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ABSTRACT 

Designers of complex systems are often confounded by the tendency for design 
changes to increase performance on some dimensions while decreasing it on 
others. While adopting a more modular architecture may temper these opposing 
effects, modularization can also deprive designers of opportunities to harness 
complementarities among system elements. This paper explores this tension using 
an NK model in which product designers can modify the structure of their fitness 
landscapes by suppressing or restoring interactions between components. We find 
that these changes can lead to improved performance by “flattening” harmful 
interactions that would otherwise cause search efforts to become trapped on local 
fitness peaks. Despite the fact that this process, which we call selective 
decoupling, tends to lower the maximum performance of a given component, it 
may increase the maximum attainable product performance. Moreover, selective 
decoupling can trigger the restoration of previously suppressed interactions, 
enabling the discovery of integral designs that were inaccessible to local search. 
We discuss the similarity between this pattern of endogenous architectural change 
and the stylized product life cycle described by the technology and innovation 
management literature, and suggest that the forces highlighted by our model 
might play an underappreciated role in technology and industry evolution. 
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Managing Complexity Through Selective Decoupling 

 

The original Mac really had no operating system. People keep saying, 
“Well why didn’t we license the operating system?” The simple answer is 
that there wasn’t one. It was all done with lots of tricks with hardware and 
software. Microprocessors in those days were so weak compared to what we 
had today. In order to do graphics on a screen you had to consume all of the 
power of the processor. Then you had to glue chips all around it to enable 
you to offload other functions. Then you had to put what are called “calls to 
ROM.” There were 400 calls to ROM, which were all the little subroutines 
that had to be offloaded into the ROM because there was no way you could 
run these in real time. All these things were neatly held together. 

 
     — John Sculley (Apple CEO, 1983–93)1 

 

 By the time Apple’s Macintosh was released in 1984, the modular architecture of the 

IBM PC was firmly established. Clean interfaces separated hardware from software, allowing the 

PC to run multiple operating systems and support a rapidly growing catalog of third-party add-on 

products. But the PC is an exceptional case, even within the computer industry. Few other 

category-defining computer products were “born” modular. The first commercially successful 

mainframes and minicomputers (IBM’s 704 and DEC’s PDP-8) did not initially ship with 

operating systems, which led software written for them to be tightly coupled to a specific 

hardware model or even the particular configuration of a single machine. Modular architectures 

took time to evolve in other IT-related product categories as well, including disk drives, printers, 

networking equipment, videogame consoles, handheld devices, and mobile phones. 

                                                
1 Interview with Leander Kahney, October 2010. Available at http://www.cultofmac.com/63295/john-sculley-on-
steve-jobs-the-full-interview-transcript (accessed 10 January 2014). 
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 Baldwin and Clark (1997: 86) explain why: “It turns out that modular systems are much 

more difficult to design than comparable interconnected systems. The designers of modular 

systems must know a great deal about the inner workings of the overall product or process in 

order to develop the visible design rules necessary to make the modules function as a whole. 

They have to specify those rules in advance. And while designs at the modular level are 

proceeding independently, it may seem that all is going well; problems with incomplete or 

imperfect modularization tend to appear only when the modules come together and work poorly 

as an integrated whole.” 

 The story of the Macintosh is thus more typical, both of computers and other kinds of 

complex engineered systems such as automobiles (Jacobides, MacDuffie, & Tae, 2013). The 

original Mac’s hardware was modestly more powerful than the comparable generation of IBM 

PCs, but its graphical operating system made vastly higher demands on the processor than 

typical PC software. Constrained by Steve Jobs’s goal of making the Mac both small and 

affordable, the Macintosh team chose to satisfy those demands by adopting an integral design 

in which the hardware and software components were intricately linked. As these constraints 

receded under Moore’s Law, the Macintosh platform evolved toward a more conventional 

modular architecture, culminating in a switch to industry-standard Intel processors in 2006. 

