Army
www.360.cn
www.QQ.com
http://www.chinadaily.com.cn/bizchina/2010-11/05/content_11509557.htm
http://www.chinadaily.com.cn/china/2010-10/21/content_11437735.htm
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Table 5 Three focused events for detecting water army in Tianya.cn

Events Time period Num of threads Num of users

360 vs QQ 2010.9-2010.12 413 3545

Yaojiaxin 2010.10-2011.4 345 6443

Ligangmen 2010.10-2011.1 359 3269

different accounts. This makes detecting water army spammers difficult, as they put
in effort to post non-repetitive and relevant comments to appear like normal users.

We detect spammer collections in Tianya.cn11, one of the most popular online
Chinese forums. We focus on three hot events namely, 360 versus QQ, Yaojiaxin
( ), and Ligangmen ( ), which are highly suspected12 to involve water
army activities. For each event, we submit the event name as query to the search
interface of Tianya.cn, which returns the 750 most relevant threads. We keep only
those threads that are posted within the relevant period of each event. The start and
end dates are determined from news reports and are shown in Table 5.

With the relevant threads, we extract all the user accounts that have posted in the
threads. We then filter accounts by their membership scores. The membership score
assigned by Tianya.cn reflects how active an account is and how much contribution
it has made writing acknowledged posts and getting involved in different interactive
activities. Since a water army spammer normally has many accounts and would not
take too much effort to build up membership scores for each of them, we remove
the top 50 percent of accounts that have high membership scores. We also filter out
accounts with only one post or comment, as they are also not likely to be involved in
water army. Table 5 summarizes the profile of the three events after the aforementioned
preprocessing.

Given a particular event, we treat each thread of this event as a feature, and the
number of times that an account comments in this thread as the feature value. When
accounts are ranked according to each thread in descending order, we expect collections
of water army spammers to appear in top positions of a few threads, as a few spammers
are collaborating, or the same spammer is using multiple accounts in these threads.
This collective extreme behavior of water army spammers fits our ERAC principles.
Note that a normal active account may also appear in the top positions of a few threads,
but not likely in the top position of many threads consistently.

7.4.1 Effectiveness of ERAC Detection Algorithm

We set N = 5 and K = 1 for our heuristic algorithm ERACD_H, which finishes in
a couple of hours for each event. The results of the top ERAC returned for each event
along with running time are listed in Table 6. The third column |Fs | denotes the number
of threads w.r.t. which the ERAC is significant (i.e., the corresponding representative

11 http://www.tianya.cn.
12 http://www.shuijunshiwan.com/wenku/.

http://www.tianya.cn
http://www.shuijunshiwan.com/wenku/
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Table 6 Results for computing top ERAC for each event in Tianya.cn

Events Top ERAC |F S | avg-r (avg-i) Running time (s)

360 vs QQ 13 50.2(3.7) 4,675

Yaojiaxin 35 67.3(2.9) 7,834

Ligangmen 15 45.8(3.6) 3,980

p value is below α). For each significant feature, we find the corresponding extremity 
index r and intersection i value as in p(i, r, n). avg-r and avg-i in the fourth column 
shows their average values.

For example, in the event of 360 versus QQ, the top ERAC is

{ }. By checking the repre-
sentative p value of this collection w.r.t. each of the 357 threads, we know their 
collective extreme behavior is significant in 13 threads, with average r = 50.2 and 
average i = 3.7. This suggests that they actively commented on the 13 threads. Read-
ing through the comments of the five accounts, it is clear that their posts are either 
against 360 or for QQ and the posts are generated within a 5-day period. Furthermore, 
most of their comments were posted to the threads related to 360 versus QQ. All the 
above observations clearly indicate collaboration among the five accounts.

7.4.2 User evaluation

Since we do not have the ground truth on water army spammers in Tianya.cn, we 
recruit human evaluators to judge the accounts on both individual level and collection 
level.

We hired four Chinese evaluators who are familiar with Tianya.cn forum and the 
three hot events. They are requested to read the Chinese Wiki page and news reports 
on water army beforehand. For each user account, the evaluators are provided with 
the account’s homepage in Tianya.cn, which contains the membership score, number 
of visits, last visit time, registration time and all the threads the account has posted 
or commented on. As Tianya.cn lists each account’s threads page by page, it is very 
tedious for the evaluators to navigate through the threads and the comments posted 
from the account. We therefore crawled each account’s home page, all the threads as 
well as the comments in each thread, and presented them together to the evaluators.

