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ABSTRACT 

Innovations in the mobile payments industry provide potentially profitable investment opportuni-

ties for banks. Nonetheless, significant uncertainties are associated with decision-making for this 

IT investment context, regarding future market conditions, technology standards, and consumer 

and merchant responses, especially their willingness to adopt. As a result, traditional capital 

budgeting approach and experienced intuition have not been effective. We develop a model to 

support a bank’s mobile payment systems adoption decision-making at the firm level when it 

faces endogenous technological risks and exogenous market conditions. This study applies theo-

ry and modeling from financial economics for decision-making under uncertainty to investments 

in m-payment systems technology. We assess the projected benefits and costs of investment as a 

continuous-time stochastic process to determine the optimal investment timing. We find that: (1) 

the value of waiting to adopt jumps when the related business environment experiences relevant 

shocks; (2) when the rate of benefits flows, the time horizon for decision-making and the time 

value of money change, the recommended investment timing and optimal investment will change 

too; and (3) when value jumps occur at different stages and in different directions, the optimal 

timing and maximal payoffs may exhibit unexpected changes. We illustrate how to use simula-

tion-based financial option valuation approach to value the investment. We further discuss the 

application of our approach for systems that are subject to network effects, rational expectations 

and strategic interactions among different banks.   

Keywords: Decision-making under uncertainty, electronic payments, financial economics, fi-

nancial services, IT investments, jump diffusion, mobile payments, network effects.  
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The evolution of new technologies that enable consumers to conduct financial transactions  

using mobile devices has the potential to affect their financial lives in important –  

but as of yet, not fully known – ways…  

Sandra F. Braunstein, Director, Division of Consumer and Community Affairs,  

Board of Governors of Federal Reserve System. 

  In “Developing the Framework for Safe and Efficient Mobile Payments,” 

In a hearing before the United States Senate [29], 

March 29, 2012, Washington, DC  

 

1. INTRODUCTION 

As consumers have become increasingly connected via smartphones, tablets and other mobile 

devices in recent years, mobile payments have emerged across the world as a new and innovative 

means for payment. An m-payment is any payment where a mobile device is used to initiate, au-

thorize and confirm an exchange of financial value in return for goods or services. Some industry 

participants view m-payments as the next revolution in payments at bricks-and-mortar merchants, 

while technology standards are migrating from short message services (SMS) to near field com-

munication (NFC) or cloud computing technologies.  

After 2011, a number of companies and industry partnerships announced new m-payment 

technology solutions built upon NFC contactless chips, cloud servers and attachable card readers 

that plug into mobile devices. The launch of Google Wallet in the United States provided a “tap 

and go” NFC m-payment solution in 2011. Its primary competitor, Isis, developed by Verizon, 

AT&T and T-Mobile, launched an NFC application in 2012. Also in 2012, Apple was awarded a 

U.S. patent for its iWallet, and so far, its m-payments strategy mostly has involved observing the 

market and waiting for things to develop further [31]. Other innovations take advantage of third-

party applications on smartphone platforms, enabling merchants to process card payments. For 

example, Square, an application that supports merchant and consumer transactions, serves as a 

virtual wallet filled with virtual credit cards for authorized merchants in Square’s ecosystem.  

The potential profits from implementing m-payments are huge. Investments in m-payment 
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systems using NFC are expected to reach US$670 billion by 2015 [7], and more than one million 

merchants are using Square’s card reader to accept payments [17].  

 Significant uncertainties are associated with investment decision-making for m-payments 

though. First, m-payment systems involve multiple stakeholders, including consumers, mer-

chants, mobile network operators, mobile device manufacturers, banks, software vendors, and 

government agencies. These stakeholders need to participate and cooperate in cross-industry alli-

ances to set common operational, process and technology standards. With m-payments, the 

stakeholders face technological risks and various economic uncertainties, including unexpected 

market condition changes, consumer adoption, merchant responses, and standards and regulation 

risks. For example, fraud typically constitutes most of the transaction-related financial losses as-

sociated with e-payment technologies. Stakeholders wonder about the likely benefits and costs, 

and there are understandable concerns about whether any specific underlying technological solu-

tion is better in defending against undesirable financial losses.  

Such is the nature of uncertainties in m-payment: they go beyond purely technical issues to 

those involving consumers, banks, merchants, technology and infrastructure providers, and regu-

lators, and the additional reservations they express about adoption. For consumers, their willing-

ness to adopt m-payments is influenced by perceived usefulness and ease of use. For merchants, 

they are expected to accept m-payments in return for goods sold and services rendered. But mer-

chants bear uncertainty risks as well. They may not know about the likely extent of consumer 

adoption and the nature and timing of bank adoption. For banks, they face infrastructure devel-

opment issues, changing transaction costs, and security problems – and many “cost unknowns.” 

There also is no standard business model for m-payments. Nor has an effective revenue mod-

el been developed. Also, we have not yet seen any truly successful collaboration among the 
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stakeholders. Business networks that adopt business process standards will have a higher likeli-

hood of firm participation, since the costs for participation and switching will be lower, thus en-

abling greater capacity for value creation in production that is undertaken with other network 

firms. In addition, because of lack of consumer demand, which is driven by the availability of 

many alternative payment choices, m-payments are not yet widely accepted [13]. Consumers ei-

ther do not see any benefits or find it easier to pay with another safe and widely accepted method.  

Finally, uncertainty about future regulation and the ownership of customer relationships are 

holding back mobile financial services adoption. The e-payments industry is heavily regulated, 

and participants in m-payment systems face high costs to comply with existing regulation. Regu-

lations for mobile network operators and third-party participation in payment services are frag-

mented. There is confusion because multiple regulatory agencies have fragmented responsibili-

ties for different aspects of payments and wireless transactions in most countries. Because the 

marketing value of customer data on m-payments is tremendous, uncertainties also arise when 

different parties share data and must negotiate the ownership of the customer relationship. 

As major players in the financial services industry, banks play an indispensable role in the m-

payments market’s development and success. We study a new set of issues that involve the spec-

trum of affected stakeholders, with an emphasis on senior management decision-making at the 

banks. Bankers’ m-payment systems adoption decisions involve technological risks, dynamic 

market conditions and the uncertain actions of other stakeholders. In such a complex environ-

ment, tradeoffs in decision-making, the variety of factors make it hard for management decision-

makers to balance the trade-offs.  

We will model the dynamic environment of the m-payments marketplace using a general sto-

chastic process with value jump events. It enables us to offer insights on the appropriate time to 
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invest associated with the expected payoffs for the bank. It also supports estimation of the finan-

cial impacts that might arise in the presence of sudden shocks that affect the m-payments busi-

ness and how this may influence the investment timing of the bank. We will leverage a simula-

tion-based approach proposed by Longstaff and Schwartz [16] to value technology investment 

when the related business environment experiences relevant shocks.  

In this research, we ask: (1) How can the value of m-payments technology investments be 

maximized under uncertainty? (2) How long can a bank postpone its commitment to a specific 

technological solution? (3) How does adoption by other stakeholders influence the timing of a 

bank’s own adoption in the presence of changing expectations about the relevant business and 

technology standards for m-payments? And, (4) how should we model and analyze changing 

managerial sentiments in light of decision-relevant information that is revealed over time? To 

answer these questions, Section 2 presents our theoretical perspective, and Section 3 discusses 

the m-payments technologies market. Section 4 develops a stochastic model for bank decision-

making for investments in m-payments technology. Sections 5 and 6 present our results, and Sec-

tion 7 concludes.  