By eliminating interactions that had become unnecessary and adopting a common set of 

design rules, Apple gained the ability to optimize the design of the Mac’s major subsystems 

independently of each other. For example, removing the cobbled-together circuitry described by 

John Sculley freed up space for more powerful hardware (e.g., dedicated graphics chips) and 

made it easier to modify software that had been burned into ROM. At the same time, Apple 

continued to develop proprietary innovations that created new interactions between product 
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components, such as high-resolution Retina displays. Thirty years later, the resulting architecture 

is an emergent hybrid of modularity and integrality that defies easy categorization. 

 This paper starts from the premise that the “natural state” of a new system architecture is 

to be highly interdependent, and explores how modularity can arise in a gradual way, without an 

explicit strategy or goal. We present a computational model in which designers can modify the 

architecture of their systems by suppressing or restoring interactions between components, 

similar to the way software engineers “refactor” large computer programs. The designers engage 

in an adaptive search process that alternates between efforts to improve the performance of a 

system within its current architecture and efforts to improve the architecture itself. We find that 

the ability to perform even an extremely limited form of refactoring (decoupling or recoupling a 

single pair of components at a time) can dramatically improve designers’ ability to create high-

performance system designs. 

 The contribution of the paper is to unpack this finding and examine its implications for 

technology and industry evolution. Our model is a member of the well-studied NK family of 

fitness landscape models (Kauffman, 1993), which allows us to build on a large body of prior 

work. To model endogenous architectural change, we employ a technique used by Gavetti and 

Levinthal (2000) to study differences in the way agents represent a complex fitness landscape 

as they engage in search behavior. The main source of novelty in our model is that instead of 

treating these representations as cognitive artifacts—subjective ways of simplifying the world—

we treat them as architectural choices that reshape the agents’ real fitness landscapes. 

 The key insight that drives our results is that these choices affect both the ease of 

navigating a fitness landscape and the height of its peaks. As is well known, less coupled 

landscapes are easier to navigate through “hill-climbing” adaptive search; agents are less likely 
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to get “stuck” on an inferior local peak while searching for a global optimum (Rivkin & 

Siggelkow, 2002). But decoupling a pair of components “flattens out” both the peaks and the 

valleys corresponding to high- and low-performing configurations of those components. The 

intuition behind this insight is reflected in the familiar complaint that technology standards foster 

“lowest common denominator” solutions. Standards enable compatibility by ensuring that 

differences among implementations do not impair their ability to interoperate with each other 

(i.e., create valleys in their joint fitness landscape). By the same token, standard-compliant 

implementations are often forbidden to exploit design information that is supposed to be hidden 

by the standard, even when the use of such information would deliver higher performance or 

additional functionality (i.e., peaks in the landscape).2 Refactoring an architecture to decouple 

one component from another is thus a double-edged sword, leading us to ask when and why it is 

more effective than simply accepting an existing architecture and trying to optimize the 

configuration of its components. 

 The remainder of the paper presents our model and a set of preliminary simulation results 

that address these questions. Our simulations consider boundedly rational product designers that 

are limited to incremental hill-climbing behavior; they explore new designs by modifying one 

product component at a time. Faced with a highly interdependent architecture, they are typically 

able to take only a few exploratory steps before getting stuck on a local fitness peak. We enable 

these designers to suppress or restore component interactions through refactoring, which allows 

them to employ a combination of modular (component-level) and architectural (interaction-level) 

search. After performing a randomly chosen refactoring step, the current product design is tested 

                                                
2 See Garud, Jain, & Kumaraswamy (2002) and Woodard & West (2011) on the conflict between Microsoft and Sun 
Microsystems over Microsoft’s platform-specific extensions to Sun’s Java technology. 
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by executing a sequence of hill-climbing component changes. If the fitness of the resulting 

design exceeds that of the design prior to refactoring, the modified architecture is kept and the 

process continues; otherwise it is rejected and another refactoring is tried. 

 Our main result is that this process tends to yield what we call selective decoupling, a 

progression from tight integration toward more loosely coupled systems (cf. Weick, 1976). 

Designers tend to make their landscapes flatter over time, yet they are able to discover superior 

product designs despite the fact that suppressing a component’s interactions tends to lower the 

maximum fitness contribution of that component. The trend is not always monotonic, however. 

