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Abstract 

 Digital systems are malleable in the sense that their components can typically 
be reconfigured at low cost. Malleability confers unprecedented freedom to 
arrange components in new ways, easing the creation of innovative designs but 
also complicating the task of making good design choices. This paper explores 
this tension from the perspective of a firm that aspires to platform leadership in an 
industry that creates digital products or services. We frame the firm’s challenge as 
a design problem aimed at changing the way a system is decomposed into 
components, the way the components are linked together by interfaces, or both. 
Building on the concept of architectural innovation, we integrate prior research to 
yield a new framework for studying strategic architectural decisions that span the 
domains of technology and organizations. Using examples from the computing 
and communications industries, we show how our framework sheds light on four 
distinct types of design choices faced by firms that create or participate in digital 
platforms. Further analysis reveals a variety of interactions among these choices, 
which create both opportunities and threats in the form of mutually reinforcing or 
conflicting design decisions. 
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1. Introduction 

 We are surrounded by objects of astonishing complexity, many made possible by 

advances in digital technology. Software programs containing tens of millions of instructions are 

deployed in billions of increasingly interconnected devices, including cameras, phones, cars, 

and computers. These devices enable a large and growing fraction of the world’s population to 

interact with each other, further driving demand for innovative ways to share and manage 

information. 

 This paper examines the design of digital artifacts and the organizations that create them, 

focusing on changes in their architecture — that is, the way they are decomposed into component 

parts, nested within larger systems, and linked together by interfaces. We first synthesize the 

literatures on innovation management and organizational design to develop a view of 

architectural strategy that encompasses design decisions about both technological and 

organizational components and the interfaces between them. Second, we apply this framework to 

analyze three episodes of architectural innovation involving digitally enabled platforms. Our 

analysis suggests that managing interactions between the technological and organizational 

aspects of a firm’s architectural strategy is a pressing and difficult challenge. 

 While the importance of architectural strategy is most apparent in software-based 

systems, the growing mobility and scale of these systems — along with the pervasive embedding 

of digital technologies into non-digital artifacts — increasingly warrants the attention of 

technology and innovation scholars more generally, as well as organizational researchers 

(Lyytinen and Yoo 2002). Digitalization is blurring the boundaries between previously distinct 

industries such as computing and communications, which in turn increases market turbulence 

and perpetuates technological ferment (Bogner and Barr 2000). In such hypercompetitive 
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environments, architectural change is an important phenomenon not only in the wake of a 

technological discontinuity (Anderson and Tushman 1990), but at all stages of industry 

evolution. Moreover, since complex artifacts evolve through a nested hierarchy of technology 

cycles (Murmann and Frenken 2006), multiple architectural changes may happen concurrently, 

posing critical challenges for organization design. 

 Some architectural changes may follow predictable technological trajectories, but many 

others arise through deliberate strategy and focused innovative effort. The fact that Bill Gates 

appointed himself “chief software architect” after stepping down as Microsoft’s CEO in 2000 is 

but one example of the importance of architectural decisions to suppliers of digital products and 

services. More broadly, a 2008 survey of IT executives across 18 industry sectors found that 

77% of responding organizations employed a full-time “enterprise architecture” team, and in 

62% of these organizations the head of this team reported directly to a “C-level” executive (CIO, 

CTO, CFO, or CEO) or to the board of directors (Obitz and Mohan 2008). Yet, despite the 

growing number of practitioners who identify themselves as architects, few research studies 

have addressed the role of architectural strategy in the evolution of digital systems. 

 This paper provides a preliminary framework to help designers of products, services and 

organizations answer three kinds of questions. First, how are the problems faced by designers in 

different domains related to each other? Second, what kinds of tensions can arise in developing 

an integrated architectural strategy across these domains? And third, how can firms successfully 

navigate these tensions to achieve and sustain a position of platform leadership? 

 These questions are especially important in complex, fast-moving markets like mobile 

telephony, where firms are grappling simultaneously with a shift to third-generation wireless 

data standards, consumer demand for integrated multimedia features, and platform competition 
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between embedded operating systems. Our aim is to advance the research frontier by shifting 

attention from the general characteristics of these settings (e.g., turbulent, hypercompetitive, or 

network-structured) to the specific sequences of design moves by which firms shape their 

technological and organizational environments. 

 The paper is structured as follows. Section 2 motivates our framework by reexamining 

the concept of architectural innovation from the perspective of an innovator in an industry 

shaped by digital technology. Section 3 presents the framework itself, and uses it to review and 

synthesize the literatures on product and organization design. Section 4 demonstrates the use of 

our framework to contrast and compare the architectural strategies of IBM, Sun, and Nokia for 

their respective digital platforms. Section 5 reviews the implications of our analysis for firms that 

create or participate in platform architectures, and highlights opportunities for future research. 

 

2. Architectural Innovation as a Design Process 

 In their seminal paper, Henderson and Clark (1990, p. 10) define an architectural 

innovation as a type of technological discontinuity that “change[s] the way in which the 

components of a product are linked together, while leaving the core design concepts (and thus 

the basic knowledge underlying the components) untouched.” They note that incumbent firms 

often find it difficult to adapt to these seemingly minor changes, citing as examples RCA in 

portable radio receivers and Xerox in small copiers, as well as the photolithographic alignment 

equipment makers featured in Henderson’s landmark study. 

 While Henderson and Clark develop a detailed theory to explain the effects of 

architectural innovation on established firms, they elaborate little on the process of architectural 

innovation from the innovator’s perspective. They acknowledge the selective focus of the paper, 
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and invite further research into the proactive use of architectural innovation for strategic 

advantage (pp. 28–29):  

Since architectural innovation has the potential to offer firms the opportunity to 
gain significant advantage over well-entrenched, dominant firms, we might expect 
less-entrenched competitor firms to search actively for opportunities to introduce 
changes in product architecture in an industry … As an interpretive lens, 
architectural innovation may therefore prove quite useful in understanding 
technically based rivalry in a variety of industries. 

Here we take up their invitation by viewing architectural innovation as a sequence of strategic 

design decisions that are endogenous to the innovating firm, resulting in the reconfiguration of 

technological and/or organizational components, which may in turn reshape the firm’s internal 

and external environment. 

 This process-oriented view is consistent with a long tradition of design research. Simon 

(1962) explained the ubiquity of hierarchical structures as a natural consequence of their 

evolutionary stability. In his classic treatise on the synthesis of form, Alexander (1964) 

characterized design as a process of creating forms that fit their context. Clark (1985, p. 237) 

extended this idea to the industry level by exploring “the sequence of design decisions that 

emerge over time … [which] determines the pattern of change in product and process 

technology.” More recently, scholars have noted that the traditional tools of decision theory are 

of limited value for reasoning about these kinds of decisions, because they tend to assume a fixed 

and enumerable set of alternatives to choose from (Boland and Collopy 2004). In contrast, design 

research emphasizes the emergent nature of these alternatives (Orlikowski 2000) and the iterative 

process of generating and evaluating them (Simon 1969, Hevner et al. 2004). 