2. THEORY 

Different theoretical perspectives are relevant for m-payment technology investments: deci-

sion-making under uncertainty, real option methods, investment timing, and network effects.  

2.1. Decision-Making under Uncertainty 

The characteristics of m-payment systems investments make the financial economics of deci-

sion-making under uncertainty [5, 8] an appropriate theoretical perspective for evaluating a 

bank’s flexibility to choose an optimal time to invest. We consider m-payment system invest-

ments as a process that involves managing the balance between value and risk. In our model, the 
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benefits and costs of m-payment investment follow a continuous-time stochastic process, and 

include a discontinuous value jump diffusion process. The stochastic process that is most com-

monly used is geometric Brownian motion. Models that include the geometric Brownian motion 

stochastic process assume no external competitive or regulatory impacts on the benefits flows 

and future payoffs from the IT investment, however. To address this shortcoming, we will incor-

porate a discontinuous jump diffusion process reflecting the external impacts on future payoffs.  

A Poisson process can be used to capture rare events when the benefits flows change drasti-

cally, causing the investment payoffs to jump. Merton [21] has shown that the price of an Ameri-

can option is given by a complex mixed differential-difference equation that is difficult to solve. 

Longstaff and Schwartz [16] suggested a least-squares Monte Carlo method for option valuation 

when the underlying asset follows a jump diffusion process. It combines simulation and ad-

vanced regression methods to develop an approximation for a set of conditional expectation 

functions. Stentoft [26] showed that various approximations of option prices converge to the true 

price under certain conditions. These work offer a useful foundation for examining investment 

timing and key elements related to the decision-making process we wish to study. 

2.2. Real Option-Based Methods 

Information technology (IT) investment risk can be evaluated using a family of financial risk 

management methods. Benaroch [4] identified various IT investment options, including deferral, 

staging, exploration, scale alternation, outsourcing, abandonment, leasing, compound, and strate-

gic growth options. Grenadier and Weiss [12] used similar methods from financial economics to 

determine the optimal investment strategy for a firm that is faced with uncertainty from a se-

quence of technology innovations. Electronic banking network expansion has been a focus for 

the development of realistic models for decision-making under uncertainty to enhance the power 



     
 

 

6 

of senior management to effectively strategize.  

Some researchers have questioned the validity of option-based approaches in financial evalu-

ation. Banker et al. [3] examined the Black-Scholes model for valuation of IT projects and 

showed that the restrictive assumptions may result in over-valuation, in spite of the fact that the 

logic of the approach has been widely touted as being helpful in supporting the logic of strategic 

thinking related to IT investment decisions under uncertainty. Fichman [10] argued that, when 

uncertainty and irreversibility are high, real option analysis should be used to structure the evalu-

ation and management of project investment opportunities. M-payments infrastructure invest-

ments enable a bank to make follow-on investments in other projects. The uncertainties make m-

payment investments a risky project though, and a bank may decide to abandon or defer them. 

2.3. The Timing of New Technology Adoption 

Investment timing. Time plays an important role in investment decision-making. Prior stud-

ies have pointed out many factors that affect a firm’s adoption of a new technology at a given 

time: when information acquisition [14, 19], information spillovers [18], and strategic interac-

tions occur [24]. Investing in m-payment technologies is an irreversible decision. Uncertainties 

about the future benefits and development costs will cause them to be perceived by decision-

makers as fluctuating over time – sometimes higher and sometimes lower, depending on their 

expectations of what it will take to implement m-payments, and what level of demand such ser-

vices will garner in the market once they have been deployed. Technologies tend to become 

more valuable over time, while investment costs usually fall, which suggests the nature of the 

benefits and costs drifts that are involved. IT investments often have high-upside potential, but 

also high uncertainty and indirect returns, which make them good candidates for being evaluated 

with decision-making under uncertainty methods.  
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Information technology diffusion. Schwartz and Zozaya-Gorostiza [25] contributed a cost-

benefit diffusion methodology for different kinds of IT investment decision-making, when the 

investment costs and benefits are subject to changes over time. An important thread in this litera-

ture has been modeling to support investment timing strategy for firms that must decide whether 

to adopt one of two incompatible technologies, in the light of evolving expectations about future 

competition. This is an important basis for a decision model related to m-payment technology 

investments, where uncertainties about the investment will be resolved over time.  

2.4. Network Effects 

The value of m-payment technology investments is tied to the extent of the network of organ-

izations and people that adopt this payment approach. Consumers typically value a product or 

service more when it is compatible with other things. These are network effects, and a large liter-

ature has studied them. The related ideas have been applied in different contexts relevant to m-

payments, including inter-organization systems, electronic data interchange, wireless phones, 

electronic banking and ATM networks, and electronic bill presentment and payment.  

Milne [23] observed that some new payment mechanisms have been developed for the pur-

pose of achieving high network effects. When more consumers use m-payments, more merchants 

will be willing to adopt this approach. As a result, the value of m-payment investments from a 

bank’s view will be higher too. Such positive network effects touch multiple stakeholders simul-

taneously, constituting a positive force for m-payments adoption.    

3. THE MOBILE PAYMENT MARKET ECOSYSTEM 

Electronic payments innovations are continuously improving the effectiveness and efficiency 

of payment systems. Since the 1980s, payment card networks and the use of automated clearing 

house computing capabilities for the processing of paper checks have automated banking pro-
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cesses. The country-level installed base of electronic payment capabilities is also an important 

factor influencing the diffusion and adoption level of m-payments. In the U.S., which was affect-

ed by the economic slump that began in 2008, e-payments increased 9.3% per year from 2006 to 

2009, and represented almost 80% of all non-cash payment methods [9, 11].  

M-payments evolution. The evolution of mobile financial services encompasses a combina-

tion of ongoing advances in hardware, software, and payment systems, including contactless 

payments, online banking, mobile phones (particularly smartphones), applications, and the con-

vergence of electronic-commerce and mobile-commerce. In the late 1990s, the first initiatives in 

mobile commerce and banking were the launch of the two mobile phone-enabled vending ma-

chines in Finland, which accepted payments via SMS. Initiatives that allowed consumers to use 

their mobile phones to perform new functions surged in 2000, driven by the development of mo-

bile Internet access, the popularity of the Internet and e-commerce, and the increased awareness 

of mobile phones as more than voice communication tools. After 2011, a number of new tech-

nology solutions for m-payments emerged. The infrastructure of safe and efficient m-payment 

systems is increasingly likely to be based on NFC contactless technology, now included in 

smartphones and merchant terminals, from the Google and Isis initiatives. Cloud-based m-

payments represent another type of technology solution for which payment credentials are stored 

on a secure server. Cloud-based solutions like PayPal reduce customer security concerns, and 

take advantage of the existing online platform to achieve network effects and interoperability. 

Smartphone adoption. Mobile phone manufacturers introduced smartphones that supported 

more effective web browsing and data capabilities. Smartphones offer a variety of enhanced ca-

pabilities, including ease of use, the developer and applications ecosystems, and security, which 

drive advanced m-payments usage. Adoption of m-payment systems is constrained by the extent 
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of infrastructure availability. Vision Mobile (www.visionmobile.com), a market analysis and 

strategy firm, reported that the smartphone penetration rate surpassed 29% globally in 2011, with 

2011 global smartphone sales reaching 486 million units [30]. The high penetration rate of 

smartphones, especially in Europe, the U.S. and some Asia Pacific countries, provides a natural 

infrastructure for m-payments to flourish. Smartphone penetration in Singapore, Japan, the U.S. 

and Western Europe matches penetration of various kinds of cards. (See Table 1.) 