We frequently observed cases in which designers achieved improved performance after restoring 

a previously suppressed interaction (i.e., recoupling a pair of components through refactoring), 

especially after repeated episodes of decoupling. This pattern of decoupling followed by 

recoupling can enable the discovery of integral product designs that are inaccessible to local hill-

climbing within a fixed architecture. In other words, a fairly “dumb” search process in the space 

of product architectures can substitute for “smarter” search processes at the component level. 

 The endogenous shifts we observed from high to low to intermediate levels of coupling 

bear a strong resemblance to the stylized dynamics of product architecture described by the 

literature on technology and industry life cycles (Anderson & Tushman, 1990, Murmann & 

Frenken, 2006). While the present model is too simple to investigate this connection in a 

satisfying way, it may be able to serve as a building block for efforts to study technology and 

industry evolution using computational modeling techniques. We return to this idea in the 

discussion section of the paper. 
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BACKGROUND 

 The relationship between the structure of complex interactions and the performance of 

boundedly rational search has been a recurring theme in the management literature over the last 

two decades, spanning the fields of strategy, organization design, and product development. The 

NK modeling framework has proven to be a versatile and effective tool to study this relationship, 

yielding a large body of rigorous and insightful research. This work typically takes the structure 

of interactions as given and explores the consequences of this structure (Rivkin & Siggelkow, 

2003, 2007). In contrast, our model is most closely related to work that considers the antecedents 

of interaction structure or allows it to emerge endogenously. 

 The idea that interaction structures are the product of evolutionary forces has a long 

history, dating back at least to Herbert Simon’s argument that “hierarchic systems will evolve far 

more quickly than non-hierarchic systems of comparable size” (1962: 468), and thus, “[a]mong 

possible complex forms, hierarchies are the ones that have time to evolve” (1962: 473). 

Kauffman and Johnsen (1991: 480) developed the NKC model to investigate “the possibility 

that a coevolving system of species may collectively tune the parameters governing its own 

coevolution,” where these parameters include K (the degree of interdependence within a species) 

and C (the degree of coupling between species). More recently, biologists have employed the 

concept of a neutral network to describe “flat” (i.e., partially decoupled) regions in a fitness 

landscape; evidence from biological systems such as metabolic networks and regulatory circuits 

suggests that organisms have repeatedly evolved vast and intricate neutral networks, which have 

contributed to their robustness, evolvability, and capacity to produce innovations (Wagner, 

2005, 2011). A few scholars have studied neutrality in technological and organizational 
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landscapes (Lobo, Miller, & Fontana, 2004; Jain & Kogut, 2013) but the topic remains largely 

unexplored in these settings. 

 A complementary idea, more germane to a managerial context than a biological one, is 

that interaction structures are the product of conscious human design. Levinthal and Warglien 

(1999: 343) articulated this idea and formulated it as a design problem: 

One may argue that the structure of interdependencies is given by the “world,” 
and that a designer can at best modify the perception of actors of these inherent 
interdependencies by manipulating flows of information and patterns of 
communication—features on which traditional organization design focuses. We 
contend that while the external environment provides significant constraints, there 
are usually important degrees of freedom left to the designer. Indeed, a design 
problem arises because there are these degrees of freedom. 

They illustrate these degrees of freedom using the example of designing a computer system 

(similar to our Mac vs. PC story), although their main interest is in organization design. They 

cite several mechanisms that affect the degree of interdependence in organizations (e.g., group 

size, communication patterns, and credit assignment schemes), drawing informally on the NK 

and NKC models for intuition. Gavetti and Levinthal (2000) shifted the design problem from the 

true structure of interactions to the agents’ cognitive representation of those interactions. They 

“assume that cognitions are grounded on the actual landscape but that they constitute a simplified 

caricature of the decision context” (2000:121), which they operationalize by assuming that 

cognitive representations are of lower dimensionality than the actual landscape, and thus that 

“the organization in choosing a point within its representation is really choosing a region of the 

landscape” (2000:123). Ethiraj and Levinthal (2004) took the idea of a design problem in yet a 

different direction, focusing on the design of complex organizations and their task structures. 

