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Abstract 
Recent literature on sociotechnical systems has employed the concept of generativity to 
explain the remarkable capacity for digital artifacts to support decentralized innovation 
and the emergence of rich business ecosystems. In this paper, we propose agent-based 
computational modeling as a tool for studying the evolution of generativity, and offer a 
set of building blocks for constructing agent-based models in which generativity 
evolves. We describe a series of models that we have created using these building blocks, 
and summarize the results of our computational experiments to date. We find in several 
different settings that key features of generative systems can themselves evolve 
endogenously, including “core” components and reusable parts. Moreover, we find that 
boundedly rational designers without coordination or foresight can evolve business 
ecosystems that satisfy a diverse range of consumer preferences and exhibit robustness 
to changes in these preferences over time. 

Keywords:  Simulation and modeling IS, digital business ecosystems, complexity theory, 
platform design, innovation 

 

Introduction 
The capacity to generate novelty is critical to a wide variety of systems, from biological organisms to firms 
and industries to the global economy. Recent literature on sociotechnical systems has focused on the 
concept of generativity, “a system’s capacity to produce unanticipated change through unfiltered 
contributions from broad and varied audiences” (Zittrain 2008, p. 70). Digital artifacts have proven to be 
remarkable enablers of generativity due to their distinctive characteristics (Yoo et al. 2010). Information 
systems (IS) scholars have thus taken a keen interest in understanding the structure of generative systems 
and the generative mechanisms that give rise to them (Yoo 2013; Henfridsson and Bygstad 2014), 
especially in the context of digital infrastructures such as the Internet (Tilson et al. 2010) and platform-
based software ecosystems (Tiwana et al. 2010). 

In this paper, we respond in three ways to recent calls for theorizing about generativity: 

1. First, we propose agent-based computational modeling as a tool for studying the evolution of 
generativity, and explain how this tool can complement both verbal theorizing and empirical 
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analysis. This allows us to connect these calls to broader currents in the social sciences and the 
sciences of complexity, where scholars have been asking similar questions in different domains. 

2. Second, we offer a set of building blocks for constructing agent-based models in which 
generativity evolves. These discrete clusters of modeling assumptions can be combined in many 
different ways to investigate the forces that give rise to digital business ecosystems. 

3. Third, we describe a series of models that we have created using these building blocks, and 
summarize the results of our experiments with them, with a focus on the implications for 
generativity and its evolution. 

Despite the challenges of studying a phenomenon as complex and subtle as generativity, our initial results 
are promising. We find in several different settings that key features of generative systems can evolve 
endogenously, including “core” components and reusable parts. Moreover, we find that boundedly 
rational designers without coordination or foresight can evolve rich ecosystems of products that satisfy a 
diverse range of consumer preferences and exhibit robustness to changes in these preferences over time. 
These findings present exciting opportunities for IS researchers to develop models that can account more 
directly for the emergence of familiar features of digital ecosystems such as interfaces, standards, and 
layered architectures. 

The remainder of the paper is structured as follows. In the next section we briefly review the literature on 
generativity and the modeling of generative processes. We then describe the building blocks of our 
models, which include assumptions about material entities (components and products), social entities 
(consumers and producers), institutions (organizations and markets), and dynamics (population selection 
and environmental change). After that we present our models and results, followed by a concluding 
discussion of the research opportunities for adventurous scholars. 

Approaches to Generativity Within and Beyond IS 
Although the term generativity can be traced to Erikson’s (1950) model of psychosocial development and 
Chomsky’s (1965) concept of a generative grammar, it came into use as a property of sociotechnical 
systems primarily through Jonathan Zittrain’s law review article (2006) and book (2008) on the topic. 
Yoo et al. (2010) and Tilson et al. (2010) brought the term into the information systems literature in their 
research commentaries on digital innovation and digital infrastructures for the 20th anniversary special 
issue of Information Systems Research. Yoo et al. (2010) noted that layered modular architectures 
promote generativity by enabling “loose couplings across layers whereby innovations can spring up 
independently at any layer, leading to cascading effects on other layers” (p. 728), while Tilson et al. (2010) 
posed the question, “how can we understand the dynamics of generative change associated with digital 
infrastructures?” (p. 753). Yoo (2013) subsequently called for the IS community to “provide a leadership 
role in shaping the theoretical and practical discourse around digitally-enabled generativity” (p. 231). 