 The “design attitude” (Boland and Collopy 2004) is especially valuable in the context of 

digital systems, which are malleable in the sense that their software-intensive components can 

typically be reconfigured at low cost relative to systems composed of components like 
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mechanical parts, chemical molecules, or biological tissues. This property arises from the fact 

that digital components, which are linked by informational interactions rather than physical ones, 

can be more loosely coupled (Weick 1976) than other kinds of system elements.1 Loose coupling 

means that designers of digital innovations typically have even more alternatives available — 

that is, operate in a larger design space — than designers of physical artifacts. As a result, the 

structure of a digital system is determined less by exogenous physical constraints (e.g., the 

number of features that can be etched onto a piece of silicon) than by decisions that are 

endogenous to the design process (e.g., the choice of how to represent a document as a string 

of binary digits). 

 Even with the best tools at their disposal, designers of malleable systems face a daunting 

task: as hard as it is to design a good system architecture, its value may be affected by the 

decisions of other stakeholders, including suppliers of components, complementary products, 

and competing systems — all of whose fates are intertwined in a shared business ecosystem 

(Iansiti and Levien 2004). Architectural innovation is thus a continuous challenge that requires 

the active engagement of both technologists and organization designers. 

 

3. Linking Technological and Organizational Perspectives on Architectural Strategy 

 Henderson and Clark (1990) define architectural innovation with respect to product 

architectures. This section extends the concept of architectural innovation into the domain of 

organizations by considering changes in organizational components (e.g., firms, divisions, and 

departments) and their linkages (e.g., contracts, reporting relationships, and information flows). 

                                                      
1  In a typical engineered system, components may interact with each other through physical adjacency and/or 

exchanges of material, energy, and information (Pimmler and Eppinger 1994). In digital systems, informational 
interactions usually dominate the concerns of system designers. 
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The resulting framework provides a basis to bridge the literatures on product and organization 

design and to develop the concept of architectural strategy, which was introduced by Ferguson 

and Morris (1993) in an influential article but remains surprisingly underexplored in the 

academic literature. 

 Here we consider architectural strategy across two dimensions. The first dimension 

considers two fundamental design elements, components and interfaces. The second dimension 

subdivides the technical domain from the organizational one. Together, these two dimensions 

suggest four different quadrants of interest (Figure 1). The remainder of the section briefly 

reviews the literature related to each quadrant, then explains how the four quadrants yield 

complementary perspectives on architectural strategy for systems that comprise both 

technological and organizational components. 

3.1 Quadrants I & II: Product and System Architecture 

 Ulrich (1995, p. 419) defines product architecture as “the scheme by which the function 

of a product is allocated to physical components.” This scheme includes “(1) the arrangement of 

functional elements; (2) the mapping from functional elements to physical components; (3) the 

specification of the interfaces among interacting physical components.” Components may be 

hierarchically nested, from systems and subsystems all the way down to individual parts (Simon 

1962, Murmann and Frenken 2006). Components with strong internal interdependencies but 

relatively weak linkages to the rest of the system are called modules (Baldwin and Clark 2000).2 

The large and vibrant literature on product modularity explores the ways in which modular 

designs enable decentralized innovation, rapid product evolution and economies of scale and 

scope (Langlois and Robertson 1992, Garud and Kumaraswamy 1995, Sanchez and Mahoney 
                                                      
2  Since our framework applies to both modular and integral architectures, we use the term component to avoid 

confusion. Otherwise, “component” and “module” are interchangeable for our purposes. 
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1996, Schilling 2000). This literature also warns that modular architectures can facilitate 

imitation by competitors (Ethiraj et al. 2008), and finds that re-integrating such an architecture 

can also yield competitive advantage (Fixson and Park 2008). 

 Interfaces describe how components interact, “including how they will fit together, 

connect, and communicate” (Baldwin and Clark 1997, p. 86). This visible information is used by 

designers of complementary components and compatible substitutes (also known as “clones”), 

giving interfaces an important role in both de facto and de jure standardization processes 

(Saloner 1990, David and Greenstein 1990). The ability to influence the design of key interfaces 

and control the disclosure of these designs can either encourage or deter both complementors and 

competitors, with profound effects on the value of a system and its architecture (Farrell and 

Saloner 1992, Morris and Ferguson 1993). 

 While Baldwin and Clark classify interfaces and architectures as different types of 

design rules, the recent engineering literature follows Ulrich in treating information about both 

components and interfaces as part of a system’s architecture (e.g., Maier et al. 2001). We adopt 

this broader view while affirming the fundamental distinction between architectural and 

component knowledge articulated by Henderson and Clark (1990). An architectural innovation 

may change the arrangement of components in a system, and thus the pattern of linkages 

between them. In our framework, such changes are the focus of the architectural perspective we 

label Quadrant I. It is also possible to change an interface between components without changing 

the overall structure of their interdependencies, such as by changing the shape of a physical 

connector or the format of a communication protocol, which we label Quadrant II. 

 Interface changes are especially common in digital systems, where the details of an 

interface — down to the exact sequence of binary digits needed to invoke a particular function 
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— are often as important as the larger pattern of structural relationships in the system. Designers 

may also add interfaces to a system, for example to provide compatibility between otherwise 

incompatible components (West and Dedrick 2000). New architectural layers are created to 

encapsulate existing functionality and provide access through a common interface, which 

Baldwin and Clark (2000) label inversion and porting. Such layering tends to be more extensive 

in software-based digital systems than in physical ones, because rapid increases in computing 

power allow new layers to co-exist with existing interfaces with minimal impact on the 

performance or production cost of the system. 

3.2 Quadrants III & IV: Organization and Industry Architecture 

 Not coincidentally, organization scholars have long employed architectural concepts to 

describe the structure and evolution of human social systems. Although the concept of 

architectural innovation was first applied in the context of product development, the term itself 

was suggested by Michael Tushman (Henderson and Clark 1990, p. 10), whose own work on 

organizational architecture stems from the observation that “social organisms display many of 

the same characteristics as mechanical and natural systems” (Nadler and Tushman 1997, p. 26). 

More recently, researchers have extended this approach to the industry level by studying the 

architecture of inter-firm networks that support the production of complex multi-product systems 

(Prencipe et al. 2003, Jacobides et al. 2006). 