Like Gavetti and Levinthal, they assume that a fitness landscape has a “true, latent structure” 

which may remain constant or change exogenously. However, their treatment of “second-order 
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adaptation” endows agents with an explicit set of organizational design operators (splitting, 

combining, and reallocation) while Gavetti and Levinthal allow only random shifts in an 

agent’s cognitive representation. 

 Our model is a hybrid of these approaches. The way we implement component 

decoupling is mathematically identical to the way Gavetti and Levinthal (2000) reduce the 

dimensionality of a fitness landscape, but we follow Levinthal and Warglien (1999) in treating 

decoupling as an architectural choice that reshapes an agent’s “real” landscape rather than a 

purely cognitive representation. While our treatment of design operators is not as extensive as 

Ethiraj and Levinthal (2004), we similarly distinguish between two levels of adaptive search that 

can be enabled or disabled independently to study their interactions. We were also influenced by 

Marengo, Dosi, Legrenzi, and Pasquali (2000) and subsequent work (Marengo & Dosi, 2005; 

Brusoni, Marengo, Prencipe, & Valente, 2007) which formalized the process of problem solving 

within the NK framework and tied it back to Simon’s seminal observations about hierarchy and 

(near-)decomposability. In addition, we drew inspiration from Frenken (2006a, 2006b), who 

adapted the generalized NK model of Altenberg (1994) to the domain of complex technological 

systems. While we confine our attention to the standard NK model in this paper, our model and 

its software implementation are designed to be extended into the generalized NK setting. 

 

MODEL 

 The model is general enough to encompass the design of a large class of technological 

and organizational systems, but for concreteness we focus on the context of product development 

(Wheelwright & Clark, 1992) and product architecture (Ulrich, 1995). The agents in the model, 

which we call designers, represent the individuals or teams responsible for both the overall 
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product architecture and the design or selection of the product’s components. To keep our focus 

on the basic forces operating in the product domain, we set aside for now both the problems of 

collective action within product development teams and the opportunities for interaction between 

the designers of different products (cf. Marengo et al., 2000: 758). 

 

Basic Setup 

 A product design space is defined by a set of N components, each of which is associated 

with a particular function. Each function, in turn, contributes value to the system as a whole. The 

function of a component can be affected positively or negatively by other components, in which 

case the components are said to interact. The pattern of interactions, which can be represented by 

a square binary influence matrix (Rivkin & Siggelkow, 2007) defines the product’s architecture. 

Each component is available in two variants, which represent alternative designs (e.g., black-

and-white vs. color screen). Both variants as assumed to interact with the same components, and 

a complete product contains exactly one variant of each component.3 A vector of length N whose 

ith element represents a variant of the ith component is called a component configuration. As is 

standard practice in the NK literature, we denote the variants by 0 and 1, which allows a 

configuration to be represented by a binary string (e.g., 0010 for N = 4). Together, an influence 

matrix and a component configuration define a product design. 

 The fitness of a product design (or equivalently for our purposes, its value or 

performance) is given by a fitness landscape, which is a mapping from the set of 2N possible 

component configurations to the real numbers. The structure of our fitness landscapes closely 

                                                
3 These simplifying assumptions are pervasive in the NK modeling literature, but they are not innocuous. We have 
experimented with less restrictive assumptions in other work (e.g., Woodard & Clemons, 2011, 2012). 
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follows the NK tradition. Let (c, D, X) denote a product design with configuration c, influence 

matrix D, and fitness landscape X. We stipulate that the ith component of c makes a fitness 

contribution, denoted xi, that depends on the chosen variant of that component, denoted ci, and 

any components that influence it, where the influencing components are indicated by the non-

zero elements of the ith row of D. Specifically, if a component is influenced by itself and k other 

components, then we associate each of the 2k+1 possible combinations of these variants with a 

fitness contribution drawn independently at random from a standard uniform distribution. The 

product’s overall fitness, x, is then the average over the N component contributions. 