This burst of attention to generativity has coincided with a broader surge of interest among IS scholars in 
theories that embrace the complexity of technologies, organizations, and markets. For example, El Sawy 
et al. (2010) recently introduced the concept of digital ecodynamics to highlight the “dynamic mutual 
interdependence” (p. 837) between environmental turbulence, dynamic capabilities, and IT systems. In a 
similar spirit, Tiwana et al. (2010) proposed a framework for studying the coevolution between platform 
architecture and governance in dynamic environments characterized by technological convergence, 
multihoming costs, and influential complementors. Tanriverdi et al. (2010) observed more generally that 
businesses are increasingly faced with “wicked” problems in which “the parts of the problem interact with 
each other in nonlinear ways, self-organize, and produce emergent macrolevel behaviors that differ in 
scale and kind from the microlevel behaviors of the parts” (pp. 823–824). To address these problems, 
they called for the application of ideas from complexity science, such as the use of fitness landscape 
models (Kauffman 1993, Beinhocker 1999), to reframe the dominant “quests” of IS strategy research. 

In the remainder of this section, we look beyond the IS discipline to identify a specific set of theories and 
methods that bear directly on generativity and provide a foundation for studying its evolution in the 
context of sociotechnical systems. 
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From Generative Social Science to Design Evolution 

Zittrain’s (2008) concept of generativity is an instance of a more general phenomenon that has long held 
the attention of scholars who study complex systems: emergent outcomes (“unanticipated change”) 
arising from decentralized behavior (“unfiltered contributions from broad and varied audiences”). Over 
the past two decades, the complexity community has produced a large and growing body of research that 
seeks to explain this phenomenon in a wide range of settings and provide conceptual tools for reasoning 
about the causal mechanisms involved (Holland 1995; Kauffman 1995; Sawyer 2005; Mitchell 2009). 

Epstein (1999) coined the label “generative social science” for efforts to explain the emergence of societal 
regularities as different as behavioral norms or price equilibria by asking what he called the generativist’s 
question: “How could the decentralized local interactions of heterogeneous autonomous agents generate 
the given regularity?” (p. 41). Cederman (2005) developed the related concept of generative process 
theory to connect these efforts with the long tradition of process theories in sociology. Others have forged 
connections with economics by seeking to explain what the neoclassical tradition cannot, namely the 
explosion of variety and complexity in the goods and services produced by an increasingly interconnected 
global economy (Beinhocker 2006; Arthur 2009). 

Taken together, these developments point to a simple explanation of how generativity arises: it evolves 
endogenously, without prior planning or central control. Systems that do not initially possess the capacity 
to produce unanticipated change gain this capacity through the same fundamental processes of variation 
and selection that operate in both biology (Mayr 2001) and socio-cultural systems (Campbell 1965), 
including organizations (McKelvey 1982), economies (Hodgson 1993), and design processes (Baldwin and 
Clark 2000). 

Recognizing that generativity evolves is a powerful source of insight, but it leaves many questions 
unanswered. Why do some societies appear to be more generative than others? What kinds of policies 
promote or inhibit generativity? How can the generativity of a system be managed for competitive 
advantage, and under what conditions does this benefit or harm consumers? To answer these kinds of 
questions, we need tools that can be used to study the evolution of generativity in specific settings. 

Agent-Based Modeling as a Theory Building Tool 

Although agent-based computational modeling is not a tool solely of complexity science, it achieved 
prominence and a certain degree of respectability through the efforts of the complexity community to 
secure its epistemological and methodological foundations (Axelrod 1997; Epstein 1999; Carley 2001; 
Henrickson and McKelvey 2002; Miller and Page 2007). A broad consensus now exists that agent-based 
modeling and computational simulation constitute “a third way of doing science, in contrast to both 
induction and deduction” (Axelrod 1997, p. 35), and a useful tool for building theories of complex 
adaptive systems. It has also been observed that there is a natural alignment between agent-based 
modeling and critical realism (Miller 2014), which emphasizes the concept of “generative mechanisms” 
and has attracted recent interest in the IS community (Mingers et al. 2013), in particular as a 
philosophical basis for theorizing about digital infrastructure (Henfridsson and Bygstad 2013). 