 The idea of treating organizational structure as a design problem was widely explored in 

the 1960s and 1970s (e.g., Thompson 1966, Galbraith 1973) and continues in the modern 

literature on organization design (Weick 2004, Yoo et al. 2006). Even the early work on this 

topic recognized an explicit parallel with the design of technological systems (Haberstroh 1965), 

as it sought to uncover principles for achieving an optimal design in a given environment. More 
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recent research has applied engineering techniques such as computational simulation to expand 

our understanding of organizational design parameters such as coupling, centralization and 

hierarchical control (Marengo et al. 2000, Ethiraj and Levinthal 2004). 

 A key concern of organization design is the division of tasks among organizational units 

such as firms, departments, and teams. Although the terms “module” and “component” are used 

less frequently to describe units of organizational structure, the organization design problem is 

analogous to the modular decomposition of a product or service. In research on this topic, the 

term organizational architecture has been used to describe the formal structure of an 

organization, such as a multi-divisional hierarchy, as well as the linking mechanisms that 

coordinate interactions between individuals and groups, such as interdepartmental liaisons or 

matrix reporting relationships (Nadler et al. 1992, Nadler and Tushman 1997). The architectural 

perspective we label Quadrant III focuses on the former (“organizational components”), while 

Quadrant IV emphasizes the latter (“organizational interfaces”). 

 The study of organizational architecture is complicated by the fact that different levels of 

analysis present different design issues, which in turn have attracted the attention of different 

scholarly communities. For example, problems related to interfaces between individuals and 

teams are well described by the literature on boundary objects (Star and Griesemer 1989). 

Carlile (2002) found that artifacts such as drawings, databases, and process descriptions can 

mediate interactions across functional groups with disparate knowledge bases; the “shared 

syntax” established by these objects facilitates knowledge transfer in the same way that a 

software interface facilitates the transfer of information between digital components.3 

                                                      
3  Carlile’s semantic and pragmatic approaches to coordination are also relevant to digital interfaces, as evidenced 

by two recent trends in computer science: semantic web services (McIlraith et al. 2001), in which interactions 
between software components are facilitated by annotations describing what they do; and autonomic computing 
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Other work examines the design of coordinating structures at the level of a firm and its value 

network (Brusoni et al. 2001, Christensen et al. 2002, Maula et al. 2006), and even an entire 

industry (Jacobides et al. 2006). At these levels, “components” are typically business units or 

whole firms, and “interfaces” often take the form of contracts that mediate transactions and 

information exchange (Baldwin 2008). 

3.3 Cross-quadrant Challenges in Architectural Strategy 

 The four quadrants of our framework provide a convenient way to organize a large and 

diverse body of literature on the architecture of socio-technical systems. But some of the most 

challenging issues in the design of such systems span the technological and organizational 

domains, as well as the component and interface perspectives within each domain. Therefore, as 

the case discussions in Section 4 will show, system architects must be alert to the possibility of 

tensions between quadrants. Existing research has identified some of these cross-quadrant 

concerns, most notably in the literature on the duality between product and organizational 

architectures. After briefly reviewing this work, we highlight the importance of integrating the 

four perspectives in the context of digital platforms. 

 Henderson and Clark (1990, p. 27) suggested an intriguing relationship between what we 

would label Quadrants I and III: “We have assumed that organizations are boundedly rational 

and, hence, that their knowledge and information-processing structure come to mirror the 

internal structure of the product they are designing.” This assumption has come to be known as 

the “mirroring hypothesis” (Colfer 2007). Von Hippel (1990) examines the more general issue of 

task partitioning in product development, and notes that while problem-solving tasks are not 

always most efficiently partitioned according to the structure of the product being developed, in 
                                                      

(Kephart and Chess 2003), in which complex computing systems manage themselves to achieve specific goals 
rather than following a pre-defined set of instructions. 
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practice this is often the case. Sanchez and Mahoney (2006, p. 64) extended this argument to the 

inter-firm level, arguing that while integral products are best developed within a single firm, “the 

standardized component interfaces in a modular product architecture provide a form of 

embedded coordination that greatly reduces the need for overt exercise of managerial authority 

to achieve coordination of development processes,” allowing components to be developed by 

loosely coupled organization structures. 

 Empirical evidence on the mirroring hypothesis has been mixed. Staudenmayer et al. 

(2005) studied inter-firm product development processes and found that interdependencies 

emerged repeatedly despite ex ante agreement on component interfaces. Brusoni and Prencipe 

(2006) examined a transition from an integral production process to a modular one, and found 

that it required integrating — rather than separating — the previous activities of design and 

production. But in a study of open source software projects, MacCormack et al. (2008) found 

that larger, more distributed teams tended to develop products with more modular architectures. 

Taken together, these studies indicate that the appropriate mapping between technological and 

organizational components remains an open question in general, and thus a design problem to be 

solved anew by every architectural innovator. 

 Compared to the mirroring literature, relatively little research examines the relationship 

between technological and organizational interfaces (Quadrants II and IV). However, the 

literature on technology standardization addresses this relationship implicitly by studying 

situations in which individuals work across organizational boundaries — either within or 

between firms — to coordinate on visible design rules (technological interfaces) that are 

supported by license agreements, standardization processes, or other coordination devices 

(organizational interfaces). For example, Rosenkopf et al. (2001) showed that the individual-
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level social structure forged through the creation of mobile phone standards enabled knowledge 

flows and strategic alliances between their corresponding employers — in other words, that 

technological interfaces can enable the formation of organizational ones. The case of Sun 

Microsystems and Java illustrates the opposite relationship: Sun engaged in extensive 

institutional entrepreneurship (Garud et al. 2002) to win acceptance of its Java platform as a 

de facto technology standard, even after withdrawing twice from de jure standardization 

processes (Egyedi 2001). 

 Although firms in many industries face strategic decisions about technological and 

organizational architecture, we believe these concerns are especially salient in the context of 

digital systems. Digitalization not only makes products and services more malleable, but also 

makes it possible to radically reconfigure their design and production (Yoo et al. 2008). This 

flexibility confers unprecedented freedom to arrange both technological and organizational 

components in new ways, but existing theory offers limited advice on how to use this freedom 

effectively. Interfaces play a heightened role in digital systems for a similar reason: in contrast to 

analog systems, which typically tolerate a certain amount of variance in component interactions, 

every bit is potentially significant in a digital system — which means that creators of digital 

interfaces work in a vast and largely uncharted design space. While a comprehensive theory of 

architectural strategy lies well beyond the scope of this paper, our framework draws attention to 

a novel set of concerns, namely the interactions between the four architectural perspectives. 

These interactions are the focus of the next section. 
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4. Architectural Strategy in Computing Platforms 

 To illustrate how architectural strategy can shed light on the interactions among design 

choices in digital systems, we apply our framework in the context of a particular type of system 

architecture, namely computing platforms (Gawer and Cusumano 2002, Gawer 2009). 