User evaluation at individual level
Firstly, we are interested to know whether the user accounts in the top-K ERACs really 
are water army spammers on Tianya.cn.

To alleviate the demand placed on the evaluators, we only select accounts in the 
top ERAC of each focused event, altogether 15 of them, for judging. The evaluators 
are asked to judge whether each account is a spammer according to his understanding 
of how a normal account in any online forum should behave. The evaluators assign a
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Table 7 User evaluation at individual level

Event User accounts E1 E2 E3 E4 Avg.

360 vs QQ 5 5 5 5 5

3 4 4 4 3.75

5 3 5 4 4.25

4 4 4 4 4

ayaya118 5 3 5 5 4.5

Ligangmen www9w 3 3 3 4 3.25

3 1 1 2 1.75

4 4 5 3 4

5 5 4 4 4.5

muzi840719 5 4 4 4 4.25

Yaojiaxin 3 5 4 2 3.5

3 2 2 3 2.5

4 4 4 4 4

2 4 5 5 4

probit 3 5 5 4 4.25

E1–E4 denote the four evaluators

score between 1 and 5 to each account, with 1 being normal, 5 being spammer and
3 being not-sure. The final score of an account is the average score assigned by the
evaluators. We consider the accounts with final score greater than 3 to be spammers
and the rest to be normal.

The scores from the evaluators are shown in Table 7. Out of 15 accounts identified
by our approach, 13 of them are judged by the evaluators to be spammers. This gives
a precision of 0.87.

For user account , the evaluators report that it has not logged in after
the event of 360 versus QQ, almost all of its threads are about 360 versus QQ, and
almost all of its comments contain links to a voting website supporting 360. These
observations cast strong suspicions on the account.

There are two accounts and that the evaluators give low scores as
they find that although the accounts are involved in many threads on the corresponding
event, they also commented on other events, which makes them less suspicious. Our
approach considers only the number of comments across threads but not the actual
content of the comments and therefore misclassified them.

User evaluation at collection level
Now we conduct our user evaluation at collection level. We are interested to know (i)
Are the accounts in the top ERAC spamming in the corresponding significant threads?
(ii) Are the ERAC rankings consistent with the evaluators’ perception? In this user
evaluation, we focus on the 360 versus QQ event.

We derive a random set of accounts to compare with our top ERAC. We ran-
domly choose from the users whose number of comments are comparable to the
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Table 8 User evaluation at collection level

ERACs E1 E2 E3 E4 avg

Top-1 2.56 3.18 4.01 3.08 3.21

Random collection 1.14 1.21 1.91 2.17 1.61

E1–E4 denote the four evaluators

average number of comments of the accounts in the top ERAC. This way, the cho-
sen accounts are as active as the members in top ERAC. We end up with the ERAC 
{ ,treegreen12010, , ,quanyeke}.

We present the 5 accounts in the top ERAC with its 13 significant threads, together 
with the 5 accounts in the random user collection with its 16 significant threads to 
the evaluators. For each account, the evaluators are given its comments in all the 
significant threads and asked to judge whether the account is spamming in a particular 
thread based on the comments it posted.

For each account, the evaluator assigns a score from 1 to 5 according to each of 
the significant thread, with 1 being non-spamming, 5 being spamming and 3 being 
not-sure. The evaluators also need to provide their reasons.

The final score of an ERAC is the average score of its member accounts across the 
significant threads. Table 8 shows the results. As we see from the table, the average 
score of the top ERAC is larger than 3, indicating that its members indeed are spamming 
the significant threads. We also observe that the evaluators consider the top ERAC more 
suspicious than the less anomalous random account collection, suggesting our ranking 
are in line with the evaluators’ perception.

7.4.3 ERAC Expansion in Chinese Online Forum Data

The previous experiments on detecting water army spammer collections revealed 
ERACs with predefined size N = 5. To uncover water army collections that are 
supersets of the detected ERACs, we expand the top-K ERACs returned for the event 
of 360 versus QQ by the ERAC_exp algorithms described in Sect. 5.1.