Our own agent-based models are related to the NK family of fitness landscape models (Kauffman and 
Levin 1987; Kauffman and Weinberger, 1989), which we adapted to study populations of product designs 
in which different products have different architectures. This distinctive feature of our approach allows us 
to study product architecture as the endogenous outcome of an evolutionary process. Other scholars who 
have used the NK framework to study design choices include Marengo et al. (2000), Ethiraj and Levinthal 
(2004), Rivkin and Siggelkow (2007), and Frenken and Mendritzki (2012). Our models are also indebted 
to the generalized NK model of Altenberg (1994), which was adapted to the domain of complex 
technological systems by Frenken (2006). 

Building Blocks for Generative Models of Product Design 
Having established, we hope, that complexity science and agent-based modeling provide appropriate 
foundations to study the evolution of generativity, we now ask: What building blocks are needed to 
develop models that exhibit generativity and shed light on issues of interest to IS scholars? 
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The most satisfying kind of answer to this question would establish necessary and sufficient conditions for 
generativity across a well-defined class of models. We are a long way from this kind of answer, but that is 
probably true of the vast majority of formal modeling efforts in the social sciences. (Consider neoclassical 
microeconomics as an exception that proves the rule: it took nearly three quarters of a century to get from 
Alfred Marshall’s Principles of Economics to the Arrow–Debreu model of general equilibrium.) 

Instead, in the remainder of this section we describe in a schematic way the family of models we have 
created over the past five years to study a range of phenomena related to generativity, including the 
emergence of modularity and platform architectures. These models share a broad set of features, but 
differ substantially in their detailed assumptions. We thus adopt the term “building block” to denote a 
discrete cluster of modeling assumptions can be combined with others in a variety of ways. 

While we cannot prove that any particular combination of building blocks is either necessary or sufficient 
for the evolution of generativity, our hunch is that collectively they provide a useful starting point for 
modelers interested in exploring the forces that give rise to generativity. Thus, in the spirit of maximizing 
the generativity of our own work, we believe it is worthwhile to describe them before turning to the 
specific models and their results. 

Material Entities: Components and Products 

Two types of entities are present in all of our models to date: designs and designers. From a sociomaterial 
perspective (Orlikowski and Scott 2008; Yoo 2013), the former belong to the domain of material artifacts 
while the latter belong to the social domain. We further distinguish two types of designs: components are 
primitive units of design structure, which can be combined into products (which, in turn, may possibly be 
combined with other products in a nested hierarchy). 

Components are the most basic design elements in our models. They play a role analogous to that of genes 
in biological models or decisions in models of organizational choice. In some models, a component can 
either be present or absent, while in other models all components are present but designers can choose 
between two more variants (alternative designs or configurations, analogous to the alleles of a gene). 

A complete design consists of a set of components, which we call a product. Following convention in the 
NK modeling literature, a product can be represented as a string of digits (usually binary), each of which 
represents the state of a given component (its presence or absence, or the variant chosen). In some 
models we also allow products to be further combined in a nested hierarchy (Murmann and Frenken 
2006). This setup allows us to investigate open-ended architectures, where products can be combined in 
ways that are unanticipated by their designers (Adomavicius et al. 2008, Yoo et al. 2010). 

Social Entities: Consumers and Producers 

The social entities in our models are the agents. All of our agents are designers in the sense that they 
engage in design by combining components or products together, either for their own use or the use of 
others. Agents who design for their own use are called consumers, while those who design for others are 
called producers. 

Following Baldwin and Clark (2000), both types of designers “see and seek value.” They are boundedly 
rational in the sense that they cannot instantaneously evaluate all possible combinations of components 
or fully anticipate the consequences of their design choices. But they are “smart” enough to form 
expectations based on limited information (e.g., if nothing else changes, will adding this component raise 
or lower the value of my existing product?). And given a limited set of possible choices (e.g., adding one of 
10 components to a product), they choose the action with the highest expected value. 

