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Facilitating Image Search With a Scalable and
Compact Semantic Mapping

Meng Wang, Member, IEEE, Weisheng Li, Dong Liu, Bingbing Ni, Jialie Shen,
and Shuicheng Yan, Senior Member, IEEE

Abstract—This paper introduces a novel approach to facili-
tating image search based on a compact semantic embedding.
A novel method is developed to explicitly map concepts and
image contents into a unified latent semantic space for the
representation of semantic concept prototypes. Then, a linear
embedding matrix is learned that maps images into the seman-
tic space, such that each image is closer to its relevant concept
prototype than other prototypes. In our approach, the semantic
concepts equated with query keywords and the images mapped
into the vicinity of the prototype are retrieved by our scheme.
In addition, a computationally efficient method is introduced to
incorporate new semantic concept prototypes into the semantic
space by updating the embedding matrix. This novelty improves
the scalability of the method and allows it to be applied to
dynamic image repositories. Therefore, the proposed approach
not only narrows semantic gap but also supports an efficient
image search process. We have carried out extensive experi-
ments on various cross-modality image search tasks over three
widely-used benchmark image datasets. Results demonstrate the
superior effectiveness, efficiency, and scalability of our proposed
approach.

Index Terms—Compact semantic mapping (CSM), image
search, semantic gap.

Manuscript received December 24, 2013; revised June 30, 2014,
August 21, 2014, and August 27, 2014; accepted August 30, 2014. This
work was supported in part by the National 973 Program of China
under Grant 2014CB347600 and Grant 2013CB329604, in part by the
National Nature Science Foundation of China under Grant 61272393 and
Grant 61322201, in part by the Fundamental Research Funds for the Central
Universities of China under Grant 2013HGCXO0001, in part by the Doctoral
Fund of Ministry of Education of China under Grant 20130111110010,
in part by the Program for New Century Excellent Talents (NCET) in
University under Grant NCET-12-0836, in part by the research grant for
the Human Sixth Sense Programme at the Advanced Digital Sciences
Center from Singapore’s Agency for Science, Technology, and Research,
and in part by the Open Project Program of the National Laboratory
of Pattern Recognition. This paper was recommended by Associate
Editor X. He.

M. Wang is with the School of Computer Science and Information
Engineering, Hefei University of Technology, Hefei 230009, China (e-mail:
eric.mengwang @ gmail.com).

W. Li is with the Chongqing University of Posts and Telecommunications,
Chongqing 400065, China (e-mail: liws@cqupt.edu.cn).

D. Liu is with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: dongliu@ee.columbia.edu).

B. Ni is with Advanced Digital Sciences Center, Singapore (e-mail:
bingbing.ni@adsc.com.sg).

J. Shen is with Singapore Management University, Singapore (e-mail:
jlshen@smu.edu.sg).

S. Yan is with the National University of Singapore, Singapore (e-mail:
eleyans @nus.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2014.2356136

I. INTRODUCTION

T the beginning of the 21st century, the world wide
web has brought about a fundamental change in
the way how people access and consume media informa-
tion [10], [30], [51]. The techniques to facilitate image search
are receiving more and more attentions from different research
communities, e.g., information retrieval and multimedia data
management. In general, the existing approaches for image
search can be roughly categorized into two widely recognized
yet independent classes [10], [SO], namely, text-based image
retrieval (TBIR) and content-based image retrieval (CBIR).
Since none of these two paradigms can fully satisfy all user
requirements for online image search, some recent research
efforts have been made to combine the advantages from both
TBIR and CBIR into a single search framework [5], [16], [21].
But a major obstacle is how to combine the features extracted
from different modalities to support accurate and computation-
ally efficient image search. Motivated by this fact, we develop
a novel cross-modality search scheme that aims to minimize
the semantic gap between high-level concepts and low-level
visual features. Fig. 1 illustrates the flowchart of the online
retrieval procedure facilitated by our proposed method. The
scheme possesses good scalability in handling dynamic online
image databases. To achieve this goal, we develop a method
to explicitly map keyword terms and images into a compact
latent semantic space with “semantically meaningful” distance
metric. In particular, it places semantic concepts into the space
in the form of concept prototypes. Then, a linear embed-
ding matrix is learned to map low-level visual features into
the semantic space. With the proposed approach, textual key-
words can still be applied as query terms, and the mapped
images around a related concept prototype can be viewed
as the retrieved results of the query term. Consequently, the
images are ranked according to their distances to the concept
prototype. Since the images of a certain semantic category are
enforced to compactly locate around the corresponding con-
cept prototype in the semantic space, it essentially reduces
the semantic gap between low-level features and high-level
concepts. Moreover, our method possesses superior scalabil-
ity in dealing with new semantic concepts via updating the
embedding matrix without model reconstruction. The major
technical contributions of this paper can be summarized as