 Each simulation run follows the path of a single designer. This path is determined by 

three parameters: N, the initial coupling level (denoted K), and a random seed. The designer 

begins with a randomly chosen component configuration (c0), an initial influence matrix (D0) 

in which each component is influenced by itself and K others chosen at random, and an initial 

landscape (X0) with N · 2K+1 fitness contributions drawn at random as described above. Over a 

series of time periods, starting from t = 1, the designer attempts to improve the fitness of its 

design through two interleaved processes. The process of modular search operates by changing 

the design’s component configuration, while architectural search operates by changing the 

influence matrix.4 The remainder of this section describes these processes in more detail. 

 

                                                
4 We use these terms for consistency with the modularity literature (Henderson & Clark, 1990; Baldwin & Clark, 
2000; Frenken, 2006), although from the perspective of this literature our products consist of a single module. 
Recall that our goal is to explore the conditions under which modularity can emerge, so it is important that we do 
not assume it at the outset. It is nonetheless perfectly natural to distinguish between “modular” changes (which 
variant of each component is chosen) and “architectural” ones (which components interact with which). 
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Modular Search 

 Given a product with configuration c and fitness x at time t, a modular search is 

conducted by taking a one-mutant adaptive walk to c’, a local peak in the fitness landscape. In 

each step, the designer makes a list of neighboring configurations (those with a single variant 

“flipped” from 0 or 1 or vice versa) whose fitness values exceed x. These are called the adaptive 

neighbors. If there are no adaptive neighbors, then the walk ends and the simulation clock is 

advanced to t + 1. Otherwise the designer selects an adaptive neighbor at random and attempts 

another step from that configuration. 

 

Architectural Search 

 In every time period after the first, modular search is preceded by modifying the current 

influence matrix, D, to yield a permuted matrix, D’, which is then used to generate a revised 

fitness landscape, X’. These steps are described below. Fitness values for the modular search 

procedure are computed using X’. If the modular search does not yield a fitness improvement 

(i.e., c’ = c), another iteration of permuting the influence matrix followed by modular search is 

undertaken until a fitness improvement occurs or there are no more permutations to try. If a 

fitness improvement occurs, another episode of architectural search is conducted by repeating 

the above procedure starting from (c’, D’, X’), otherwise the simulation halts. 

 For each episode of architectural search, the list of permutations to try is constructed by 

generating a list of one-mutant neighbors of the current influence matrix, D, similar to the way 

neighboring configurations are generated for modular search. Here the neighbors are generated 

by “flipping” each off-diagonal element in turn, so for N components each influence matrix has 

N (N – 1) neighbors. If xi is the lowest current fitness contribution, then permutations that affect 
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row i will be tried before those that affect the next lowest fitness contribution (row j, with 

contribution xj > xi), and so on. Neighbors that affect the same fitness component (i.e., the same 

row of D) are tried in random order. These rules ensure that architectural search focuses on 

“bottleneck” components before those that are already performing at a high level. 

 To generate a revised fitness landscape from a permuted influence matrix (D’), we need 

to consider two cases. If the permutation decouples component j from component i (i.e., flips 

column j of row i from 1 to 0), then the number of distinct fitness contributions drops by half. In 

this case, each of the remaining fitness contributions is recomputed as the average of two 

existing values, namely the prior fitness contributions with component j set to 0 and 1. Consider 

a simple example for N = 3. If component 1 is influenced by components 2 and 3 but then 

component 3 is decoupled from it, the contribution of the configuration 00 in the revised 

landscape is the average of the prior contributions for 000 and 001. The contributions of 01, 10, 

and 11 are obtained through similar calculations. Decoupling thus “flattens” a fitness landscape 

by smoothing out each pair of differences between the two variants of the decoupled component. 

 Conversely, recoupling one component to another requires doubling the number of 

distinct fitness contributions. In this case, we refer to the initial fitness landscape (X0) for the 

needed values. However, if the respective components were uncoupled in the initial landscape, 

recoupling them has no effect. This rule ensures that architectural search cannot create new 

peaks or valleys out of thin air; it can only suppress or restore those provided by nature. 