Value is created by consumers, who derive benefits from the functions enabled by a design. Each 
component enables (or affords) one or more functions, each of which contributes value to a product as a 
whole. An interaction occurs when multiple components jointly enable the same function. For a particular 
design, the amount of value contributed by each function is determined by the states of the components 
that enable it. Again following the NK modeling literature, we typically assume that these function values 
are drawn independently at random, and that the total value of a product is simply the sum (or mean) of 
its function values. 
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Producers earn a living by capturing a share of the value created by their designs (see Lepak et al. 2007 on 
the distinction between value creation and value capture). The rules that determine how producers and 
consumers interact with each other and how value is appropriated are discussed below. 

Institutions: Organizations and Markets 

The designers in our models, as in real-world sociotechnical systems, are embedded in an institutional 
context that enables and constrains their actions (Orlikowski and Barley 2001). 

While we have not yet devoted significant effort to modeling many features of the environment that 
institutional theory regards as first-order concerns, such as culture, norms, and beliefs, we embrace the 
institutionalists’ call to make explicit the “rules of the game” (North 1990) that govern the interactions 
among the agents. Following Simon (1991), we focus on rules relating to organizations and markets. 

In the simplest case, a fixed number of agents engage in repeated episodes of product design by selecting 
among freely available components. In this case, there is no need to introduce organizational boundaries; 
we can simply assume that the agents represent individual consumers who obtain direct use value from 
their products. There is also no need for a market, since no transactions occur, and every consumer 
captures all of the value he or she creates. 

In a model with both producers and consumers, however, we need to specify how producers are paid for 
making products that consumers combine in a nested way. If a consumer combines three products into a 
system with a value of 0.87, for example, how much should each producer receive? To answer questions 
like this requires making assumptions about market structure. This is a daunting proposition, as the 
entire field of industrial organization economics is devoted to such questions (see, e.g., Tirole 1988). 

While we cannot possibly create models that are robust to all reasonable institutional assumptions, we 
believe it is both feasible and useful to explore a limited set of alternatives, and to study their impact on 
the evolution of generativity. For example, we have experimented with two different value capture rules 
(equal division and division according to the Shapley value) as well as a variety of explicit pricing 
mechanisms. We have also experimented with supply chains of various lengths, restrictions on which 
consumers can transact with which producers (as a proxy for geography or specialization), and varying 
degrees to which producers can copy each other’s designs (as a proxy for intellectual property rights). 

Dynamics: Population Selection and Environmental Change 

Two additional building blocks could be considered institutional features of the agents’ environment, but 
we call them out separately to highlight their role in the evolutionary dynamics of our models. 

Population selection among producers can complement the selection of designs by individual agents as a 
source of evolutionary pressure. In some models we follow Levinthal (1997) in assuming that the 
probability that a producer survives is proportional to the ratio of its fitness to that of the most fit 
producer in the population. Non-survivors are replaced by new entrants in order to maintain a constant 
population size; a new producer may either replicate the design(s) of an existing one or start fresh with a 
new design. 

An alternative approach to Levinthal’s survival mechanism is to endow new producers with an initial 
stock of capital which depreciates at a constant rate in each period. Producers’ revenues (value captured 
from consumers) are offset by production costs (fixed and/or variable), resulting in net increases or 
decreases to the capital stock. If costs and depreciation exceed value creation, producers can eventually go 
bankrupt; in this case, bankruptcy rather than relative fitness removes producers from the population. 

Environmental change can take a variety of forms, including the introduction of new components that 
afford different capabilities (technological change), changes in consumers’ preferences (market change), 
and changes in the ability of producers to interact with consumers (institutional change). Environmental 
change can be exogenous (determined by simulation parameters) or endogenous (determined by the state 
of the model as it unfolds in time). The need for adaptability in the face of exogenous environmental 
shocks turns out to be an important driver of generativity. 
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Models and Results on the Evolution of Generativity 
This section describes a series of models we created using the building blocks described above, and 
summarizes the results of our experiments with them. Space constraints prevent us from including formal 
specifications of each model, so our intent in this paper is simply to provide a guided tour, highlighting 
the implications of our research for the study of generativity and its evolution. 

We have been exploring what we called endogenous adaptability for more than five years. We were 
initially intrigued by the differences between biological ecosystems and human market-based ecosystems. 
The Cambrian Explosion was an almost preemptive event; virtually every body plan for multicellular 
animal life that has ever emerged on earth emerged during this brief geological period. Major extinction 
events have pruned some body types out and killed off enough existing species to create ecological niches 
that encouraged the emergence of new species, but these new species always evolved from existing species 
and no new body plans have been introduced since the Cambrian. In contrast, major market shifts lead to 
a process of Schumpeterian creative destruction, in which entire “body types” like horse-drawn carriages 
are replaced with steam engines and trains, or internal combustion engines and automobiles.   