follows.
1) A novel cross-modality image search scheme is pro-

posed that explicitly reduces the semantic gap between
semantic concepts and low-level features extracted from

2168-2267 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Flowchart of online search procedure in the proposed image search scheme. For a given keyword, if the corresponding concept prototype has been

established in the semantic space, the images indexed by the concept can be directly returned. Otherwise, an online updating procedure is triggered out to

augment the semantic space with the newly arrived concept and images.

images. The approach also possesses superior scalabil-
ity and can well handle dynamically increasing image
repository.

A semantic embedding method called compact semantic
embedding is proposed to project concept prototypes and
visual features into a compact semantic space.

To deal with dynamically increasing semantic concepts,
an online updating algorithm is proposed to refine the
semantic space. The new semantic concepts and the cor-
responding images can be effectively retrieved in an
incremental manner.

The remainder of this paper is organized as follows.
Section II introduces some related works. Section III presents
the proposed keyword query-based yet content aware image
search paradigm. It also provides a detailed introduction
about an online updating procedure for efficiently handling
dynamic changes. Section IV presents the experiments over
three benchmark image datasets. Finally, Section V concludes
this paper.

2)

3)

II. RELATED WORK

The first research attempts to develop an image search sys-
tem were made over 30 years ago. Since then, the related
research problems have been a fundamental subject in areas
such as computer vision, multimedia computing, and infor-
mation retrieval. In each of these areas, plentiful literature has
been published. In this section, we will focus only on the anal-
ysis of the technical developments that are most relevant to the
study.

The most popular way to implement image search
systems is based on unimodal approach, where query
and retrieved documents are described using the same
modality [1], [6], [26], [39], [42], [54]. One of the most typ-
ical examples is TBIR, which heavily relies on textual
information to describe and annotate visual content of

images [15], [33], [36], [40], [46]. But a major obstacle is
the lack of the annotation of large-scale image collections.
The most naive approach is to manually assign text labels
to each image in database. However, since manual labeling
requires a huge amount of time and domain expertise, it
greatly restricts the feasibility of the approach in many real
applications. Consequently, intelligent algorithm design for
automatic image annotation has been extensively studied in
last decades [3], [11], [13], [15], [20], [25], [41], [45], [48].
Many different algorithms and systems have been developed.

There exist a wide variety of features to describe an
image (e.g., color, texture, shape, and spatial layout). Utilizing
a single kind of features may not be able to represent
an image comprehensively. Thus, the effective combination
of various features to achieve optimal search performance
becomes a very important research issue. Inspired by this
observation, a multimodal paradigm for search has been devel-
oped and demonstrated promising performance in a series of
domain applications [2], [21], [22], [38], [47], [55]. But for
images in real world, different modalities do not appear in
isolation. Instead, they demonstrate strong correlation and
naturally interact with each other at different levels (from low-
level visual features to high-level semantics). For example,
there exists certain underlying association between textual
and visual modalities. Through exploring and analyzing their
association, certain patterns could be identified and applied
for improving search accuracy. Based on this principle, the
canonical correlation analysis (CCA) technique [14] has been
applied to cross-modality image search. One typical exam-
ple is the study presented in [35]. Rasiwasia et al. [35]
investigated two important research questions: 1) whether
modeling correlations effectively between textual components
and visual content components can boost overall search per-
formance and 2) whether the modeling can be more effective
in feature spaces with semantic abstract. The empirical results
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show that the search systems accounting for cross-modality
correlations and high-level abstraction demonstrate a promis-
ing performance. Although this method realizes the goal of
querying image content through textual keywords, the learned
statistical model only catches the latent relationship between
text and visual components. The semantic gap between image
content and semantic concepts remains unsolved.