Table 1. Mobile subscribers and smartphone penetration rate ranked by country, 2011 

RANK COUNTRY POPULATION SUBSCRIBERS SMARTPHONES MIGRATION RATE PER CAPITA 

1 SIN 4.9 8.1 4.4 54% 90% 

2 HK 8.0 14.0 4.9 35% 61% 

3 SWE 9.3 13.6 4.8 35% 52% 

4 AUS 21.6 29.8 10.2 34% 47% 

5 ESP 45.5 58.9 20.8 35% 46% 

8 FIN 5.4  9.6 2.3 24% 43% 

11 UK 62.1 82.4 25.0 30% 40% 

16 USA 319.1 319.4 111.8 35% 35% 

20 KOR 48.6 54.0 16.4 30% 34% 

24 GER 82.0 107.7 23.0 21% 28% 

33 JPN 126.9 126.8 18.1 14% 14% 

41 CHN 1,360.0 963.1 77.1   8%   6% 

Notes: Data are from Tomi Ahonen Consulting Analysis [1], based on raw data from Google/Ipsos, the Netsize 

Guide/Informa, and TomiAhonen Almanac 2011. Countries are rank-ordered by smartphone penetration rate. Popu-

lation, subscribers and smartphones are in millions. The smartphone penetration rate is per capita.  

M-payments benefits. These facts suggest the large potential benefits of m-payment adop-

tion. First, an encrypted contactless mobile platform or secure cloud server will help to minimize 

fraud. Second, merchants will be more cost efficient by processing m-payment transactions. 

They are more secure than traditional card transactions due to the use of dynamic data versus 

static magnetic card data. Also, m-payments help to reduce potential costs associated with pay-

ment card industry security standards compliance. Third, consumers enjoy the convenience and 

additional benefits of using m-payments, because mobile devices can easily incorporate multiple 

payment methods, loyalty cards, virtual coupons, and customized discounts. Finally, mobile 

phones allow financial services to be offered to people who do not have bank accounts. Given 

http://www.visionmobile.com/
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the increase in smartphone adoption, the large installed base for e-payments, and the perceived 

benefits of m-payment, banks recognize the need for industry alliances to establish a set of com-

mon operational, process and technology standards. Otherwise, they may forgo future profits 

from m-payments and lose their central role in handling customer account relationships. 

4. A MODEL FOR DECISION-MAKING UNDER UNCERTAINTY 

We next present a model to evaluate a bank’s m-payments technology adoption decision. We 

include a jump process for the possibility that an unexpected event may occur during the diffu-

sion process, creating a shock on the value flows. Uncertainty in m-payments investment can be 

represented by multiple stochastic processes. They relate to investment costs, future benefits, and 

the possibility that a jump event may occur before the investment opportunity expires. 

4.1. The Model 

The bank is risk-neutral and value maximizing. It has the option to wait until an optimal time 

to invest. It can decide whether and when to invest I dollars to sign contracts with m-payments 

technology providers or set up m-payment systems infrastructure, such as an embedded-NFC 

point-of-sale (POS) service network. (See the Appendix A for our modeling notations.) The in-

vestment decision is irreversible; it will be hard for the bank to unwind payments to contractors 

or employees. We further assume that once the investment decision is made, the system will be 

installed and begin to function. The costs of operation and maintenance will be negligible. 

IT innovation happens fast. We assume the investment opportunity lasts for the period of [0, 

T], when the benefits flows from investing in the m-payment system infrastructure occur. There-

after, the investment opportunity related to the technology standard will expire. The bank can 

invest at any time up until T, the maximum length of the deferral period. The current cost of the 

investment is known, but future changes are uncertain. They follow geometric Brownian motion, 
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               (Changes in Investment Cost), where dz is a standard Wiener process, αI is a 

drift parameter for cost changes, and σI is the standard deviation affecting the volatility of the 

investment cost, whose drift parameter is negative, αI < 0. Investment costs will tend to decrease 

over time due to technological progress and the increased scale of the m-payment infrastructure. 

After an investment is made, the bank will receive benefits flows until time T. (See Figure 1.)  

Figure 1. Investment timeline 

 

Let B denote the stochastic benefits flows arising from the m-payment investment, with dB = 

B Bdt + B Bdz (Stochastic Benefits Flows), where αB is a drift parameter and σB is the standard 

deviation of the cash flow described by a standard Wiener process. We assume σB is decreasing 

over time: as more information is revealed, uncertainty over the benefits flows will be resolved. 

For example, as time goes by, when an increasing number of NFC-enabled smartphones are in-

troduced or a standard business model for m-payments emerges, the uncertainty of the benefits 

from investing will abate. Positive network effects are associated with a positive drift value for 

cash flows during the lifetime of the investment, so αB > 0. As more consumers and merchants 

use and support m-payments, the benefits flows will be higher. This also captures the trend in the 

value of the network based on the growth of the user base. Another assumption is that no other 

competitors offer a similar m-payment mechanism or enter the market in [0, T], and there is no 

correlation between the stochastic changes in the investment cost and benefits flows, and ρBI = 0. 

The bank has an incentive to defer its m-payments investment decision due to: (1) declining 

investment costs; (2) the resolution of uncertainty of the benefits flows; and (3) cash flows for a 

later investment. Deferring m-payment investment is costly for the bank though. Investing later 



     
 

 

12 

shortens the length of time the bank will receive benefits flows. It may also miss the advantage 

of an earlier mover. When determining the optimal investment timing for m-payments infrastruc-

ture, the bank must consider all these factors, which may have countervailing effects.  

The value of an investment in m-payment systems technology at time t is the expected pre-

sent value of the stream of future benefits, adjusted for the relevant costs. Value can be assessed 

based on the discounted benefit flows from the time t when the bank makes the investment deci-

sion to the latest deferral time, T, with                      
 

 
    (Investment Value). Et is 

the expectation conditional on information available at time t and Bt = B, rf is a risk-free discount 

rate, and τ is the period of time over which discounting occurs.  

The process representing the benefits flow drift is given by               

         
            (Benefits Flow Drift), where ηB is a risk premium due to benefits 

uncertainty, and dz
*
 is a risk-neutral measure for the Wiener increment. Integrating over the in-

terval (t, T) gives   
 

     
            

         (Discounted Investment Value). The expected 

value of investment I at time t is          
         (Expected Value of Investment Cost), where 

ηI is a risk premium for investment cost uncertainty and I0 is the investment cost at time 0.  

The decision to invest at time 0 ≤ t ≤ T is equivalent to exercising an option before its expira-

tion date T. Let F(B, I, t) denote the value of this investment opportunity at time t. Since B and I 

do not involve traded assets, but are the expected values of a pair of random variables, they will 

have risk premia associated with them. The net present value (NPV) of this investment oppor-

tunity with an embedded deferral option is              –                         (In-

vestment NPV with Deferral). The related option value is                         

          (Real Option Value). Substituting the Discounted Investment Value and Expected 

Value of Investment Cost Equations under the risk-neutral measure into the Real Option Value 
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Equation gives:                   
 

     
            

             
                     . 