In preliminary modeling and simulation efforts, we were able to replicate both the Cambrian Explosion 
and Schumpeterian creative destruction by varying only a limited set of assumptions on the behavior and 
rationality of the agents in our model. This led to thinking about how much we could achieve in terms of 
explanatory models without any reliance upon explicit coordination among agents, and without assuming 
any planning or prediction at the individual level. That is, we sought to understand how much of current 
best practice in product development and engineering design could emerge endogenously from the 
simultaneous but uncoordinated behavior of boundedly rational agents. 

Model 1: From Primordial Soup to Component Platforms 

Our first full-fledged model of product design (Woodard and Clemons 2011) envisioned a population of 
products assembled from a “primordial soup” of primitive components. In this model, the value (or 
fitness) of a product depends solely on the particular combination of components it contains. Boundedly 
rational product designers modify these combinations in search of higher fitness. In some parameter 
settings, a population-level selection process weeds out designers with inferior products and replaces 
them with new entrants. Our model thus includes both blind (or myopic) variation and selective retention, 
the key elements of evolution in both natural and artificial systems (Campbell 1965). 

To explore the structures and dynamics that are generated by different kinds of evolutionary processes, 
we studied three types of boundedly rational behavior (blind local search, myopic hill climbing, and 
greedy hill climbing) in the presence or absence of population selection. For the hill-climbing agents, we 
also varied the search radius of each step (1 or 2 component-level changes). We thus simulated 10 distinct 
processes, including the trivial case of blind search without population selection. 

In 2010 we conducted a set of experiments using this model. Each of our three main experiments focused 
respectively on a different observable outcome: product size, superadditivity in component values, and a 
measure of platform emergence. The results are summarized below. 

Experiment 1: Emergence of Complex Products 

Our first experiment was designed to ensure that we understood the conditions needed for complexity to 
emerge in the products of our simulated ecosystem. 

If we could not create conditions in which designers combined components to create products with 
greater functionality and value than the individual components available to them, we would be unable to 
demonstrate anything else of interest. We sought a minimum set of conditions that would be sufficient to 
ensure the emergence of complexity in that all of the assumptions were necessary and collectively they 
were sufficient; we made no attempt to guarantee that this was a unique set of necessary and sufficient 
conditions, or that it was the smallest such set. 

We expected to find that complex products emerge under all of our simulated evolutionary processes 
(except the trivial case), since they all include the basic elements of variation and selection that 
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characterize evolution in biological, organizational, and technological settings. As expected, these 
processes proved sufficient to produce the emergence of complex product designs, as measured by the 
average number of components per product. This finding is illustrated in Figure 1. The similarity in 
average product sizes (especially in the presence of population selection) provides evidence of the model’s 
robustness to a wide range of assumptions about designers’ environment and behavior. 

 

 
Figure 1. Average Product Size 

by Number of Components, Search 
Mode and Selection Environment  

 

Figure 2. Average Superadditivity 
by Number of Components and 

Variants per Component 

Experiment 2: (Non-)Emergence of Value-Added Systems 

Our next experiment was designed to examine the emergence of products that are worth more than their 
components, which we called systems. 

For the purposes of this model, we defined a system to be a product whose components exhibit 
superadditive value. That is, a system is a collection of components with greater value than the sum of the 
values of the individual components, much as a Swiss watch is worth more than the value of its case and 
gears, and an Apple iPhone is worth more than the sum of its case, chips, and operating system. We hoped 
to observe the emergence of behavior in which agents did not add any component to a product when its 
addition created incremental value less than the stand-alone value of the component itself.  

However, we did not observe this behavior, as shown in Figure 2, which plots the fraction of products that 
exhibit even weak superadditivity (i.e., product value that equals or exceeds the sum of component values) 
under differing number of components and variants per component. Instead, we observed what we 
whimsically called asparagus-hats: despite the fact that the incremental value of adding an asparagus 
stalk to a Tyrolean hat is surely less than the value of the asparagus alone, there was no force in the model 
that prevented these kinds of subadditive combinations. 