III. OUR APPROACH

This section presents details of the proposed image search
scheme. We first give a brief overview of the scheme
in Section III-A. Then, we introduce the key technical
component, namely the compact semantic embedding, in
Section III-B. The algorithm for learning semantic embed-
ding under dynamic environment is presented and discussed
in Section III-C.

A. Overview of the Approach

As illustrated in Fig. 1, the proposed scheme consists of two
functional modules. In the first module, given a collection of
training images with a fixed number of semantic concepts, we
aim to create a unified semantic space J, where each semantic
concept « is represented as a topic prototype p, € F and each
image x; € X is represented by z; € F.

Definition 1: A topic prototype p, denotes the point which
represents the semantic concept o in the latent semantic
space F.

As shown in Fig. 2(a), the purpose of learning a unified
semantic space is to create a common representation of both
images and semantic concepts, in which distance is able to indi-
cate image concept membership. To facilitate this process, we
derive semantic concept prototypes by exploring the semantic
distance among the concepts. Based on the suitable prototype
embedding of the semantic concepts, we further find an appro-
priate mapping W: X — F, which maps each image of one
semantic concept as close as possible to its corresponding con-
cept prototype. In this way, images of the same category are
enforced to be located in a compact region around the concept
prototype in the semantic space . This naturally leads to a
cross-modality image search paradigm. Each of the concept
keywords can still be used as query keyword, which inherits
the simplicity of TBIR. Meanwhile, the embedded images can
be represented by multidimensional vectors in the new fea-
ture space. For those images around a concept prototype, they
can be regarded as indexed by the concept. In search process,
these images can be ranked according to their distances to the
concept prototype in the embedded semantic space.

As shown in Fig. 2(b), our proposed scheme can scale well
when images and semantic concepts are dynamically changed.
When a new semantic concept appears, instead of rebuilding
the semantic space which is computational intensive, we
only incorporate the appropriate concept prototype for the
new concept and then update the mapping matrix W in an
incremental way.

B. Compact Semantic Mapping

In our image search scheme, input training images are
assumed to be represented by a set of high-dimensional feature

vectors: {X1, X2, ..., X,} € X of dimension d. All the semantic
concepts corresponding to the training images can be denoted

by y1,y2,...,yn € {l,...,c}, where ¢ is the number of
semantic concepts. In addition, the image indices are denoted
by i,j € {1,2,...,n} and the concept indices are denoted
by «, 8 € {1,2, ..., c}. The semantic interactions among the

semantic concepts can be represented by a semantic distance
matrix D € R*¢, where Dy g > 0 estimates the seman-
tic distance between concepts o and S. There are several
existing approaches for estimating the distance between two
textual keywords, such as Google distance [8] and WordNet
distance [31]. Here, we adopt a Flickr distance method. It
estimates Dy g as

Doj = max (logf(a), log f(B)) — logf (e, B) 0
’ log G — min (logf (), logf(f))

where f(«) and f(B) are the numbers of images containing
concepts o and B, respectively, f(«, B) is the number of images
containing both « and B, and G is the total number of images.
All these numbers are obtained from Flickr website. It actually
has the same formulation with Google distance [8] and the only
difference is that the numbers f(«), f(B), f(«, B), and G are
obtained from Flickr instead of Google. This is because Flickr
is a dedicated image sharing website and thus it is expected
to help to estimate a better distance between image concepts.
This method has also been employed in [28], [29], and [49].
In Section IV-E, we will compare this method with Google
distance and WordNet distance with an experiment.