 

RESULTS 

 We implemented the model in Mathematica and ran a set of preliminary simulations 

whose results are reported here. We intend to implement several extensions to the model and run 
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more simulations to study them. Nonetheless, the preliminary results clearly illustrate the key 

features of the model and appear to be robust to a substantial range of parameter values. We ran 

simulations for N = {6, 8, 10} and two values of K for each N: one yielding fully coupled initial 

landscapes (K = N – 1) and one yielding partly coupled initial landscapes (K = N / 2 – 1). To 

smooth out the effects of randomness in the landscapes and the designers’ choices, we executed 

10 searches for each of 10 landscapes for each (N, K) parameter pair, for a total of 100 runs per 

pair (600 overall). 

 To facilitate analysis, we recorded the complete search trajectory for each designer, 

as well as the fitness landscape at t = 0, t = 1, and after each episode of architectural search. 

The minimum duration of an architectural search was one period, which occurs when the first 

permutation that is tried results in a fitness-improving adaptive walk. The maximum duration 

was N (N – 1) periods, which occurs when the last permutation in the list yields an improvement. 

(If it does not, the simulation halts without recording the episode.) 

 

Architectural Search Yields Selective Decoupling 

 Before we examine the designers’ search performance, let’s see how the level of coupling 

changes over time. We define coupling as the average number of interactions per component 

(i.e., the number of non-zero off-diagonal elements in the influence matrix divided by N). 

Recall that higher coupling implies a more “rugged” fitness landscape with more local peaks. 

 Figure 1 provides two views of the coupling data for N = 10 and K = 9: the complete set 

of observations for all 100 runs, and connected trajectories for 10 randomly selected runs (one 

for each of the 10 random landscapes). Both views show a general downward trend: coupling 

tends to decrease over time as designers iteratively modify their product architectures and 
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component configurations. The connected trajectories show that the downward trend is not 

monotonic. Some successful episodes or architectural search result in decoupling, while others 

result in recoupling (i.e., restoration of previously suppressed interactions). One of the 

trajectories is plotted using a thicker stroke to highlight an especially pronounced upswing 

toward the end of the run. This was uncommon but not rare; 19 out of the 100 trajectories ended 

with an increase in coupling. 

----------------------------------- 

Insert Figure 1 about here 

----------------------------------- 

 Should this result be surprising? After all, we started with maximal coupling (in this case, 

9.0), so the only way to go is down. On the other hand, it is entirely possible for a trajectory not 

to go anywhere at all. Nothing guarantees that decoupling a single interaction will either directly 

improve the fitness of a design or enable modular search to reach a higher local peak, yet this 

happens consistently. (In fact, every designer succeeded in at least 10 consecutive episodes of 

architectural search; the maximum was 29.) Moreover, all of the (N, K) pairs exhibit a similar 

downward trend, even the partly coupled ones. So the result may be intuitive and expected, but 

it nonetheless seems nontrivial. 

 

Selective Decoupling Facilitates the Discovery of Optimal System Designs 

 We now turn to the relationship between coupling and performance, as measured by 

product fitness. Since we recorded the fitness landscape after every episode of architectural 

search, we can compute the optimal fitness at each of these time periods and compare it to the 

actual fitness of the designer’s product. (We do this by exhaustively evaluating all component 
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configurations and taking the maximum found; this is feasible for 210 = 1024 configurations 

under N = 10, but rapidly becomes infeasible as N increases.) 

 Figure 2 plots the actual and optimal fitness values for a typical run. Several features of 

the plot stand out. The actual fitness trajectory is monotonically increasing, which is necessarily 

the case since the simulation halts if a fitness-improving permutation cannot be found during 

architectural search. The optimal fitness trajectory is not monotonic, however. It is mostly—but 

not exclusively—decreasing toward the beginning of the run, then increasing toward the end. 

The trajectories converge (in this case, at period 84), then continue to increase in lockstep. 