Despite our initial disappointment at this result, we concluded that a high degree of superadditivity may 
have been too much to expect under assumptions of limited intelligence among designers. Conversely, we 
did not want to simply impose superadditivity as an assumption (e.g., artificially constraining designers to 
only create superadditive combinations). In our combinatorial fitness landscapes, adding one or two 
products to an existing one might appear unproductive (i.e., yield subadditive value), but superadditivity 
might emerge with the addition of a third or fourth product. In other words, limiting the addition of 
components to those that create value-added systems might place excessive restrictions on evolution. 

Experiment 3: Emergence of Component Platforms 

Our final experiment with this model was designed to test for the emergence of platforms. 

In the context of this model, we defined platforms as collections of “core” components (i.e., those that 
interact with a large number of other components) that were reused across a wide range of products. To 
measure the degree of platform emergence in a population of products at a given point in time, we 
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constructed a “platform index” that accounts for the extent to which a particular variant of a given 
component achieves high reuse within the population, as well as the extent to which the component is 
core to the products that contain it and the diversity of other variants with which it is combined. 

Our platform index captures the intuitive idea that a platform is not just a component or product that 
achieves 100% market penetration (i.e., a dominant design). Imagine if all “Wintel” personal computers 
were identical, regardless of their manufacturer; they used Intel chips, Microsoft Windows, Seagate hard 
drives, and the same flat-screen displays. In contrast, real Wintel PCs exhibit great diversity in their 
internal components and the software available to run on them, but commonality in their Intel-based 
processors and Microsoft-supplied operating systems. The real Wintel ecosystem would thus earn a 
higher platform index than a hypothetical monolithic one. 

To investigate the forces that might drive the emergence of platforms, we added economies of scale and 
positive network externalities (participation benefits) to the model, as well as a form of innovation (the 
arrival of new variants over time). Without these forces, we found that the emergence of platforms is 
much less common than the emergence of dominant designs (i.e., convergence to a population of identical 
products). With them, we found that platforms emerged and persisted over time, as shown in Figure 3. 

Additional findings include the following: 

• The simple set of assumptions that were sufficient to generate complexity in the basic model are 
not sufficient to generate platforms. 

• Increasing the strength of economies of scale and participation externalities further strengthens 
the emergence of platforms. 

• In dynamic environments (when new component variants arrive over time), there is a cost to 
platform emergence in the form of technological lock-in. 

 

 

Figure 3. Maximum Platform Index by 
Returns to Scale and Participation 

 

 

Figure 4. Costs of Lock-In: 
Differences in Product Base Value 
Under Static vs. Dynamic Variants 

 
The cost of lock-in can be observed as a decrease in the average product base value, as shown in Figure 4. 
What this shows is that, on average, economies of scale and participation externalities tend to cause early-
arriving variants to gain market share rapidly, making it more difficult to dislodge them later. In contrast, 
when all variants are present at the beginning of each simulation run, there is a greater chance that 
designers will select the ones that contribute the most use value to their products rather than the ones that 
simply have the lowest costs or strongest network effects. 

This finding is intuitive, and echoes familiar results in the network economics literature. We found after 
further analysis, however, that even in the most extreme cases—under the highest value of the parameters 
driving the ecosystem towards platforms—the benefit from extensive periods enjoying the benefits 
associated with platforms more than compensated from the future loss associated with premature lock-in 
on an imperfect de facto standard. 
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Model 2: Modular Product Architectures and Platform Ecosystems 

Our second model (described in Woodard and Clemons 2012) was designed to overcome some of the 
limitations of the first and allow us to explore a wider range of phenomena related to the evolution of 
complex products and systems. 

The main change was to introduce an additional level of aggregation by allowing consumers to assemble 
products into multi-product systems. (We dropped the definitional requirement that a system be worth 
more than the sum of its parts; in the context of this model, any collection of products assembled by a 
consumer is referred to as a system.) 

In this setup, the same functionality can be delivered in different ways. For example, a system containing 
five components could be assembled from one product containing all five components, or five products 
containing a single component each. This gives us a natural way to explore the emergence of modularity, 
which can be operationalized as the extent to which a system’s functionality is delivered by multiple 
products rather than a single one. 