As summarized in Algorithm 1, the whole learning proce-
dure consists of three major steps.

1) Concept Prototype Embedding: In the first step of our
proposed compact semantic embedding process, the feature
vectors belonging to individual semantic concepts are pro-
jected into an Euclidean vector space. In this paper, we derive
the semantic concept prototypes p;, Ps,...,P, € R° based
on the semantic distance matrix D. It is worth noting that
the dimension of the semantic space is set to c, i.e., the
total number of semantic concepts residing in images. Such a
straightforward setting prevents the MDS algorithm from com-
plex parameter exploration and achieves good performance in
our experimental results (see Section IV). To further simplify
the notation, we group the columns together to generate a
matrix P = [p;, py, ..., P.] € R whose columns consist
of all ¢ concept prototypes.

In this paper, we enforce the prototypes of similar semantic
concepts to be close to each other than the other dissimilar
concept prototypes. Here, the semantic distance matrix D is
used as an estimation of semantic dissimilarity between the
concepts. For any two given semantic concepts « and f,
we aim to place the corresponding concept prototypes into
the lower dimensional space such that the Euclidean distance
P —Pg ||% is as close to Dyp as possible. Mathematically, we
can formulate the given task as

.

. . 2 2\?

P= arg min ﬂg 1 <||Pa —pgll3 — (Dup) ) (2)
o,p=

where P denotes the optima of the objective function. By
enforcing the two terms to be close to each other, the
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Fig. 2. Schematic layouts of the two functional modules in our approach. (a) At the first stage, we use the given collection of training images with a fixed
number of semantic concepts to create a compact latent semantic space, where each concept is represented as a concept prototype and a mapping matrix
is learned to map the images around the correct prototypes. (b) When there is a new semantic concept, it will be incorporated into the semantic space by
inserting the corresponding concept prototype. Meanwhile, the mapping matrix is updated accordingly.

Algorithm 1 Image Search via Compact Semantic Embedding

1: Semantic Distance Matrix Learning: Given a set of

semantic concepts with training images, learn the semantic
distance matrix D by

max (logf(e), logf(B)) — log /(. B)

log G — min ( logf (), logf(,B))
where Dy g denotes the semantic distance between con-
cepts « and B.

2: Concept Prototype Embedding: Derive the semantic
concept prototypes P by

Dy g =

c
P=argmin 3 (I, = pyll3 — Dap)>)*.
o,B=1

3: Image Content Mapping: Learn the mapping matrix W
from P and the labeled training images X by

W =argmin y " Ip,, — Wxil3 + [ WI.
i

4: Indexing: Map all unlabeled images in the database with
W. The mapped images and the concept prototypes form
an inverted file structure, where the images indexed by a
semantic concept are ranked with the compact semantic
distances.

5: Online Search: At the stage of online query, for any given
query keyword, the images around the corresponding
concept prototype are directly returned.

obtained concept prototypes P actually inherit the semantic
relationships of the individual semantic concepts.

Since the distance matrix D quantifies the semantic
divergence between the pairwise semantic concepts, we
can solve (2) with the multidimensional scaling (MDS)
algorithm [52]. To be detailed, denote D=-1 /2HDH, where
the centering matrix is defined as H =1 — 1/c11". Then, we
perform eigenvector decomposition as D = VAV . Finally,
the solution can be obtained by

P=+VAV 3)

where A is the eigenvalue diagonal matrix and V is the cor-
responding eignevector matrix. In the followings, we refer to
the individual vectors residing in matrix P as the semantic
concept prototypes. A

Note that the learned semantic concept prototypes matrix P
is actually independent of the image content {x;},i=1,...,n.
In the next section, we will further introduce an image embed-
ding algorithm that maps the images into the obtained semantic
space. In real applications, this procedure can be typically
processed in an off-line manner which results in a set of
prototypes corresponding to all the semantic concepts.