----------------------------------- 

Insert Figure 2 about here 

----------------------------------- 

 It turns out that all of these features are typical. It is especially notable that all of the 

trajectories for N = 10 and K = 9 converged to optimality, at a median period of 66 and a 

maximum period of 422. The convergence rate declined slightly for smaller design spaces and 

less initial coupling (to 95% for N = 6 and K = 2). The curvature of the optimal fitness trajectory 

is harder to generalize; not all runs exhibited a dip, but the majority did. In this case, the final 

optimal fitness is slightly higher than the initial optimal fitness (0.783 vs. 0.776). For N = 10 and 

K = 9 this is true on average (by 0.032), but 17% of runs ended at a lower optimal fitness than 

they started with. 

 Despite the variation in individual trajectories, the pattern illustrated by this figure is 

straightforward to characterize and interpret. There are typically two phases to the search: pre- 

and post-convergence. Before convergence, increases in actual fitness are driven mainly by 

architectural changes that make higher (but still suboptimal) fitness values easier to discover. 
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These changes tend to reduce optimal fitness by “flattening” peaks generated by certain 

combinations of highly coupled components, but that is irrelevant to the designer because these 

combinations were not accessible through the incremental hill-climbing process of modular 

search. After convergence, the only way to achieve continued improvement is by increasing both 

the actual and the optimal fitness at the same time. Sometimes this occurs through continued 

decoupling, which tends to lower the maximum fitness contribution of a given component, yet 

can increase the maximum attainable product fitness by removing harmful interactions between 

components. At other times, optimal fitness improvements occur by recoupling components to 

restore fitness peaks. Either way, the result demonstrates that a simple “one-bit” process of 

architectural search can substitute for a more sophisticated (or exhaustive) process at the 

component level. 

 

Architectural Search Dominates Modular Search Within a Fixed Architecture 

 Figure 3 summarizes the performance data from all of the simulation runs in one graph. 

Six groups of three bars are shown. Each group aggregates the data from the 100 runs 

corresponding to a particular combination of N and K, as shown. The three partly coupled 

settings are on the left, while the fully coupled settings are on the right. Within each group, the 

bottom bar shows the average initial fitness of a product design (i.e., the fitness at t = 0). This is 

approximately 0.5 for all groups, as we expect since this is the average fitness of a randomly 

selected product. The middle bar shows the average fitness after one iteration of modular search 

but before architectural search has taken place (i.e., at t = 1). This would be the final fitness if 

architectural search were disabled, unless we implemented a different way for designers to get 

“unstuck” from local peaks. The values range from 0.572 (for N = 10, K = 9) to 0.601 (for N = 8, 
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K = 3) with no clear pattern among the groups. The top bar shows the average fitness after 

iterated architectural and modular search (the process illustrated in Figure 2). Here there is a 

pattern, although some of the differences are too small to see on the figure: the values increase 

with both N and K, from 0.756 (for N = 6, K = 2) to 0.811 (for N = 10, K = 9). 

----------------------------------- 

Insert Figure 3 about here 

----------------------------------- 

 Again, we should ask whether these results are expected or counterintuitive. In light of 

Figure 2 and the analysis above, it is not surprising that architectural search (interleaved with 

modular search) consistently yields higher-performing product designs than modular search 

alone. It is interesting, however, that not only does the performance of architectural search not 

suffer as the fitness landscapes get larger and more rugged, but it actually increases. In retrospect 

this result makes sense because larger and more rugged landscapes have (on average) higher 

global optima than smaller and less rugged ones, by a basic property of maximum order 

statistics: the expected maximum over m draws from a random variable increases with m. 

Nonetheless, it remains a pleasant surprise to us that the ability to locate these optima does not 

diminish even as N and K increase. 

 

DISCUSSION 

 The model we presented is almost embarrassingly simple, yet it appears to offer a novel 

answer to an important question: how can designers simplify a complex system in order to 

navigate its design space effectively? The validity of our answer (“selective decoupling”) 

depends on at least three points that are not fully resolved in this preliminary version of the 
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paper. We highlight them here in the spirit of full disclosure, and to serve as input into the next 

iteration of our research. 