The price for this additional richness is that we now need to specify how producers and consumers 
interact—in particular, how they divide the value created by the products that are combined into systems. 
To reward producers for contributing to high-value systems, we simply award each producer the full value 
of the system in which its product is used in a given period. This assumption creates favorable conditions 
for the emergence of modularity, since it avoids creating pressure for producers to inflate the size of their 
products to capture a larger share of their customers’ system value. (On the other hand, it prevents us 
from treating value as a transferable quantity like money, which would otherwise be desirable.) 

The main goal of our experiments with this model, which were conducted in 2011 and 2012, was to pick 
up where the first model left off, exploring the emergence of modularity and platform architectures in 
response to different set of economic forces—namely environmental change (in the form of changing 
consumer preferences) and consumer heterogeneity (the presence of multiple market niches). Our focus 
on these forces was driven by the recognition that modularity arises, at least in part, from the need to 
accommodate diverse and possibly changing consumer needs (Langlois and Robertson 1992). 

In a static environment, there is little need to accommodate diverse or changing requirements. If 
consumers’ preferences were the same and did not change over time, producers would be driven to 
maximum vertical integration. They would capture as much of the final value for themselves as possible, 
by producing products that consumers could use, “out of the box,” with no need for combination or final 
assembly by the consumer. We modeled this by running experiments in which all consumers were 
endowed with the same set of fixed preferences (i.e., a single static fitness landscape). 

In contrast, varying preferences over time would limit the possibility of full vertical integration, because 
consumers’ requirements could change more rapidly than a fully vertically integrated producer could 
accommodate. These changes would create opportunities for producers of flexible modules, which could 
be combined in different ways in response to changes in consumers’ preferences. Producers whose 
products can be easily recombined in new ways (e.g., because they contain fewer components that interact 
negatively with components in other products) should have an advantage in the marketplace. We modeled 
this by introducing periodic shocks that partly or fully randomized the mapping between component 
combinations and function values. In different simulation runs, we allowed these shocks to occur with 
different frequencies and different degrees of severity. 

Likewise, having different sets of consumers with different preferences would reward creators of products 
that can easily be combined by different users to meet their own needs. For example, Seagate produces 
disk drives, assembled from many components, that are used in market segments as different as personal 
computers (desktop and portable), external storage devices, and enterprise data centers. We modeled this 
by having creating several sets of preferences (i.e., multiple fitness landscapes), each for a different 
market segment. In different simulation runs, we allowed variation in the number of segments and the 
degree of statistical correlation among them. 

The main dependent variable in our experiments was a measure called average product centrality, which 
is based on the concept of group betweenness centrality from the social network literature (Everett and 
Borgatti 1999). This measure was motivated by our desire to identify not just fully formed and easily 
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recognizable platforms (or fully modular architectures), but also proto-platforms: configurations of 
products and systems with platform-like characteristics. 
 

Figures 5 and 6 summarize the main results of these experiments. The vertical axis in both graphs is the 
average product centrality measure defined above, and both graphs are shaded using the same color 
scheme. 

Reasoning by analogy from biological evolution, we expected a complex and non-linear relationship 
between frequency and severity of change and the emergence of platforms. Environments that are very 
stable lead to stable, optimized systems that are often produced by a single integrated firm. As 
environmental change increases, it becomes advantageous to produce modules that can be reassembled in 
a variety of ways by a variety of producers (Baldwin and Clark 2000). In the technologically more stable 
markets of the 1960s, IBM was a vertically integrated computer company, GM was a vertically integrated 
car company, and AT&T was a vertically integrated telecommunications company. In the more turbulent 
environment of the early 21st century, it is more profitable to produce disk drives, or processor chips, or 
office software, that can be “mixed and matched” to satisfy changing market demand. When 
environmental change becomes too rapid or too severe, however, evolution can no longer select for 
products that work well together, and even well-adapted products fall victim to random shocks. 

Figure 5 exhibits a striking visual pattern that supports this prediction: a diagonal “ridge line” that peaks 
in the region of frequent but moderate change. This figure shows that platform architectures are most 
strongly favored under precisely the conditions in which it is most valuable to have a stable set of core 
components that work well with a variety of peripheral ones. Most importantly for our research, we were 
able to induce the emergence of platforms without explicitly modeling participation externalities favoring 
widespread adoption or economies of scale favoring reuse, and without memory, learning, or anticipation 
on the part of product designers. 