We then apply Ito’s Lemma to obtain the differential real option value for the investment: 

     
    

  
   

    

  
   

    

  
   

 

 

     

       
 

 

     

   
    

 

 

     

    
       (8) 

Substitution of the Changes in Investment Cost and the Stochastic Benefits Flows Equations, 

along with the expression for dROV into the Bellman Optimality Equation,         

       , yields the following complex expression for the second-order differential equation: 

 

 
  

         
 

 
  

                                                 .    

The Bellman Optimality Equation states that the value of a state under the optimal policy − 

in this case, the value of the investment opportunity − must equal the expected return for an ac-

tion associated with that state. The relevant action is the exercise of the real option. The solution 

to the above second-order differential equation must satisfy two boundary conditions.
 1
  

This will yield the optimal decision rule. When V – I > 0 and ROV (B, I, t) > 0, the best deci-

sion for the bank is to wait, if waiting is possible. Only when ROV (B, I, t) = 0 and V – I > 0, will 

it be the optimal time to invest in m-payment technology at investment cost I. When V – I < 0, 

and ROV (B, I, t)  ≥ I – V > 0, the bank should wait for the cost flows to decrease or for the ex-

pected value to increase. If waiting is not possible, the project should be abandoned. 

4.2. The Relevance of Jump Diffusion Process Modeling 

So far, we have modeled a continuous diffusion process. It is more realistic to include a dis-

continuous jump into our continuous process to capture unexpected sudden changes in invest-

ment value. Such changes are jumps that might be caused by various developments. One is the 

                                                            
1 First, the value of the real option must be 0 at time T, ROV (B,I,T) = 0. This is because the decision to 

make the investment cannot be deferred anymore at time T. Second, at any other time, 0 ≤ t < T, the value 

of the investment opportunity will always be non-negative, with ROV (B,I,t) ≥ 0 for all 0 ≤ t < T.   
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entry of a strong competitor: for example, the entry of Isis and PayPal might cause the profits of 

Google Wallet or Square experience a sudden decline. Another possibility is that the promulga-

tion of government regulation may lead to a jump up or down in the value of an m-payment sys-

tem investment. For example, in some countries, financial services firms and mobile network 

operators have to obtain m-payment services licenses from the government for the authority to 

operate their businesses. Still another possibility is an unexpected economic situation that may 

occur like a financial crisis. In advanced economies, financial crises dramatically alter the future 

value of growth opportunities for financial services firms, as some may exit in tough economic 

times. Other events are possible too. 

When the related business environment experiences sudden changes, the payoffs associated 

with investments in m-payments can be modeled as a mixed Poisson-Wiener process. Merton [20] 

referred to this as a jump diffusion process. If B(t) is the benefits flow representing value derived 

from an m-payment investment at time t and Y is a random variable, then the value of the in-

vestment at time t + dt will be the random variable B(t + dt) = B(t)Y, Y ≥ 0, given that a jump oc-

curs between t and (t + dt). We view the influence of an event that occurs after the m-payment 

system investment is made as a Poisson process with independently distributed value jumps. 

They will have the value of 0 with probability 1 - dt, and the value of 1 with probability dt, 

where λ as the mean number of jumps per unit of time – that is, the value jump rate. 

The benefits flows derived from investing at time t including value jump diffusion therefore 

are given by dB = (B + k)Bdt + BBdz + (Y – 1) Bdq (Benefits Jump Diffusion), where k   E(Y 

– 1), dq and dz are independent, and E(dzdq) = 0. (Y – 1) is a random variable for the percentage 

change in investment value if the jump event occurs. The jump diffusion process will be contin-

uous most of time, and only a small percentage of jumps will be discontinuous. The value of the 
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investment is represented by the discounted benefits flows from when the investment decision is 

made up to the end of investment time horizon T, adjusted for the relevant costs. 

It is important to note two points about the meaning of the Benefits Jump Diffusion Equation. 

First, the expected percentage rate of change in benefits B is not αB, but instead is αB + λk. Why? 

Because over each small interval of time dt there is some probability λdt that the benefits flow 

will change by 100 (Y – 1)%. Increases in λ will change the expected benefits flow by increasing 

the likelihood of a sudden change in B. Second, if a benefits jump event occurs infrequently, then 

most of the time the variance in dB/B over a short interval of time dt will be given by   
   , 

based on Brownian motion. When the benefits jump event does occur, there will be a very large 

change in value. This will contribute to the variance, given that the information that becomes 

available at time t cannot be neglected. This enables us to work with the adjusted variance of the 

benefits flows,           
                  (Benefits Jump Adjusted Variance).

2
 

This variance has two components. The first,   
     , is the instantaneous variance of the 

change in benefits dB, which comes from the Brownian part of the process, and is conditional on 

no jump occurring. The second term,  (Y – 1)
2 
B

2
dt, accounts for the scenario of a jump occur-

rence.  

To gauge the influence of changing the rate of change in the benefits flow (λ), we must know 

the expected value of TB, the amount of time that B changes continuously before a jump occurs. 

The probability the first event happens in the short interval (TB, TB + dTB) is          . This 

gives the expected time until the benefits take a Poisson jump:                      
 

 
.  

 

                                                            
2 Using an approximation for Brownian motion with αB = 0, dB =  (dt) with probability .5 (1 - dt), -B (dt) with 

probability .5 (1 - dt), and (Y – 1) B with probability dt. 
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5. SIMULATIONS, VALUATION AND SENSITIVITY ANALYSIS 

We next conduct numerical simulations and sensitivity analysis of the model. We assess a 

bank’s optimal investment timing strategy and best payoffs in the presence and absence of value 

jump. We also apply the Monte Carlo and least-squares Monte Carlo methods to the continuous 

stochastic and discontinuous jump processes. We first develop a benchmark case and then per-

form sensitivity analysis with respect to some of the key parameters of the model.  

5.1 Simulation Setup and Sensitivity Analysis 

To initiate the simulation, the decision-maker who is contemplating adopting m-payments 

technology at the bank must know the following information. (Table 2 summarizes this.) 

Table 2. Simulation parameters 

 

 

 

 

 

 

 

Simulation assumptions. For the simulation, the bank knows the current investment cost I0 

and the rate of cost change αI. We assume I0 = $10 million and αI = −0.1. In addition, the invest-

ment cost uncertainty is σI = 0.2. The investment decision must be made during prior to the end 

of the investment time horizon T. We assume T = 60 months (5 years), a reasonable length of 

lifetime for m-payment technologies to be available. Once the investment decision is made at 

time t, the first benefit flow received is B0 (t), which increases linearly. We further assume that 

B0 (t) has a range of $0.1 to $1 million over the investment time horizon. The drift or change in 

PARAMETER DESCRIPTION VALUE 

I0 Initial investment cost $10 million 

B0(t) Initial benefit flow $0.1-1 million 

αI Rate of cost change -0.1 

αB Rate of benefit change 0.7 

σI Cost uncertainty 0.2 

σB Benefit uncertainty 1.0-0.1 

T Maximal deferral time 60 months 

        . Mean number of jumps 0.05 

        . k % change of benefits, B 0.5 

E(Y) Expectation of Y 1.5 

rf Risk-free discount rate 6% 

N Number of simulated paths 100,000 

Δt Duration of each time increment 1 month 
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the benefits flow is αB = 0.7, and the uncertainty σB of this benefit flow will decrease linearly 

over time. In addition, the bank knows the discount rate affecting its waiting cost. We assume a 

risky discount rate of 12% and the risk-free discount rate rf = 6%, which gives a risk premium ηB 

= 6%. The bank also believes that the mean number of jump events per unit time will be λ = 0.05; 

and the expectation of the percentage change in investment value if a jump event occurs is k = 

0.5. Finally, the random variable (Y − 1) follows a normal distribution N (0.5, 1). 

We used Matlab to code the simulation and run the numerical analysis. Based on the parame-

ters we selected, we first simulated 100,000 sample paths for the state variables I and B.
3
 Future 

profit at time t can be calculated by adding the discounted cash flows from t to T, and the value 

of m-payment investment project will be the present value of future profits minus the current in-

vestment cost at time t. In the Monte Carlo simulation, the goal is to compare the discounted pre-

sent value of the payoff at each time and then determine the optimal investment time based on 

the simulated values associated with all of the paths that occur. 