 There are at least two paths for platform leaders to profit from the success of their 

platforms: by serving as a systems integrator, as IBM did with its mainframes, or supplying key 

system components, as Intel and Microsoft did for personal computers (Bresnahan and 

Greenstein 1999, Gawer and Henderson 2007). Platform architectures create value by supporting 

the distributed production of components whose integration is governed by publicly documented 

interfaces (West and Dedrick 2000). A recurring challenge in platform stewardship is to 

stimulate the production of enough complementary components to sustain a vibrant “ecosystem” 

of users and component developers (Iansiti and Levien 2004, Evans et al. 2006). A key tension 

arises from the fact that platform sponsors need to attract enough outside complements to benefit 

from network effects, while maintaining sufficient architectural control to capture economic 

value and coordinate the evolution of the platform (Morris and Ferguson 1993, West 2003, 

Boudreau 2006). 

 We use our framework to contrast and compare critical episodes in the evolution of three 

influential platforms over the past 30 years: the IBM PC, Sun’s Java technology, and Nokia’s 

smartphone products. There are important parallels across the three cases. All three involve a 

systems integrator that was the clear leader in its respective field: desktop computers, Internet 

servers, and mobile phones. In all three cases, the focal firm created and evolved a digital 

architecture both to win adoption for its products and reshape the industry structure to its 

advantage. All three firms balanced proprietary control against the strategic use of “openness” 
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to attract complements and adopters, and all three adjusted their product and organizational 

designs in response to competitive pressures. 

 At the same time, there are crucial differences. The cases are drawn from different 

decades, each providing lessons for players in the next. The original IBM PC was targeted at 

small businesses, while Nokia’s smartphones were sold to affluent consumers and large 

enterprises; Sun’s Java was a “middleware” technology that allowed other firms to create 

applications for Web browsers and Internet servers. All three platforms succeeded in achieving 

widespread adoption, but had varying degrees of success in generating financial returns for their 

original sponsors. 

 The cases are presented in chronological order with respect to the critical incidents we 

focus on: the 1981 introduction of the IBM PC and subsequent entry of IBM-compatible 

“clones,” Sun’s efforts to standardize the Java platform from 1997 to 1999, and Nokia’s 2008 

decision to acquire and partially spin off the maker of its Symbian operating system.4 Table 1 

summarizes the specific design decisions made by each firm. The decisions are classified into 

quadrants based on the key architectural elements involved in each. Our preliminary analysis of 

these three cases is presented below. 

4.1 The IBM PC Revisited 

 The well-known case of the IBM PC provides an opportunity to revisit the tensions 

between technical and organizational design decisions in the period leading up to the release of 

the original Model 5150 PC in August 1981. These tensions played a role in the emergence of 

the PC “clone” market in the mid-1980s, which in turn led IBM to reverse a number of key 

                                                      
4  Each case is drawn from news articles and (in the case of the IBM PC) book-length accounts of the product and 

organizational strategies of the focal firms. Due to space limitations, only quoted sources are cited in the text; the 
full list of references is available on request. 
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design decisions in its ultimately unsuccessful PS/2 product line. To show how these decisions 

are coded in our framework, we label them with bold Roman numerals indicating quadrants in 

Figure 1 and the corresponding cells in Table 1. 

 Developed in less than a year due to a mandate from IBM’s Corporate Management 

Committee, the IBM PC’s product architecture was based almost entirely on off-the-shelf 

components (I). IBM designed the PC around an existing processor chip, the Intel 8088, and 

contracted with external suppliers for disk drives, power supplies, circuit boards, and other 

critical components. As a result, most of the PC’s design could be easily replicated by competing 

firms (II), with two notable exceptions: the IBM BIOS, a custom-designed chip that provided an 

interface between software programs and hardware components, and the computer’s operating 

system, PC-DOS, which was sourced under contract to Microsoft but actually derived from 

software Microsoft acquired from a third party. 

 For IBM, the PC also reflected a novel set of organizational design choices. The product 

was developed far from the company’s headquarters — and outside its normal processes — by a 

small team based in Boca Raton, Florida. Even for parts that were supplied by other IBM units, 

such as the keyboard, the PC team demanded competitive bids and treated these units no 

differently than outside suppliers (III). Microsoft was an exception: IBM engaged in extensive 

collaboration to help the tiny Seattle firm meet its exacting quality requirements, including fixing 

code errors and writing documentation. Conversely, Microsoft contributed to key design 

decisions concerning the BIOS interface, on which its code depended. Frequent interactions 

between the two development teams occurred both face to face and via an electronic mail system 

established for the project. Although IBM’s interactions with its suppliers were covered under 

extensive nondisclosure agreements and detailed procurement contracts, IBM owned few 
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intellectual property rights to the PC design, with the exception of copyright and trade secrets 

related to the BIOS (IV). In particular, Microsoft retained control over the DOS source code and 

the right to market its own version of the product, MS-DOS, which it soon licensed to IBM’s 

competitors. 

 Taken together, IBM made a distinctive set of design choices: modular architecture (I), 

public interfaces (II), outsourced components (III), and permissive licensing (IV). Echoing the 

consensus view among technology strategists, Brandenburger and Nalebuff (1996, p. 155) 

suggest that IBM erred not in any of these choices individually, but in their combination: 

IBM’s real error was pursuing the outsourcing [I + III] and open-architecture 
[II + IV] stories together. Had it stopped at bringing in Intel and Microsoft, and 
not given up control of the hardware portion of the business, it would have 
remained in a strong position. Had it kept control over the chip and operating 
system technologies, then, despite cloning of the hardware, it would still have 
been in a strong position. Either approach might well have been effective. But 
outsourcing together with opening the architecture was a mistake. It’s a case of 
two rights making a wrong. 

Note that this tension is not the stereotypical clash between engineers and their pointy-haired 

bosses. The fault line spans the technological and organizational domains, dividing interfaces 

from components. In other words, IBM’s design decisions were well aligned with respect to 

technological and organizational components (modular, outsourced) and also with respect to 

technological and organizational interfaces (public, permissive). The problem was that in 

pursuing both pairs together, IBM made it hard to maintain architectural control and thus to 

sustain its ability to capture value from the system. 

 Indeed, IBM overestimated its ability to deter rivals from producing compatible 

substitutes, and legal IBM-compatible “clones” became available soon after the PC’s release, 

most notably the Compaq Portable in 1982. Over the next five years, the rise of the clones 

pushed IBM’s share to less than half of the market for IBM-compatible PCs. Determined to 
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reassert control of the IBM PC ecosystem, in 1987 IBM sharply reversed course for its PS/2 line 

of computers. The company introduced a range of innovations that were incompatible with the 

de facto standards that had emerged around the original PC design, including the OS/2 operating 

system, the Micro Channel system bus, the Token Ring network protocol and the “PS/2” 

keyboard interface (II). All components except OS/2 were developed inside IBM (I), and 

competitors could employ the technologies only under royalty-bearing licenses (IV). 