 First, it must actually be possible to execute the kind of refactoring that we posit. Can 

a designer always suppress a given dependency and “flatten” the corresponding region of the 

fitness landscape? Perhaps not. On the other hand, clearly these kinds of design moves are often 

possible—indeed, they are routine in software engineering—and in many cases they may be even 

less costly than we assume. In the NK tradition, our modeling choice to compute revised fitness 

values based on averages over the decoupled component reflects an assumption of ignorance 

(Kauffman, 1993:41). These values could also be drawn randomly, or made more pessimistic by 

offsetting them with a penalty; the results should be robust to a range of alternatives. Empirical 

evidence might also be brought to bear on the extent and cost of refactoring, for example using 

open-source software projects for which longitudinal dependency data is available (see, e.g., 

MacCormack, Baldwin, & Rusnak, 2012). 

 Second, our results need to scale to design spaces of more realistic size. Will we hit a 

“complexity catastrophe” where single-bit architectural changes no longer facilitate the 

discovery of optimal designs? Perhaps. On the other hand, the current results already span a 

substantial range of parameter values. Consider that N = 6 and K = 2 represents a design space 

with only 64 unique component configurations and typically only a few local optima, while the 

design space for N = 10 and K = 9 contains 1024 configurations (16 times more) and typically 

hundreds of local optima. Even more strikingly, consider the fact that the number of unique 

architectures (binary influence matrices) is 2N(N–1), or 230 for N = 6 (about a billion) vs. 290 

for N = 10 (more than the number of atoms in the observable universe). Fortunately, while we 

may not be able to compute global optima for N much larger than 10, we can certainly create 
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larger landscapes using the usual computational tricks employed by NK modelers (e.g., lazy or 

deterministic generation of fitness contributions). 

 Third, we need to embed our designs and designers in a richer environment. How well 

does refactoring work when multiple design teams are working in parallel at the component 

level? How do exogenous changes in a fitness landscape affect the efficacy of architectural 

search? Is architectural search fast enough to compete with designers employing more 

sophisticated forms of modular search? These questions can all be studied using established 

methods. Although they would no doubt increase the complexity of the model and its exposition, 

these extensions could also lead to additional insights. 

 More broadly, our aim is to study technology and industry evolution using computational 

modeling techniques. The initial motivation for this model came from the observation that 

biological systems exhibit vast and intricate neutral networks (Wagner, 2011), but we are not 

aware of a domain-independent model that explains how such networks could emerge in 

technological systems. The mechanism of selective decoupling seemed like a promising building 

block for such a model. Also, we are intrigued by the resemblance between the endogenous 

shifts we observed from high to low to intermediate levels of coupling (cf. Figure 2) and the 

stylized product life cycle described by the technology and innovation management literature 

(Anderson & Tushman, 1990; Murmann & Frenken, 2006). The emergence of a dominant design 

is surely a powerful driver of decoupling; perhaps these ideas could be linked. 

 

CONCLUSION 

 In this paper, we presented a model in which product designers can modify the structure 

of their fitness landscapes by suppressing or restoring interactions between components. We find 
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that these changes can lead to improved performance by “flattening” harmful interactions that 

would otherwise cause search efforts to become trapped on local fitness peaks. Despite the fact 

that this process, which we call selective coupling, tends to lower the maximum performance of a 

given component, it may increase the maximum attainable product performance. Moreover, 

selective decoupling can trigger the restoration of previously suppressed interactions, enabling 

the discovery of integral designs that were inaccessible to local search. We hope to strengthen, 

deepen, and extend these findings in our ongoing work. 
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FIGURES 

 

 

 

Figure 1: Coupling versus time under iterated architectural and modular search 

(N = 10, K = 9; 10 out of 100 trajectories shown) 
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Figure 2: Actual and optimal fitness trajectories for a typical simulation run 

(N = 10, K = 9; iterated architectural and modular search, run 26 out of 100) 
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Figure 3: Comparison of average fitness by search procedure 

(N = 6, 8, 10; partly and fully coupled landscapes) 
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