The result of the numerical solution for the benchmark case is shown in Figure 2. The bank 

should invest at optimal time t
*
 = 14 months (1.17 years), and it expects $4.10 million from the 

investment. To get to a deeper understanding of the insights from the model, we perturbed some 

of the key parameters and analyzed their impact on the investment valuation and decision timing. 

Figure 3 shows what happens when the investment time horizon is shortened to 48 months (4 

years) or extended to 72 months (6 years). (In all of the following figures, the solid line repre-

sents the benchmark case.) Our simulation results suggest that the bank should invest slightly 

later compared to the benchmark case, at t = 15 months (1.25 years), and the maximum payoff 

                                                            
3 We used a large number of samples to make sure that the average payoffs were close enough to the expected m-

payment investment benefit flows, and the parameter values were chosen to represent a typical electronic payments 

network development project. 
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will decrease to $2.42 million when the investment time horizon is shortened to 48 months (4 

years). In contrast, if the investment opportunity expires in 72 months (6 years), the bank should 

make the decision earlier, at t = 13 months (1.08 years), and the maximum payoff will increase to 

$5.70 million. So when there is more flexibility in decision-making period, the bank should bring 

the m-payments investment project forward so as to achieve highest payoff, and vice versa. 

The drift parameter for the benefits flow B captures the rate of change from the time of in-

vestment to the expiration date. We varied B from the benchmark value 0.7 to 0.6 and 0.8 in 

Figure 4. When B = 0.8, we found that the highest payoff for m-payments technology invest-

ment also increased from $4.10 to $6.53 million, and the best investment time shifted to an earli-

er date, t = 11 months (0.92 years). When B = 0.6, the bank should initiate the m-payments in-

vestment project at a later date, t = 18 months (1.5 years), and the maximal payoff will be $2.60 

million. Thus, when future benefits are expected to grow more rapidly, the bank should make the 

investment earlier to receive a higher total payoff from the investment.   

To complete our illustration of the continuous-time diffusion process, we further examined 

the impact of the time value of money on valuation and investment timing by adjusting the risk-

free discount rate. Figure 5 shows that when rf = 0.5, the optimal investment time occurs at t = 13 

months (1.08 years) with a maximum expected payoff of $7.27 million. When rf = 0.7, the corre-

sponding optimal investment timing is located at t = 16 months (1.33 years) with a maximum 

expected payoff of $2.23 million. Comparing it with the benchmark case, we conclude that when 

the time value of money is less, the bank will benefit from an earlier investment. 

5.2. Jump Diffusion Simulation 

We next simulated a discontinuous jump diffusion process. To examine the impact of a jump 

event and sudden changes in value, we first considered one jump occurring at different stages 
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and in different directions during the investment horizon.  

Given a mean number of jumps per unit of time, λ, and the expectation and distribution of 

the random variable (Y − 1), we randomly generated one jump event. In Figure 6, the solid line 

refers to the benchmark case: the continuous-time process without a jump. Recall that in this 

benchmark case, the optimal investment is at t
*
 = 14 months (1.17 years). The upper dashed line 

refers to a discontinuous process with an upward value jump occurring at time t = 20 months 

(1.67 years), and the random variable (Y − 1) = 0.74. The total payoff increases a lot, from $4.10 

to $10.16 million. This is an example in which an upward jump happens after the optimal in-

vestment time t
*
 in the continuous-time process. The bank should invest at t = 12 months (1.00 

year). This is like the benchmark case: extra benefits from the jump can be obtained afterwards. 

Because the expected percentage rate of change in benefits B increases in the Benefits Jump Dif-

fusion Equation, the optimal timing is slightly earlier than for continuous-time process.  

The lower dashed line refers to an example in which an unexpectedly very large jump hap-

pens before the optimal investment time in the continuous-time process. The jump occurs at time 

t = 10 months (0.83 years), and the random variable (Y − 1) = −1.39. Now the bank should invest 

at t = 14 months (1.17 years), exactly same as the benchmark case result, with a maximum ex-

pected payoff of $4.63 million. Since we only consider the influence of a jump event that occurs 

after the m-payment system investment is made, the very large value jump will not affect in-

vestment timing. In sum, when an upward jump happens after t
*
 or an unexpected very large 

jump happens before t
*
, the bank should time its investment similar to the continuous-time case.  
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Figure 2. Investment timing benchmark simulation 

 

 

Figure 3. Optimal investment timing, T = 4 and T = 6 years 

 

 

Figure 4. Optimal investment timing, αB = 0.6 and αB = 0.8 

 
 

Figure 5. Optimal investment timing, rf = 0.5 and rf = 0.7 

 

T 

T 

Optimal timing t* = 14 months, then maximum payoff is $4.1 million. 

When T = 4 years, t* = 15 months, maximum payoff is $2.42 million. 

When T = 6 years, t* = 13 months, maximum payoff is $5.70 million. 

 

When rf = 0.5, t* = 13 months, then maximum payoff is $7.27 million. 

When rf = 0.7, t* = 16 months, then maximum payoff is $2.23 million. 

 

When αB = 0.6, t* = 18 month, then maximum payoff is $2.60 million. 

When αB = 0.8, t* = 11 month, then maximum payoff is $6.53 million. 
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We further examined the cases in which upward jumps happen before or unexpected very 

large jumps occur after the optimal timing t
*
 in the continuous-time process. In Figure 7, the up-

per dashed line refers to an upward value jump event that occurred at t = 10 months (0.83 years), 

with the random jump in investment value of (Y − 1) = 0.80. The lower dashed line refers to an 

upward value jump that occurred at t = 4 months (0.33 years), with a random jump in investment 

value of (Y − 1) = 0.34. We observe that, when the value jump happens at t = 10 months, the 

bank should invest slightly earlier at t = 9 months to reap the extra benefits before the jump oc-

curs. But the jump occurring at t = 4 months did not affect the continuous-time optimal timing, 

so the bank still should invest at t = 14 months. The total payoffs are $11.42 million and $4.65 

million respectively, and both of them are higher than the benchmark case.  