 Ironically, these design moves not only failed to resolve the original tensions in IBM’s 

architectural strategy, but created new tensions as well. The more expensive IBM-controlled 

components were rejected by PC makers, suppliers of complementary products, and ultimately 

by computer buyers. IBM eventually abandoned most of the PS/2 technologies, reverting to the 

de facto standards used by its rivals. In doing so, it effectively ceded platform leadership to 

Microsoft and Intel, as the “IBM PC” platform became known as the “Wintel” platform. IBM 

finally exited the market with the sale of its PC division to China’s Lenovo Group in 2005. 

4.2 Sun: The Java Wars 

 Our second case example concerns Sun Microsystems and its Java technology, an 

architectural innovation that changed the linkage between software applications and operating 

systems. Like IBM’s PC, Java posed a complex design problem spanning the four architectural 

perspectives of our framework. To illustrate the cross-quadrant tensions that arise later in a 

platform’s evolution, we focus not on the initial release of Java in 1995, but on the period from 

1997–99. During this time, Sun initiated and then abandoned two efforts to standardize the Java 

platform, finally creating its own Java Community Process to govern the evolution of the 

technology. 
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 Java is both a programming language and a software platform that allows developers to 

write programs that run without modification on a variety of computer systems — a feature Sun 

called “Write Once, Run Anywhere.” Sun introduced a component, called a Java Virtual 

Machine (JVM), which functioned as a new architectural layer that mediates interactions 

between application programs and lower-level hardware and software platforms (I). Through the 

company’s own engineering efforts and agreements with licensees, Sun ensured that JVMs were 

available for all major operating systems, including Microsoft Windows. Java programs could 

also be run inside (or alongside) web browsers and servers, as well as a range of small devices 

including smart cards, phones, and PDAs. Java achieved a high degree of platform independence 

by providing a common set of application programming interfaces (APIs) across these diverse 

environments (II). Although Java was by no means the first attempt at decoupling programs 

from their surrounding hardware and software components, its wide acceptance — accelerated 

by the growth of the commercial Internet in the late 1990s — posed both opportunities and 

threats for the rest of the computer industry. 

 Sun Microsystems was also known for its loosely coupled organizational architecture, 

which featured semiautonomous operating units (“planets”) revolving around a central 

coordinating organization. Consistent with this pattern, Sun established a standalone unit called 

JavaSoft to develop and market its Java technologies and products (III). This arrangement 

buffered JavaSoft from conflicts with Sun’s hardware and software businesses, whose 

enthusiasm for Java’s cross-platform value proposition was tempered by proprietary interest in 

their own product lines. In addition to its product development responsibilities, JavaSoft served 

as the nexus of Sun’s licensing agreements with virtually every major hardware and software 

vendor in the industry, including Microsoft, Netscape, IBM, Oracle, Apple, and Hewlett Packard 
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(IV). Sun used these licenses, along with its ownership of the Java brand, to retain control of the 

Java platform and stave off fragmentation — both accidental (due to incompatibilities introduced 

while porting the JVM to a new operating system) and deliberate (as in the case of Microsoft, 

which added its own APIs that tightly coupled Java applications to Windows while omitting 

some of Sun’s cross-platform interfaces). 

 In contrast to the cross-quadrant tensions IBM experienced with the PC, which arose 

largely from design decisions made within the company, Sun’s challenges with Java stemmed 

from opposing external forces. On one hand, Sun promised as early as 1996 to submit Java to an 

international standards body. This move was intended to assuage fears among Java licensees that 

Sun would in effect become another Microsoft by retaining control over the key interfaces of an 

important new platform (II). But Microsoft itself was determined to “embrace and extend” Java 

by tying its own JVM implementation closely to the Windows platform. Sun argued that its 

contracts with licensees offered a more effective way to protect the integrity of the platform than 

the weak enforcement mechanisms available to standard-setting organizations (IV). To this end, 

Sun sued Microsoft for breach of contract in October 1997. 

 By late 1999, with the Microsoft litigation still pending, Sun had withdrawn both of its 

Java standards submissions (first to ISO, the International Organization for Standardization, then 

to a European organization called ECMA). But ending its formal standardization efforts led to 

increased the pressure from other licensees, notably IBM and HP, to relax control over Java in 

other ways. Sun’s first efforts in this direction, the Java Community Process (JCP) and Sun 

Community Source License (SCSL), were widely viewed as insufficient when they were 

announced in 1998. However, a second version of the JCP introduced in 2000 gave outside 

expert groups more autonomy to influence Java’s evolution, effectively creating new 
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organizational components in the Java ecosystem (III), and Sun gradually moved toward full 

open source licensing, culminating in the release of the core Java platform under the GNU Public 

License in 2006 (IV). 

 Even while it was grappling with issues of platform governance, Sun faced an 

overlapping set of tensions in its efforts to make money from Java. Here again, architectural 

decisions in different quadrants often undermined Sun’s objectives rather than reinforcing them. 

Although Sun experimented with various licensing models for Java (IV), the JVM was always 

free to end users, and corporate license revenues never covered Sun’s development costs. The 

company also made several acquisitions in 1998–99 in an effort to benefit from the growth of 

complementary product categories (III). In particular, Sun acquired a startup company, 

NetDynamics, and formed an alliance with America Online to jointly develop Java-based 

products based on Netscape’s application server software. Also in 1999, Sun consolidated its 

software-related business units under a single software division to help increase their 

profitability. But integrating so many products with overlapping functionality proved to be a 

formidable challenge (I), and Sun was never able to capture market leadership from BEA 

(acquired by Oracle in 2008) and IBM. Thus, despite the fact that Sun’s ability to capture value 

from Java was not undermined by cloning in the same way as the IBM PC, Sun was similarly 

unable to monetize its control of the Java interfaces (II). 

4.3 Nokia: Symbian Inside 

 Our third case illustrates the contrasting challenges of managing a platform across firm 

boundaries. To develop products for a new category of mobile devices, Nokia sponsored the 

creation of Symbian, a new company intended to supply software platforms for leading mobile 

phone vendors. This strategy helped Nokia to lead the product category, but in response to the 
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technical and organizational design choices of its fragmented competitors, Nokia acquired 

Symbian and dramatically liberalized the licensing terms for its technology.  

 In the mid-1990s, a new class of mobile computers emerged, variously called PDAs 

(Palm Computing), handheld computers (Psion PLC), or handheld PCs (Microsoft). Each of the 

companies built a platform and managed an ecosystem similar to those created by earlier 

computer makers. Beginning in 1996, these and other platforms formed the basis for experiments 

marrying a mobile phone and computer, creating a new category of mobile phones that came to 

be known as “smartphones.” To develop a new platform specifically for smartphones, in 1998 

Psion transferred software and staff to a newly created London-based company, Symbian Ltd. 