2) Image Content Mapping: Assume that a reliable embed-
ding matrix P of the semantic concept prototypes is ready, we
now aim to find an appropriate mapping matrix W: X — F,
which can map each input training image x; with label y;
as close as possible to its relevant concept prototype p,,. To
achieve this target, a linear mapping z; = Wx; can be found
via the following mathematical formula:

A . ~ 2
W =argmin 3 [y, — Wxil, + 1 I Wiz @
1

where W denotes the optima of the objective function, and A is
the weight of the regularization of W which prevents potential
overfitting. Although we only use a linear matrix W as the
mapping matrix which is a common practice in cross-modality
learning, we can also explore kernelization or other methods to
seek for nonlinear mapping. Actually, the minimization in (4)
is an instance of linear ridge regression, enforcing the images
from a certain semantic category to locate compactly around
the corresponding concept prototype. The above formulation
has a closed-form solution as follows:
-1

n n
W=D px | (D xx] +aI 5)
i=1 i=1
A~ —1
= PJxT (xxT + u) ©)

where X = [x1,...,X,] and J € {0, 1}*", with J,; = 1 if
and only if y; = «.
3) Indexing and Search Process: After the training pro-

cess, the learned embedding matrix W can be applied to index
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unlabeled images in the repository. More specifically, given an
unlabeled image x;, we first map it into the latent semantic
space JF and estimate its indexing keyword as the semantic
concept with the closest prototype p, as

.2
@ = argmin Hpa — Wx,
a 2

)

This implies that the new image X, is indexed by the
semantic concept &.

After embedding all the unlabeled images in repository into
the semantic space JF, we actually generate an inverted file
structure whose indexing terms are the individual semantic
concepts, and the images indexed by the semantic concept
are ranked with their latent semantic distances to the con-
cept prototype. At the online search stage, for a given query
keyword, we can directly return the images around the corre-
sponding concept prototype in the latent semantic space. In
this way, we naturally obtain a keyword-based yet content
aware cross-modality image search paradigm.

C. Online Updating

In real-world applications, online image repositories can
change dynamically and images belonging to new semantic
concepts can emerge very frequently. In this case, the leant
semantic mapping matrix W may not be able to handle new
semantic concepts effectively and thus degrade performance.
The desirable solution for this problem is to incorporate these
new concepts with the corresponding appropriate semantic
concept prototypes. Then, the image mapping matrix W also
needs to be updated after the new semantic prototype terms
are added into the latent semantic space. To achieve this target,
we develop an online updating scheme that can: 1) generate
the concept prototypes for the newly arrived semantic concepts
and 2) adjust the image mapping matrix W which incremen-
tally handles the new concepts and the corresponding new
training images appropriately. The whole procedure for the
online updating can be illustrated as in Algorithm 2.

1) Inserting New Semantic Concept Prototypes: To achieve
a more scalable image search scheme, we develop a set
of novel methods to handle new semantic concept proto-
type insertion efficiently. When a new semantic concept oy 41
arrives, our system can incorporate the corresponding concept
prototypes py. into the latent semantic space F such that
the newly generated concept prototype inherits the semantic
distance between the pairwise semantic concepts. Intuitively,
a natural solution to this task is to reimplement the concept
prototype embedding procedure, in which the N + 1 semantic
concepts are considered together to learn the concept proto-
types in a distance preserving manner. However, this approach
is obviously infeasible since the learning procedure will lead
to an extremely heavy computational cost, especially when
the number of semantic concepts is huge under the Internet
environment. Therefore, instead of reconstructing all seman-
tic concept prototypes simultaneously, we fix the previously
learned concept prototypes and only incorporate the new proto-
type py.1. To achieve this target, the concept prototype py.
is learned in the semantic space F such that the embedding
distances between py_; and the other N prototypes maintain