We first set N = 5, K = 100 and run ERACD_H to return the top-100 ERACs of 
size up to 5. We then apply ERAC_exp to expand each ERAC.

Interestingly, 67 of the 100 ERACs expand to the same ERAC of size 11, whereas 
the remaining 33 ERACs expand to another ERAC of size 14. The first expanded 
ERAC of size 11 is significant on 13 features, which are exactly the same 13 features 
on which the original 67 ERACs of size 5 are significant. On the other hand, the 
second expanded ERAC of size 14 are significant on 15 features, which overlap with 
the significant features of the original 33 ERACs on 14.63 features on average.

These observations indicate that the added members in the expanded ERACs have 
very similar extreme patterns as members in the original ERACs. Specifically, in 
Tianya.cn, the accounts in the same ERAC posted many times on almost the same set 
of threads, which substantiates our expansion heuristic.

The 67 ERACs of size 5 have a maximum anomaly score of 314.98, whereas the 
expanded ERAC of size 11 scores 661.41. On the other hand, the maximum anomaly
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score of the 33 ERACs is 309.67, much less than 754.36, the anomaly score of the
ERAC of size 14 after expansion. This shows that ERAC expansion indeed produces
much more anomalous supersets.

Another observation is that the two expanded ERACs do not overlap, neither do
their significant features. After reading through the posts from users in each expanded
ERAC on their corresponding significant features (i.e., threads), we discover that
the two collections of users had condemned 360 harshly with emotive remarks, but
providing little factual support. This suggests the existence of at least two independent
water army collections spamming on Tianya.cn on behalf of QQ.

8 Conclusions and future work

In this paper, we detect a new type of anomaly collections, called extreme rank anomaly
collections (ERAC). Members of an ERAC exhibit similar extreme behaviors and thus
appear at extreme ranking positions of multiple features. Due to the existence of large
number of ERACs of various sizes, for efficiency reasons, we first propose the problem
of discovering top-K ERACs with a predefined size limit. To uncover the anomalous
supersets of the detected ERACs, we then propose the problem of ERAC expansion
without having to specify the size of supersets.

We apply ERAC detection and expansion algorithms to discover injected ERACs
in synthetic datasets, web spammer collections in a web spam dataset, unusual actor
collections in an IMDB dataset and water army spammer collections in a Chinese
online forum dataset. The results show that our algorithms are able to uncover the
anomalous collections in all datasets. Moreover, we achieve higher precision in web
spam detection than existing approaches. We detect anomalous actor collections that
are not easily identified by other approaches. We reveal collaborating water army
spammer collections in the Chinese online forum, which are corroborated by human
evaluators.
Limitations and future directions
Due to the fact that our proposed anomalousness measure of collections does not
enjoy the downward closure property, even the most efficient algorithm proposed
ERACD_H takes a few hours to run on real datasets of thousands of entities. Our naive
heuristic is faster than our sophisticated heuristic but with much lower precision/recall.
For future work, more efficient algorithms could be developed that better balance
between precision/recall and running time.

The second future direction could be to create a real-life dataset with ground truth
on anomalous collections instead on individual anomalies. A dataset with ground truth
on collection level is more suitable for evaluating our approach by both precision and
recall than any dataset with ground truth on individual level, where high precision and
low recall is often expected. This is because our approach is not tuned to detect all
individual anomalies with or without collective traits.

We also plan to embark on generalizing our anomaly collection definition. Our
ERAC detection frameworks are based on the “extreme rank” concept, where mem-
bers of an anomaly collection consistently appear at extreme ranking positions of
certain features. However, it is possible to have an anomalous collection defined to
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have members appearing consistently at some non-extreme positions. This general
definition of anomaly collection would be able to utilize features where the behaviors
are not extreme. One solution is to change the “extreme index” concept to a “closeness
interval” in the entity ranking list. Given a collection and a closeness interval, the num-
ber of entities of this collection appearing in this closeness interval still follows the
hypergeometric distribution. It would also be interesting to develop both accurate and
efficient algorithms for such anomalous collections and evaluate them on real data.
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