 Perhaps unique to any commercial computer platform, the operating system and its user 

interface were developed as separate components by separate companies (I). In fact, three 

different Symbian customers each developed their own interface: Nokia (the S60 UI for internal 

use), NTT DoCoMo (MOAP), and UIQ, a Symbian spinoff acquired by Ericsson (later Sony 

Ericsson). Each of these companies provided APIs to third-party software developers, in addition 

to the APIs Symbian provided to interface developers and other makers of complementary 

hardware and software (II). 

 Symbian was co-owned with major mobile phone vendors, who provided both equity 

capital and royalties for using the Symbian OS (III). Symbian OS was licensed on a per-unit 

royalty basis to makers of mobile phones. Fearing knowledge leakage and competition from its 

customers, Symbian originally withheld source code for key components from its owners and 

other licensees, but over time migrated to providing complete source code under trade secret 

restrictions (IV). In 2006, the Symbian OS platform held 67% of the global smartphone market, 

well ahead of second-place Windows Mobile (14%). 
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 By 2007, Nokia had consolidated its mobile phone development onto two platforms: 

S40 for its mass-market phones, and S60 (plus Symbian OS) for its high-end phones. It was the 

world’s top mobile phone maker with a 40% global share. Nokia was both Symbian’s largest 

shareholder (47.9%) and customer, with 53% of all smartphone sales and more than 80% of 

Symbian handsets.  

 However, the company faced unexpected market challenges. On the one hand, its 

vertically integrated rivals — Research in Motion (BlackBerry) and new entrant Apple (iPhone) 

— could more easily coordinate operating system software and handset design under one roof. 

On the other hand, two rival organizations — the LiMo Foundation and the Google-led Open 

Handset Alliance — had recently announced competing Linux-based smartphone platforms 

available to handset makers as royalty-free open source software. 

 In response, in 2008, Nokia announced it was spending €264 million to buy the shares 

of Symbian that it did not own. The majority of Symbian’s 10,000+ employees, the software 

development group, became part of Nokia’s handset R&D group (III) and continued to be the 

main developers of S60 and Symbian OS components (I). In early 2009, Nokia created the 

Symbian Foundation as a nonprofit open source foundation (III), which would combine the APIs 

of Symbian OS and the three UIs into a new integrated set of APIs (II). Nokia, Sony Ericsson 

and DoCoMo assigned all source code rights to the foundation, which promised to release the 

entire platform as royalty-free open source software (IV).5 

                                                      
5  Efforts to convert previously proprietary software platforms to open source normally entailed a delay of several 

years, as developers worked to obtain redistribution rights or developed unrestricted replacements. Examples of 
such delays included OpenSolaris from Sun Microsystems and Eclipse from IBM.  
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 4.4 Analyzing the Architectural Strategies 

 Each of the three platform sponsors made a series of architectural design choices and 

took concrete steps to implement those choices. Previous research has emphasized both the 

choices themselves (e.g., IBM’s decision to use outside suppliers) and their realization through 

subsequent actions (e.g., Sun’s efforts to standardize Java). However, we believe our framework 

provides a new perspective on these architectural strategies, illuminating both obvious and subtle 

interdependencies across the two dimensions of Figure 1: technology vs. organizations, and 

components vs. interfaces. In addition, the comparisons suggest both common themes across 

multiple platform contests and variation particular to individual contests. 

 One kind of interdependency is commonly known as alignment, congruence, or fit. 

Design choices are aligned if their effects are complementary or mutually reinforcing. 

Conversely, they are in tension if they undermine each other or are mutually opposing. A 

common source of tension in all three cases was the need to balance architectural control 

with openness, in order to achieve both widespread adoption and adequate profit. 

 In the case of the original PC, IBM’s design choices were well aligned to benefit the 

company’s rivals, but undermined its own attempts to sustain the profitability of the platform 

(I + III vs. II + IV, as discussed above). By the time IBM reversed course with the PS/2 line, it 

had lost the ability to dictate the design parameters of an “IBM-compatible” PC, causing its new 

proprietary interfaces to further undermine the company’s market position. In the Java case, Sun 

faced a tension between fending off Microsoft’s attempts to “pollute” the technology — which 

required tight architectural control and aggressive contract enforcement (II + IV) — and the 

demands of allied but independently powerful licensees to cede control to a neutral standards 
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body (III + IV). Managing this tension, in turn, undermined Sun’s ability to develop a coherent 

product strategy in a market that the company itself created (I + III). 

 In contrast, Nokia’s strategy with Symbian reflects lessons learned from both Sun and 

IBM. After facing pressure from two kinds of competitors — those more open (with royalty-free 

open source distribution policies) and more integrated (with phones and operating systems 

produced by the same company) — Nokia invested heavily to acquire the Symbian unit and 

integrate it into the company (I + III), while releasing the Symbian source code to competitors 

and complementors alike without royalties or disclosure restrictions (I + IV). While too soon to 

judge the results of this move, it appears likely to give Nokia the benefits of both integrated and 

open approaches, albeit at a high cost. 

 A more subtle type of interdependency relates to the sequence of strategic design 

decisions rather than design outcomes. To identify these patterns, we classified the platform 

design decisions summarized in Table 1 into 16 permutations, corresponding to single (atomic) 

actions in each of the four quadrants, plus 12 ordered pairs of actions across quadrants. Table 2 

provides a stylized description of the pattern corresponding to each permutation of actions. 

 Some of these patterns are well understood, both in theory and practice. For example, 

platform sponsors often publish modular APIs, both to enable the independent provision of 

missing components (II  I) and also to facilitate the division of labor between the sponsor and 

a key supplier or complementor (II  III). Others are hard to generalize, but clear in the context 

of the cases. For example, IBM’s permissive licensing regime made it easy for both rivals and 

complementors to enter the market (IV  III); IBM then tightened its control in the hope of 

reducing competitive pressure, but the industry dynamics proved too strong to reverse. Following 

the same design sequence, Symbian licensed is OS to partners to promote the growth of 
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Symbian-compatible smartphone suppliers; the change to an open source license was intended to 

facilitate further entry and adoption of Symbian OS in preference to competing technologies. 

 A common way that platform vendors seek to grow their ecosystem and influence is 

through formal standardization, as Sun attempted with Java. Most de jure compatibility standards 

are about institutionalizing interfaces through existing standards organizations (II  IV), but in 

some cases a new organization is created to create and control the dissemination of interfaces 

(IV  II). Similar dynamics exist in the open source world, such as when open source 

communities create nonprofit foundations to manage the interfaces between communities and 

firms (O’Mahony 2003; III  IV). 

 In summary, we believe the value of the framework is twofold. First, it provides a 

systematic way for researchers and managers to analyze the interdependent design choices 

among technological and organizational components and interfaces. Second, by enumerating the 

types of relationships that are logically possible, it can suggest patterns to look for which may 

not have been previously identified. 