Similarly, in Figure 8, the upper dashed line refers to a very large value jump that occurred 

at t = 20 months (1.67 years), with the random jump in investment value of (Y − 1) = −1.21, 

while the lower dashed line refers to a very large unexpected jump that occurred at t = 40 months 

(3.33 years), with a random jump magnitude of (Y − 1) = −0.68. The event that occurred at t = 20 

months (1.67 years) should make the bank shift its investment timing to a later time t = 21 

months (1.75 years) to avoid possible loss. In contrast, the jump at 40 months does not change 

the optimal timing for investment largely and the bank should invest at t = 15 months (1.25 

years). The related total payoffs are $4.01 million and $1.79 million, and both of them are lower 

than the benchmark case. In these two scenarios, the conclusion is that that the value jump time 

and magnitude will jointly influence on the best timing and maximum payoff for investment. 

(See Table 3.) 

To explore the bivariate influence of value jump time and magnitude on the optimal invest-

ment timing, we made the random jump magnitude discrete. At each time step before t
*
 = 14, we 
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continuously increased the value jump magnitude by 1%. Similarly, at each time step after t
*
 = 

14, we decreased the value jump magnitude by 1%. Figure 9 indicates three value jump regions 

based on the relationship between the value jump time (t) and the value jump magnitude (Y − 1), 

given the benchmark case optimal time t
*
. When the value jump falls in the Unchanged Region 

(an unexpected downward value jump before t
*
 or an upward value jump after t

*
), it cannot in-

fluence the continuous-time result, as we demonstrated. At a higher value jump magnitude, when 

the jump happens in the Jump Diffusion Region (an upward value jump happens before t
*
 or an 

unexpected downward value jump happens after t
*
), it shifts the continuous-time optimal time to 

before or after the value jump time. When this is the case, the bank should invest sooner to reap 

extra benefits or defer the decision-making to avoid possible losses.  

Table 3. Simulation results 

 

 

 

 

 

 

 

 

 

SIMULATION TIME (t) Y OPTIMAL TIME (t) MAX PAYOFF 

Benchmarking   14 $4.10 million 

T = 48 months   15 $2.42 million 

T = 72 months   13 $5.70 million 

B = 0.6   18 $2.60 million 

B = 0.8   11 $6.53 million 

rf = 0.5   13 $7.27 million.   

rf = 0.7   16 $2.23 million 

Value jump ↑   4 1.34 14 $4.65 million 

Value jump ↑ 10 1.80 9 $11.42 million 

Value jump ↑ 20 1.74 12 $10.16 million 

Value jump ↓ 10 -0.39 14 $4.63 million 

Value jump ↓  20 -0.21 21 $4.01 million 

Value jump ↓  40 0.32 15 $1.79 million 

Note: The unit for time and optimal time is months. This table summarizes our numerical 

results for the benchmark case, sensitivity analysis for some key parameters, and one value 

jump that occurs at different times t and in different directions, ↑ or ↓. 
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Figure 6. Upward jump at t = 20, unexpected large jump at t = 10  

 

 

 

Figure 7. Upward jump at t = 4 and t = 10 

 

Figure 8. Unexpected large jumps at t = 20 and t = 40 

 

 

 

Figure 9. Continuation, jump diffusion and unchanged regions  

When an upward jump occurs at t = 20 months and Y =1.74, optimal timing t* = 12; 

when an unexpected jump occurs at t = 10 months and Y = -0.39, then t* = 14. 

For an upward jump at t =10 month and Y =1.80, the optimal timing is t* 

= 9; for an upward jump at t = 4 months and Y  = 1.34, t* = 14. 

For an unexpected jump at t =20 months and Y = -0.21, t*=21; for an 

unexpected jump at t = 40 months and Y =0.32, optimal timing t* = 15. 

Continuation region: at a lower jump magnitude, an upward jump before t* or 

an unexpected jump after t*; jump diffusion region: at a higher jump magni-

tude, an upward value jump before t* or an unexpected jump after t*; un-

changed region: an unexpected jump before t* or an upward jump after t*. 
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With a lower value jump magnitude, the upward jump occurring before t
*
 or an unexpected 

downward value jump occurring after t
* 
in the Continuation Region will not affect the continu-

ous-time optimal timing. For lower values of |Y – 1|, the bank should process information about 

market shocks that affect firm and market-level perceptions associated with IT investments as 

endogenous stationary risks. This implies that a decision-maker may exercise the investment op-

tion at an earlier stage when a surge of benefits related to an upward value jump event is suffi-

ciently high. At a later stage, only when the bank forecasts that a major event is in the offing will 

there be an incentive to keep the investment opportunity open for a longer period of time. 

5.3. Least-Squares Monte Carlo Valuation 

The real option framework applies traditional option pricing method with the Black-Scholes-

Merton model to deal with IT investments under uncertainty [5]. The difficulty in applying this 

model is that there is no obvious and objective value for the underlying project: the option value 

based on the Black-Scholes-Merton model does not include a trend term in its solution. Moreo-

ver, there is an over-valuation problem associated with the application of the Black-Scholes-

Merton model [3]. Over the years, another approach involving a twin security that mimics the 

discounted cash flow value of the underlying asset has been advocated to estimate the volatility 

of its value. The idea is that, in order to obtain a good substitute for the objective value of a pro-

ject, it is appropriate to replicate the characteristics of a non-traded IT investment with some-

thing that is traded. An alternative way to do this is to construct a replicating portfolio of traded 

securities whose value and volatility also approximate those of the underlying asset.4  

                                                            
4 This perspective has been best articulated by Robert Merton [22, p. 326], in the 1998 American Economic Review 

article on the occasion of his December 1997 receipt of the Alfred Nobel Memorial Prize in Economic Sciences: 

“My principal contribution to the Black-Scholes option-pricing theory was to show that the dynamic trading strategy 

prescribed by Black and Scholes to offset the risk exposure of an option would provide a perfect hedge in the limit 

of continuous trading. That is, if one could trade continuously without cost, then following their dynamic trading 
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The simulation-based least-squares Monte Carlo method enables us to estimate the volatility 

of the project’s value, as well as to approximate the option value of the investment opportunity. 

This also allows us to estimate the optimal stopping rule for the investment option. If the value of 

investing in m-payments for the next period (the next month in our case) is greater than the value 

of investing for the current period, then the bank should defer investing; otherwise, it should ex-

ecute its m-payments technology investment project immediately. Similarly, the least-squares 

approach also can be applied using a more complex jump-diffusion process. For what follows, 

we continue to use most of the benchmark simulation parameter values from Table 2. (See Ap-

pendix B for our numerical solution procedure.) 

The results of our numerical valuation are 0.52 for the case when there is no possibility of a 

value jump λ = 0, and 0.35 when a value jump can occur with the probability λ = 0.05, given k = 

0. Thus the value of the m-payments opportunities is lower when there is a possibility of a value 

jump, holding fixed the expectation that the value jump magnitude will be 0 across the different 

cases. This means that if a jump does not occur, then the investment opportunity will be less like-

ly to be deep in the money and thus, the investment option will be not worthwhile to exercise 

when λ = 0.05. In the presence of the occurrence of an upward jump in value, the m-payments 

investment will be much more valuable than it would have been otherwise. Our results further 

imply that a gain to the bank from upward movement in the value of the investment still may not 

offset the overall effects of value jumps over time [15]. So a bank will have less incentive to 

keep the investment opportunity open and may wish to adopt a more aggressive posture with an 

                                                                                                                                                                                                
strategy using the underlying traded asset and the riskless asset would exactly replicate the payoffs on the option. 