Algorithm 2 Online Updating
1: Given: An initial semantic space containing N sematic
concepts Py = {Py, ..., Py}, an image mapping matrix
WN, and a newly arrived semantic concept oy with a
set of relevant images {x;}, i=1,...,q
2: Incorporating new semantic concept py,; into Py:
Derive the (N + 1)th concept prototype Py, by

N
By = argmin 3 (p = B3 = On41.0%)?
i=1
and directly incorporate it into the semantic space as
Pyi1 =Py Ubyir- A
3: Updating the mapping matrix Wy: Incrementally update
WN by

q q
Wy =B+ pxHQ+ > xx;)".

i=1 i=1

4: Image mapping: Map all newly arrived images with
WN+1. Also, map the previous unlabeled images which
have the same hashing binary codes with the newly arrived
images with Wy 1.

the semantic distances between the corresponding semantic
concepts in the original semantic space. Mathematically, this
task can be formulated as an optimization problem as follows:

N
2
Pyi1 = argf‘}.?nz (”P — D ”i - (DN+1’i)2> ®)
i=1

where p;,i = 1,2,...,N denote the concept prototypes
learned previously, and Dy, ; denotes the semantic distance
between the (N + 1)th semantic concept and the ith semantic
concept.

The objective function is a fourth-order function, and gener-
ally there does not exist a closed-form solution. In this paper,
the conjugate gradient is applied to derive the minimization of
the objective function in (8). Denote by f the objective function
in (8), i.e.. f = Y0 (Ip—p;lI3 — Dn+1,))%. Differentiating
the objective function f with respect to p yields a gradient rule

5o (Blo-or omrm)) So-s)
©)

Based on the above gradient, the iterative gradient descent
is applied to derive the optimal solution of (8). Denote by !/
the index of iterations, the iterative gradient procedure updates
the current solution pfv 4 to pg\ﬂ | by the following rule:

af
+1 _
Py+1 = Pyl — ’0%|P=P5v+1

=

(10)

where p is the learning rate and we set it to 0.1 throughout
the experiments in this paper.

After the optimization of the above procedure, we actually
obtain a new semantic concept prototype py,; without updat-
ing the semantic concept prototypes learned previously. Once a
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new concept appears, a lightweight learning procedure is trig-
gered out, which incrementally updates the semantic concept
prototypes efficiently.

We can also consider changing the dimension of latent
semantic subspace, but it will need to reimplement the whole
MDS and image mapping process, even for those concepts that
are already in database. One approach only adds some new
dimensions for concept prototypes, such as increasing the
dimension of concept prototype from c to c+r and keeping the
original ¢ dimensions unchanged. But how to efficiently learn
the r new dimensions is a problem and it is beyond the scope
of this paper. Therefore, in this paper we keep the dimension
of latent semantic subspace unchanged.

2) Updating Image Mapping Matrix W: Even after the
insertion of new semantic concept prototypes, a mechanism is
needed for updating the image embedding matrix W such that
the newly inserted semantic concepts and the corresponding
images can have the compact property in the latent semantic
space F.

In contrast to the offline embedding matrix learning proce-
dure introduced above, the online updating procedure assumes
that the semantic concepts and the corresponding training
images are received sequentially. That is, we assume that
we have constructed a semantic space containing N seman-
tic concepts, and there already exists an embedding projection
matrix WN. Meanwhile, we also assume that a new con-
cept cy+1 and its corresponding training images, denoted as
X1 = {x’l, R x;]}, are received, where ¢ denotes the num-
ber of images in Ay4i. In this setting, we aim to update the

image embedding matrix from Wy to WN+ 1.