 

5. Discussion: Organizing for Architectural Strategy 

 In this paper, we combine a review of prior research and three brief cases to suggest two 

major changes to the extant understanding of product and organization design. First, linking to 

the principles of design research, we approach architectural innovation as an intentional set of 

design choices rather than an exogenous change. Second, we integrate four prior perspectives 

across two dimensions of architectural strategy: components vs. interfaces (as focal design 

elements) in the technological vs. organizational domains. Together, these contributions suggest 



#12440 

- 27 - 

new opportunities for theory development, as well as ways for managers to harness architectural 

strategy for platform leadership. 

5.1 Architectural Innovation as a Design Process 

 Complementing Henderson and Clark’s (1990) conception of architectural innovation as 

an exogenous change to which an incumbent firm must respond, we consider such change as an 

endogenous process and focus on the larger set of firms that participate in it. Consistent with 

Simon’s (1969) view of design processes, the outcome is not fully determined by optimizing 

behavior or market forces, but instead reflects the creativity of human designers as well as biases 

introduced by historical path dependence and heuristic search methods. Although these ideas 

have influenced theories of product and organizational architecture, efforts to synthesize across 

the quadrants of our framework have been limited, especially in the organizational domain 

(Galunic and Eisenhardt 2001 is an exception). 

 More broadly, this work is positioned within — and influenced by — the resurgent 

tradition of design thinking in research on organizations (Dunbar and Starbuck 2006). As Yoo 

et al. (2006, p. 227) concluded from their study of building architect Frank Gehry: 

Organization designing challenges the beliefs that managers need to adapt to or 
interpret uncertain environments, which sets constraints for their goal seeking. In 
organization designing, leaders see the environment as a constraint that must be 
accommodated in the design as a set of conditions that must be overcome or 
reinterpreted to enable form giving, and as a set of opportunities that can be taken 
advantage of in putting a remarkable artifact into the world. 

 A key benefit of viewing architectural innovation as an endogenous design process is that 

it provides a way to reconnect with the equally powerful tradition of evolutionary thinking in 

research on innovation (Nelson and Winter 1977), and specifically the notion of design evolution 

driven by agents who “see and seek value” (Baldwin and Clark 2000, p. 93). Architectural design 

decisions are part of a closed-loop feedback system, in which the selection of a design by the 
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market becomes an input into subsequent design decisions. This feedback may be negative for 

some participants, as when a market tips toward a dominant design and induces a shakeout 

among firms that bet on the wrong technology. Equally often in network-based industries (as 

with the adoption of computing platforms), critical design decisions induce positive feedback 

by opening up new parts of a design space for exploration and development. 

5.2 Toward a Socio-technical Theory of Architectural Strategy 

 The framework summarized in Figure 1 offers a way to organize existing research on 

the elements of architectural strategy, and suggests new, unexplored relationships in designing 

system architectures that span the technological and organizational domains. It provides a 

broader perspective on the design of socio-technical systems than previously available to 

researchers focusing on product or organization design separately. 

 Prior studies have considered the four quadrants of the framework individually: 

technological components, technological interfaces, organizational components, and 

organizational interfaces. A considerable body of work has also examined two pairs of linked 

quadrants — the interdependence of product modules and interfaces (e.g., Ulrich 1995, Schilling 

2000) and the hypothesized mirroring of technological and organizational modularity (Ferguson 

and Morris 1993, Sanchez and Mahoney 1996). While the problem of decomposing a system into 

modular components has been well studied in both domains, the framework highlights the 

largely unrealized potential of research on the relationship between technological and 

organizational interfaces. Researchers could consider how digital interface designs impact the 

structure and dynamics of inter-organizational coordination, and vice versa. For example, Dell 

Computer used IT first to support a direct distribution channel, then a build-to-order supply 

chain, and finally direct consumer ordering via an e-commerce system (Kraemer et al., 2000).  
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 The case studies show how these relationships can be explored in a richer and more 

systematic way by considering not only the linkages between technological and organizational 

architecture, but also the interface and component perspectives on each. This approach provides 

a more nuanced view of the alignment — or tension — between design decisions, which 

encompasses existing research on structural mirroring between products and organizations 

(Quadrants I and III), but also linkages between interfaces (II and IV), hierarchical relationships 

within architectures (I and II, III and IV), and diagonal relationships (I and IV, II and III). 

Research involving more detailed study of a larger sample could inform managerial practice on 

the challenges of aligning strategies across quadrants. Similarly, the taxonomy of sequential 

design choices in Table 2 suggests processes by which firms elaborate their architectural 

strategies, but additional research could examine how firms actually do (and should) make such 

sequential decisions. 

 Other opportunities exist to explore these effects in the context of multi-business 

enterprises. Research on synergies obtained through resource reuse in diversified firms has 

discussed product knowledge (e.g., Tanriverdi and Venkatraman 2005) but not design process 

knowledge. The ability to coordinate product architecture with organizational and even industry 

architecture may be an important capability for firms producing digital innovations, but not one 

that has previously been studied. Another potentially valuable capability is that of coordinating 

business-unit level product and service architecture with corporate level acquisitions, spinoffs, 

and licensing decisions. 

5.3 Improving the Effectiveness of Digital Innovation 

 The question of why some firms are more successful at innovation than others has been a 

core concern for both explanatory research and normative efforts to improve practice (Foster 
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1986, Christensen 1997, Liefer et al. 2000). The problem of effective innovation is magnified in 

industries undergoing digital convergence, where rapid change in the enabling technologies 

means that firms often face a narrow window of opportunity between the time an innovation first 

becomes feasible and its inevitable commoditization (Fine 1995). 

 Prior research has shown that a firm’s chances of success will be improved through better 

understanding of markets and technology, better technical design skills, and better product 

implementation. For system products that integrate externally sourced components or depend on 

ecosystems of third-party complements, such as computer platforms, firms also require skills at 

developing and managing these external relationships. Such innovation efforts are becoming 

increasingly dispersed across countries and companies, enabled by digital collaboration 

technologies (Eppinger and Chitkara 2006). 

 By building upon and integrating prior research, this paper offers two new insights into 

improving the effectiveness of innovation around digital platforms. First, it is important to 

recognize the socio-technical nature of system architectures, and to consider the concerns of the 

four architectural perspectives both separately and together. Prior research suggests that this may 

be difficult, particularly for more established firms, because the exiting cognitive frames of 

decision-makers influence both their strategic choices and the success of those choices, in part by 

constraining the search space in which they seek a solution (Prahalad and Bettis 1986, Barr et al. 