 

 

Figure 5. Average Product Centrality 
by Frequency and Severity of 

Environmental Change 

 

 

Figure 6. Average Product Centrality 
by Number of Consumer Types and 

Correlation of Consumer Preferences 

 
Introducing consumer heterogeneity in the form of multiple market niches yielded results that were 
qualitatively similar to environmental change, as shown in Figure 6. As the number of market niches 
increases, so does the advantage of having a product that can be combined into systems with high fitness 
in multiple niches. Each niche represents a sub-population of consumers whose ideal products differ in 
one or more functional attributes (e.g., business or home computer users). As niches diverge, they begin 
to resemble separate, unrelated markets, and it is difficult to develop products that can succeed in all of 
them. Not surprisingly, the maximum average product centrality appeared under consumer heterogeneity 
rather than under environmental change, because in a stable environment evolution has more time to 
converge to a population of well-adapted products.  
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Model 3: Toward Generativity in Digital Ecosystems 

Our modeling work in 2013 and 2014 has pursued two major goals: (1) to consolidate the results of the 
previous models into a single coherent framework, and (2) to account more directly for the emergence of 
familiar features of digital ecosystems such as interfaces, standards, and layered architectures. 

To achieve the first goal, we have converted many of the “hard-coded” assumptions of the previous models 
into parameterized modules that can be configured independently. This process has enabled a variety of 
generalizations. For example, the current model supports an arbitrary number of nested layers of product 
assembly, and the ability to add new layers endogenously. We have also continued to explore ways to 
make the model more realistic without sacrificing parsimony and transparency, including implementing 
several different “budget-balanced” value capture rules and product pricing mechanisms. These efforts 
have yielded a nice meta-result: a model of platforms that itself has a platform architecture. 

Our interest in the second goal has been spurred by our engagement with the IS literature on generativity 
and digital ecosystems, which emphasizes the distinctive features of digital artifacts and suggests that they 
can play a uniquely powerful role in the evolution of generativity. For example, the self-referential nature 
of technology means that “the diffusion of digital innovation creates positive network externalities that 
further accelerate the creation and availability of digital devices, networks, services, and contents” (Yoo et 
al. 2010, p. 726). In contrast to physical technologies like internal combustion engines and emission 
control systems, which operate on different physical principles and draw upon knowledge from different 
fields, digital artifacts seem to catalyze their own complexification, which Arthur (2009) calls structural 
deepening. While some of these differences can be captured by existing parameters in the model (e.g., 
digital artifacts tend to have stronger network effects and greater economies of scale than physical ones), 
we see the potential to obtain new insights by focusing on distinctively digital phenomena. 

Conclusion 
In this paper, we responded in three ways to recent calls for theorizing about generativity. First, we 
proposed agent-based modeling as a tool for studying the evolution of generativity, and explained how 
this tool can complement both verbal theorizing and empirical analysis. Second, we offered a set of 
building blocks (i.e., discrete clusters of modeling assumptions) for constructing agent-based models in 
which generativity evolves. These building blocks can be combined in many different ways to investigate 
the forces that give rise to digital business ecosystems. Third, we described a series of models that we have 
created using these building blocks, and summarized the results of our experiments with them. 

We believe the findings from this research present exciting opportunities for like-minded IS researchers. 
For example, we see opportunities to bridge the sociomaterial and economic perspectives on platforms 
and generativity through models that incorporate boundedly rational value-seeking behavior without 
“black-boxing” the structural and dynamic complexity of evolving digital artifacts, as game-theoretic 
models of platform competition are often forced to do by the imperative of obtaining closed-form 
mathematical results. We also see opportunities to connect these models with the empirical analysis of 
network data from large software systems (e.g., Um et al. 2013). Empirical data can be used to calibrate 
the models once they reach a certain level of maturity, and the models may be able to help shed light on 
the causal mechanisms behind the data. Finally, it only takes a casual glance at the news to appreciate the 
practical relevance of these ideas to the world of high-technology strategy and innovation. Despite the fact 
that formal models can seem forbiddingly abstract, we believe that an important indicator of their success 
is the extent to which they can be applied to problems that matter in the real world. 
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