To derive the updated embedding matrix Wy, after new
semantic concept cy1 and the corresponding training images
Xn4+1 arrive, we proceed by exactly solving for the updated
embedding projection matrix Wy based on the property
in the closed-form solution of the embedding matrix W.
More specifically, from (5), we can observe that the closed-
form solution of the embedding matrix W can be expressed
as (X1, pyx )1 xix; + AD™! where the two summa-
tion terms involved are performed on the training images
{x1,...,x,} witnessed until now. Actually, it potentially pro-
vides an efficient solution for us to derive the incremental
solution. More specifically, if we keep the two matrices
B=3", f)y[.xiT and Q = Y, x;x;, each of which corre-
sponds to the summation of all the training samples witnessed
until now, then the updating procedure can be calculated
as follows:

q q -1
Wy = (B + Zf)NHx;T) (Q + ZXQXQT) (11)
i=1

i=1

which indicates that, after each updating procedure, we only
need to store the matrices B and Q. When a new concept
and its corresponding training images are available, we only
need to add the additional training samples into B and Q
and perform a matrix inversion calculation, of which the
computational cost only relies on the dimension of image fea-
tures. Typically, the dimension of image feature will be in a

IEEE TRANSACTIONS ON CYBERNETICS

considerate scale, and thus the computation can be performed
efficiently.

Based on VAVNH, we need to remap the previous unlabeled
images along with the newly arrived images of concept cy4+1
into F such that the compact semantic embedding property can
be well maintained. However, directly mapping all the images
with Wy is infeasible since it takes linear time with respect
to the number of images. Instead, we resort to locality semantic
hashing (LSH) to perform a fast remapping. Specifically, sup-
pose we have produced a hashing table for all the previous
unlabeled images {xi,...,X,} in the semantic space F. The
length of binary codes is fixed to be 64 for LSH. When we
get the new Wy, for each new image x:-, we map it into
64 binary codes with the LSH hashing vectors. Finally, only
the previous unlabeled images that have the same binary codes
are considered as the most similar images with respect to X;-.
Comparing with other images, these images have closer rela-
tionships with the newly arrived semantic concept. Therefore,
we simply only remap these images into J, which dynami-
cally updates the image distributions in F. This strategy thus
significantly reduces computational cost.

D. Scalability Analysis

As shown above, our online updating scheme is able to scale
well for dynamic online image repositories. The whole system
does not need to be rebuilt after data objects from new seman-
tic classes are inserted. It can save overall maintenance cost,
especially for large-scale and dynamic data. The key idea can
be summarized as follows.

1) When a new semantic concept arrives, we only need
to learn its corresponding concept prototype while sim-
ply keeping the previous concept prototypes unchanged.
The learning procedure is based on an iterative gradi-
ent descent, which is a quite fast process. For exam-
ple, in our experiment on the NUS-WIDE dataset
(see Section IV-C), the learning of the 41st concept
prototype based on the existing 40 concept prototypes
takes only 0.35 s on the MATLAB platform of an Intel
XeonX5450 workstation with 3.0 GHz CPU and 16 GB
memory. On the other hand, simultaneously learning all
the 41 concept prototypes with the optimization strat-
egy in (2) takes 2.58 s. Therefore, our method is very
efficient in terms of computational cost.

2) For newly arrived images, we only need to map them
with the updated W matrix, which takes linear time with
respect to the number of new images. For previous unla-
beled images, the LSH-based method only selects those
that have the same binary codes with the newly arrived
images. In this paper, the updating takes only 0.0032 s in
average for each new image, which achieves thousands
times speedup.

E. Discussion

Up to now, we have introduced the semantic embedding
approach and how to search images with the embedded
concepts. We can also use the semantic space to facilitate
image search with free text queries. Actually, query-to-concept
mapping is already a widely investigated topic in multimedia
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research field [23], [32], [37], [43]. There are many different
methods available. For example, for each existing concept, we
can find its textual explanation from a dictionary. Then, we
can calculate the similarity of a free text query and the textual
explanation. In this way, we can map the query to the weighted
combination of several existing concepts. Then, based on the
semantic space, we can easily rank images for the given query.
In Section IV-D, we will provide several experimental results
with queries that contain multiple concepts.