Thus, in a continuous-trading financial environment, the option price must satisfy the Black-Scholes formula or else 

there would be an opportunity for arbitrage profits.” This is a useful perspective since it means that whether one uses 

a twin security or an equivalent portfolio of market-traded securities, the result will be the same: the characteristics 

of a non-securitized asset can be represented well enough and in a manner that is similar to what happens with real 

markets for assets that are thinly traded or lack liquidity [2]. 
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early investment strategy. Our simulation bears out this intuition. For λ = 0.05, the value of the 

investment opportunity is 0.72 for k = 0.5, which is higher than the cases in which k = 0 and k 

= –0.5, where the respective values are 0.35 and 0.16.  

6. DISCUSION AND MANAGERIAL IMPLICATIONS 

While the future configuration of the payments landscape cannot be predicted with certainty, 

the customer base and traditional payments systems revenue model are under stress and have 

been severely impacted due to ongoing and fundamental technological changes. Unless the banks 

focus on m-payments innovations, they may lose additional core customers and revenues, as new 

players exploit the opportunities through emerging technologies that are driving digital conver-

gence and the participation of entirely new kinds of stakeholders. The success of m-payment sys-

tems technologies rely on joint participation from multiple stakeholders, including consumers, 

merchants, network operators, device manufacturers, financial services, and software and tech-

nology providers. Success also depends on some exogenous factors, such as the nature of gov-

ernment regulation, future technology innovation, and changes in the costs of technology. As a 

result, a bank’s senior managers face various uncertainties and, as a result, still find it difficult to 

decide whether and when to adopt a specific m-payments technology. To help them make more 

effective investment timing decisions, we proposed a continuous-time stochastic model for deci-

sion-making under uncertainty. We now will offer a number of additional recommendations to 

the senior managers. 

 Recommendation #1 (Take Advantage of Payoff-Relevant Information Revelation 

for Emerging Technology Investments). A bank’s senior managers should develop 

appropriate expectations about future trends regarding technology standards and mar-

ket conditions, as well as the volatility of investment costs and benefits, as information 

is revealed over time.  

We used a stochastic process to simulate cost and benefit changes over time. It allows the 



     
 

 

27 

value of the investment opportunity to change continuously as new information arrives. This is 

not typical with multi-stage discrete-time models. This raises the issue of rational expectations. 

Senior managers may not be able to assemble the information they need for decision-making all 

at once. There are costs and frictions associated with sorting out what information is meaningful 

and action-relevant. In our multiple-stakeholder setting, information processing is difficult be-

cause bank managers will act based on interactions with other stakeholders in the m-payments 

ecosystem. Their information processing is complicated, which may lead to inappropriate expec-

tations and cause their action to be different from the investment strategy of the model.  

Another important managerial consideration is that a bank possibly should invest in m-

payment systems technology at an early stage to gain first-mover advantage. Once a specific m-

payment technology is successfully developed and adopted, it is likely to achieve strong network 

effects (as we have seen in the past couple years with Square’s add-on device to make payment 

cards swipable via a mobile phone). The first-mover will be rewarded with high payoffs from 

developing the network. However, first-mover advantage will inevitably decrease, and may even 

eliminate the flexibility that a bank may benefit from in dealing with uncertainty. Moreover, 

strong network effects tend to drive decision-makers toward making investment decisions earlier. 

Thus, the combination of first-mover advantage and strong network effects may hasten senior 

managers’ decision-making process and lead to pre-emptive investment strategies that run the 

risk of an unexpected large value jump occurring that may be disadvantageous.  

 Recommendation #2 (Support Standardization and Subsidy Strategies for New 

Technology Investments). A bank that acts as an early adopter should subsidize the 

customer-side and merchant-side adoption of m-payments to achieve network effects 

and more rapid growth, as well as adopt a de facto standard that has achieved critical 

mass to gain investment returns over a longer time horizon.  

Our model is applicable to m-payment systems technology investments subject to strong 

network effects. Bank decision-makers must process information related to interactions with oth-
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er stakeholders in the marketplace also. For example, when there are more consumers who are 

willing to use this new technology, more merchants will accept and provide m-payment devices. 

As a result, the bank will also value this m-payment technology more, and hence is more likely 

to invest in developing network infrastructure for it. This, in turn, will make m-payments more 

valuable to consumers and merchants. In other words, positive cross-network effects will arise in 

this business platform, which are captured by the high volatility of profits and the positive drift 

parameter of the benefits flows in our model. A forward-looking technology sponsor can imple-

ment a subsidy strategy early on to enhance customer-side and merchant-side network size to 

achieve stronger network effects and more rapid growth. This also may help the technology 

standard that is being promoted to achieve critical mass, which will also enable the bank to gain 

substantial business value from m-payments in the long run.       

 Recommendation #3 (Create the Capabilities to Predict Jump Diffusion in Invest-

ment Value for Technological Innovations). A bank’s senior managers should aim to 

identify unexpected jump events that may cause sudden changes in the investment value 

of m-payments systems, and understand the potential impact on the appropriate invest-

ment timing in light of changes in the potential payoffs. 

We used a discontinuous jump process to model large movements and radical changes that 

may occur in investment value. This approach allows a bank’s managers to consider unexpected 

exogenous shocks in the environment, such as the entry of a new competitor into the existing 

market, unexpected economic developments, or sudden changes in government regulations. Our 

analysis of the value jump process provides bank decision-makers with guidance on how to re-

spond to uncontrollable exogenous shocks. For example, when some kind of a “black swan” 

event happens that dramatically reduces the value of the investment, the bank may wish to defer 

the investment opportunity to avoid possible loss. We saw this happen in another area of finan-

cial IS and technology in December 2009, when the U.S. Senate held hearings to address how to 

adjust the regulatory process in the financial markets in light of then-recent developments in al-
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gorithmic and high-frequency trading. An analogous development occurred in the m-payments 

arena in March and July 2012, when the Senate held a different set of hearings on how to devel-

op a framework for safe and efficient m-payments. The payments industry in the U.S. is heavily 

regulated, so many banks have been cautious about their entry into the market for m-payments 

services, and have adopted a wait-and-see strategy.  

In contrast, if the value of the investment is expected to experience a significant upward val-

ue jump at an early stage, our analysis will recommend making the investment decision earlier so 

that the bank can reap extra benefits likely to be brought on by the positive jump. In the presence 

of strong positive network effects within an m-payments system, the participation decisions of 

key stakeholders, such as large card and merchant associations or other banks, will enhance the 

installed base of firms and lift the expected consumer transaction volume in a short period of 

time. The actions of these key stakeholders will create new network effects and reduce uncertain-

ty market-wide about the outcome of competition among different technology standards. Since 

the bank will have less incentive to retain the option of making an investment because of the ex-

pected value jumps, when a technology has the possibility to become standard in the marketplace 

and strong network effects exist, senior executives will be more willing to accelerate their in-

vestments to harvest value amid the more rapid growth of m-payments market.  

7. CONCLUSION 

Our contributions are threefold. First, we propose a new modeling perspective at the firm 

level to enrich managerial knowledge on how financial economics theory can be used to support 

decision-making under uncertainty for m-payments and other IT investments. Second, we offer 

practical advice and recommendations to senior managers in banks by helping them assess in-

vestment timing and the business value of m-payment investments. Our numerical analysis pro-
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vides useful observations for the applied context. We show that, when the benefits are expected 

to flow over a longer time horizon or at an accelerating rate, the bank will have more managerial 

flexibility and should invest earlier to receive higher total payoffs from the investment.  