1992). For example, the perceptions of Polaroid managers based on 30 years of success in analog 

imaging limited the innovation strategies they considered for digital imaging (Tripsas and 

Gavetti 2000). Similarly, managers who focus on a subset of the design decisions involved in a 

given architectural innovation (e.g., licensing, standards strategy, or product development) may 

be blindsided by tensions between these decisions and others. 
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 Second, cognition is not enough. To lead to more effective innovation, our case examples 

suggest that uniting the architectural perspectives must be accompanied by an architectural 

strategy that spans multiple dimensions in a coordinated way. Even if firms succeed at executing 

the various parts of such a strategy, it may be a daunting challenge to align the interests and 

behavior of the various stakeholders. This applies equally to firms that are fully integrated and 

those that practice open innovation (Gerstner 2002, Maula et al. 2006), and is a particular 

concern for large organizations that produce complex digital systems, such as IBM, Sun, and 

Nokia. Moreover, these challenges are heightened when coordinating among employees with 

diverse professional training, norms, motivations and vocabulary, who both by their background 

and responsibilities may have difficulty finding common ground. For example, if a product 

development group is organizationally distant from the business development group responsible 

for acquisitions, then the make-versus-buy decision for new product components may be slowed 

and possibly biased by high coordination costs. In some instances, the best way to overcome 

these costs may be through spinoff companies, as in the case of Xerox PARC (Chesbrough and 

Rosenbloom 2002). 

5.4 Future Research 

 Naturally, such challenges are specific to the technological, organizational and industry 

context in which they arise, which increases the importance of moving past single cases to 

study larger, more generalizable samples. While studying complex interdependencies among 

technology and organizations is a difficult task, digital representations of both software 

architectures and organizational relationships are becoming increasingly available and subject 

to empirical analysis (e.g., MacCormack et al. 2006). 

 Possible topics for more extensive studies include: 
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• The prevalence of different mechanisms in each of the four quadrants, such as the use of 

licensing vs. other kinds of contracts as an example of inter-organizational interfaces. 

• The extent to which firms in platform contests have stronger technological or 

organizational linkages between components (I + III) or interfaces (II + IV). 

• For strongly correlated linkages, identifying the most common temporal sequence or 

direction of causality (e.g., II  IV vs. IV  II). 

• Whether certain architectural strategy combinations (II + IV) or sequences (II  IV) 

help predict the success or failure of a firm’s platform strategy. 

We recognize that in order for studies like these to be done, additional research may be necessary 

to define and operationalize the constructs presented in this paper. We intend to further develop 

the framework to facilitate these efforts. 
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Table 1: Technological and organizational design decisions by IBM, Sun, and Nokia 
 

 Technological Organizational 

 
Components 
(Quadrant I) 

Interfaces 
(Quadrant II) 

Components 
(Quadrant III) 

Interfaces 
(Quadrant IV) 

IBM PC 
(1981) 

Mostly off the shelf, except DOS 
(sourced from Microsoft under 
contract) and BIOS (partly in-
house) 

Public – published in IBM PC 
Technical Reference Manual 
(including BIOS source code) 

Designed, assembled by new 
business unit in Boca Raton; 
most parts from ext. suppliers, 
most sales through retail outlets 

Intensive technical coordination 
with Microsoft; otherwise 
mostly arm’s-length contracts 
awarded by competitive bidding  

IBM PS/2 
(1987) 

Key innovations designed by 
IBM: Micro Channel bus, OS/2, 
Token Ring 

De facto standards derived from 
IBM PC; proprietary interfaces 
for new technologies 

Boca Raton unit now a full 
corporate division w/ substantial 
R&D; many parts still externally 
sourced 

External coordination still 
mainly through sourcing 
contracts, except joint OS/2 
work with Microsoft 

Sun 
JavaSoft 
(1997–1999) 

Sun’s JVM designed to serve 
as a web browser component; 
Netscape supports fully while 
Microsoft integrates tightly with 
Windows and Internet Explorer, 
breaking compatibility 

Sun marketing campaign urges 
“100% Pure Java” applications; 
cross-platform incompatibilities 
undermine promise of “Write 
Once, Run Anywhere”  

Sun forms separate JavaSoft 
division, builds alliances with 
heavyweight partners (including 
IBM, Netscape, Oracle, Apple, 
HP, Novell) 

Relationships with key licensees 
formalized in detailed contracts; 
Sun maintains exclusive control 
of platform evolution; no formal 
mechanism to mediate conflicts 
among Sun and licensees 

Sun 
Software & 
Platforms Div. 
(1999–2002) 

Java largely irrelevant in 
browsers but gains traction for 
server-side web applications and 
in mobile devices; Microsoft 
.NET emerges as a rival 
platform 

Sun settles Microsoft lawsuit, 
abandons efforts at formal 
standardization; MS abandons 
Java in favor of its own C# 
language, .NET platform 

Sun moves toward an integrated 
software organization, develops 
Java-based enterprise software 
under iPlanet brand acquired 
from Netscape/AOL 

Java Community Process (JCP) 
governs platform evolution using 
expert groups w/ outside leads; 
Sun moves toward open source 
model with SCSL license 

Symbian Ltd. 
(2007) 

Operating system developed by 
Symbian, other elements by 
Nokia 

Public APIs provided by 
Symbian to many handset 
makers; S60 APIs provided by 
Nokia; other APIs provided by 
Ericsson and DoCoMo 

Symbian created to develop new 
operating system; Nokia has S60 
and handset groups 

Symbian OS and S60 licensed to 
third parties on per-unit royalty 
basis 

Symbian 
Foundation 
(2009) 

Nokia develops all components Symbian and S60 interfaces 
combined 

Nokia buys Symbian, combines 
Symbian and Nokia engineering 
teams; Nokia creates Symbian 
Foundation 

Symbian OS being released as 
open source 
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Table 2: Sequences of strategic architectural decisions (classified by quadrant) 
 

 Subsequent design choice 

I. Tech. Components II. Tech. Interfaces III. Org. Components IV. Org. Interfaces 

In
iti

al
 d

es
ig

n 
ch

oi
ce

 

I. Technological 
Components Create components Creating APIs to encourage 

use of existing modules 
Creating new division to 
produce a module 

Create new licensing terms 
for own module 

II. 
Technological 

Interfaces 

APIs enable production of 
new modules Create, disseminate APIs Complementors use APIs to 

make complements 

Institutionalizing APIs, 
e.g., through formal 
standardization 

III. 
Organizational 

Components 

Acquire (or spin off) 
the organization that 
creates a module 

Outsiders help (or hinder) 
spread of APIs 

Internal reorganization; 
acquisitions and spinoffs 

Internal reorganization 
helps (or hinders) 
coordination with 
third parties 

IV. 
Organizational 

Interfaces 

Licensing enables 3rd party 
module production 

Create a new organization 
to control the creation and 
evolution of APIs 

Licensing rules help or 
hinder entry 

Licensing of APIs and/or 
implementations; joint 
development with suppliers 
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