Third, our work also demonstrates the usefulness of a mixed Poisson-Wiener process in 

modeling the dynamically changing value of an underlying investment in m-payments systems 

infrastructure. Our numerical results show that, when the market experiences shocks that affect 

firm-level and market-level perceptions associated with technology investments at different stag-

es of development, a bank should consider adopting different investment strategies to achieve 

high payoffs. We also show the applicability of option valuation, the Longstaff-Schwartz least-

squares Monte Carlo valuation method, to value m-payments and other kinds of IT investments.       

A number of limitations deserve comment. The advantages of being a first-mover are not 

considered in the current model. Also, we have assumed that the bank can immediately imple-

ment an m-payment solution once it makes the investment decision. This assumption makes it 

possible for benefits to flow without any uncertainty about a lag in the formation of business val-

ue. The reality is different, of course: a bank will need some period of time, which will be of un-

certain length, to develop the necessary infrastructure. So the business value from investing will 

be obtained only some time later. In the investment process, the time at which the benefits flows 

start to be received is also a random variable, and the benefits flows that will be obtained during 

the development process will be relatively small. By assuming an appropriate amount of time for 

the installation of the infrastructure and the start-up of the benefits flows, our model can be 

adapted for application in a variety of settings. Excluding these factors may result in a loss of 

contextual richness. By limiting the number of factors that we considered though, we traded off 

complexity to achieve tractability. Finally, it will be beneficial to further validate the results of 
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this research when m-payment systems are mature enough to offer successful cases of invest-

ment and implementation that can be empirically assessed.  

Financial institutions have been cautious entrants into the m-payments market space, leaving 

the door open for a leader to emerge and gain significant first-mover advantage. An interesting 

direction for future research is to address the issue of investment timing in a competitive setting. 

This will only be valuable if we can discover aspects of the m-payments systems technology in-

vestment process that are truly unique in the industry setting, since so much research has already 

been done on investment timing with competition. For example, for new technologies, we often 

see firms that are able to leapfrog the competition and adopt previously unavailable systems, 

which probably would invalidate the assumptions of most standard game-theoretic approaches.  

In addition, blended models involving wait-and-see game-theoretic interactions between 

competitors and information updates that occur over time to motivate options-based evaluation, 

contextualized in a well-defined multi-stakeholder technology services platform are worthwhile 

to explore for building additional theory. A key observation about bank-led innovations in elec-

tronic payments over the years is that coopetition [6], rather than direct firm-to-firm competition, 

offers the best description of how firms actually have interacted in the industry. Market leaders 

become most successful when they create value by supporting the participation of other potential 

competitors [28]. Such firms act as value-makers in the larger market – for themselves, custom-

ers and competitors; and they also may be able to become successful value-takers as a result [15]. 

This will require them to find ways to appropriate value from their innovations though [27].  

With slowly evolving consumer needs and the available revenue pools from e-payment like-

ly to remain unchanged among large financial services firms that are already heavily invested in 

such services, value creation will be at the heart of profitability, not first-mover advantage. Our 
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view is that value creation and value management in the m-payments systems and technology 

solution space will play out with a blend of competition, cooperation, innovation and surprise. 

One great hope in this area is that m-payments will unlock hitherto unforeseen demand for elec-

tronic payment services, by decontextualizing the settings in which payments are made to sup-

port the exchange of economic value. For this to happen, consumers will need to become much 

less dependent on the use of cash in all of the places they pay for things on a daily basis.  
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APPENDIX A. Table A1. Modeling Notation and Definitions 

MATH DEFINITION COMMENTS 

V, B Investment, benefits at time t PV of future benefits flows B, that fluctuate over time 

I, ROV Bank's investment I, real option value For m-payment technology, for the deferral option 

αB, αI Benefit (+), investment (-) drift  Subject to Brownian motion  

σB, σI Standard deviation of B, I Affects volatility of benefits, investment costs 

ηB, ηI  Risk premia on B, I Due to benefits and investment uncertainties 

ρBI Correlation of B and I  ρBI  = 0, equates with uncorrelated cost-benefit  

rf Risk-free discount rate Discounts future benefits and costs 

dz Wiener increment  Defines standard Brownian motion 

t, T 
Time; maximum deferral time, or # 

periods in which cash flows occur 

dt is a small increment in time; bounds option's exer-

cise time; cash flows can be benefits or costs for bank 

.λ Mean # of jumps per unit of time In dt, probability that a jump will occur is λdt 

k Change % for benefit flows, B Due to a jump, with k ≡ E(Y − 1) 

Y  value, random variable Measures after-shock change in value 

q(t) Shock-led value jump process  Changes in value q are given by dq 
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APPENDIX B. NUMERIAL SOLUTION PROCEDURE  

One important problem in option pricing theory is the valuation and optimal exercise of derivatives 

with American-style exercise features. In the management of IT investment risk, these types of real op-

tions also can be found. When more than one factor affects the value of the option, valuation and optimal 

exercise of American option is an especially challenging problem. The Longstaff-Schwartz method [16] 

provides a simple, yet powerful simulation approach to approximating the value of American options. The 

method is readily applied when the option value depends on multiple factors. Simulation also allows state 

variables to follow general stochastic processes, such as a jump diffusion process [20].      

At the final exercise date, the optimal exercise strategy for an American-style option is to exercise the 

option if it is in the money. Prior to the final date, however, the optimal strategy is to compare the imme-

diate exercise value with the expected cash flows from continuing, and then exercise if immediate exer-

cise is more valuable. Thus, the key to optimally exercise an American option is identifying the condi-

tional expected value of continuation. A central part of the Longstaff-Schwartz method is the approxima-

tion of a set of conditional expectation functions, so it is appropriate to use the cross-sectional information 

in the simulated paths to identify the conditional expectation functions. 

We solve the model by applying a variation of the Longstaff-Schwartz method to approximate the 

value of all future benefits flows at each date, given the current value of the two governing state variables, 

I and B. This involved first simulating 100,000 sample paths for the two state variables. We regressed the 

subsequent projected benefits flows from continuation on a set of functions of the values of the relevant 

state variables. The fitted values of this regression are efficient unbiased estimates of the conditional ex-

pectation function. The regression coefficients are used to approximate the expected value of continuation. 

We also used another procedure to compare the execution value and continuation value at each date to 

determine the optimal stopping rule. The optimal stopping rule estimated by the conditional expectation 

regressions from one set of paths should lead to out-of-sample values that closely approximate the in-

sample values for the investment option [26]. 

Then we compared the value of the m-payment investment project for the case where there is no pos-

sibility of a jump, λ = 0, and when a jump may occur with the probability of λ = 0.05. In the Benefits 

Jump Variance Equation, when λ increases, the conditional variance of the future benefits flow increases. 

We adjusted the parameter values of the means and variances for the two cases to give a more meaningful 

comparison. Because of the martingale restriction implied by the risk-neutral framework, the means for 

the two cases will be the same. We assumed that σB is linearly decreasing in the interval [0.1, 1]. So when 

λ = 0,   
  also will be decreasing in [0.01, 1] for t  [0, T]. Similarly, when λ = 0.05,   

  is decreasing in 

the interval [0.0225, 1.0125] for t  [0, T]. 
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