IV. EXPERIMENTS

In this section, we systematically evaluate the effectiveness
of our proposed solution, referred to as compact semantic
mapping (CSM), by conducting experiments over three widely
used datasets, namely, Caltech-101 [24], NUS-WIDE [7], and
MIRFlickr dataset [19]. More specifically, the following three
sub-tasks are exploited for performance evaluation.

1) Cross-modality image search via CSM. In this sub-task,
we map semantic concepts and images into a unified
latent semantic space, and then we use textual queries
to perform cross-modality image search.

2) Online updating via incremental learning. The main pur-
pose of this sub-task is to validate the effectiveness
of the proposed online learning procedure in updating
latent semantic space in order to handle new semantic
concepts.

3) Image search with multiple query terms. Notably,
multiple-query-term image search paradigm tries to find
images that simultaneously contain multiple semantic
concepts, which is a nontrivial but rarely investigated
task. Since our proposed approach attacks image search
simply based on the distances between semantic con-
cepts and image contents, it provides a natural way to
accomplish the task as the images residing closely to the
multiple query terms can be deemed as search results.
Given the fact that multiple-query-term image search is
challenging for image search engines, the performance
on this sub-task can well validate the generalization
capability of the cross-modality image search approach.

For the purpose of performance comparison, the following
four baseline image retrieval methods are implemented and
their details can be found as follows.

1) Content-Based Image Retrieval (CBIR): This inputs a
query image and searches over the entire image database
based on low-level visual features.

2) Semantic-Based Image Retrieval (SBIR): For each
semantic category, a set of positive and negative images
are selected to train a support vector machine (SVM) [9]
classifier with radius basis function kernel. Then, all the
left images in the database can be ranked according to
the prediction scores from the SVM classifier on the
individual images. The 1ibSVM toolkit [4] is utilized
to implement the classification, and the parameters are
tuned by a 10-fold cross-validation process.

3) CCA-Based Cross-Modality Image Search [14]: This is
actually the most popular method for cross-modality
image search. Given the image space R and the
semantic concept space R!, CCA learns two mapping

matrices Wy, and Wr,, along which the two kinds
of modality are maximally correlated. This results in
a unified r-dimensional representation of both modal-
ities in a common subspace for cross-modality search,
and the images are ranked according to their distances to
the semantic concepts in the common space. Regarding
the parameter settings for this method, we tune the
transformation dimensionality r to its best value in our
experiments.

4) Compact Embedding With Random Matrix (CERM): To
verify the importance of the semantic correlation, we
generate the initial semantic matrix D with random sim-
ilarities and then perform cross-modality search based
on our proposed approach.

To quantitatively measure the algorithmic performance, we

utilize the following three criteria.

1) Mean Precision @ n: The proportion of relevant images
in the top n ranked images. We calculate precision@n for
different queries and further calculate their mean value
as the final evaluation metric.

2) Mean Recall @ n: The proportion of successfully
retrieved relevant images when n results are returned. We
calculate the average value over all queries and report
the obtained average value.

3) Mean Average Precision (MAP) @ n: AP measures the
ranking quality of a whole list. Since it is an approxi-
mation of the area under a precision-recall curve, AP is
commonly considered as a good combination of preci-
sion and recall [17]. Given a ranked list containing n
images, the AP value is calculated as

1 < R
R0
i=1

where R is the number of relevant images in the list,
R; the number of relevant images in the top i ranked
ones, and §; = 1 if the ith image is relevant and
0 otherwise. To evaluate the overall performance, we
report MAP, the mean value of the AP values over all
queries.

(12)

A. Image Datasets

In our experiments, three publicly available benchmark
image datasets, Caltech-101, NUS-WIDE, and MIRFlickr, are
used to evaluate the performance of different methods. It is
worth noting that all these datasets are collected from Internet,
e.g., from Google and Flickr, and thus they precisely reflect
the properties of the real-world web images.

Caltech-101 Dataset [12]: This dataset has been frequently
used in image search tasks [18], [44]. It contains around
10000 images from 101 object categories and 1 background
category. Here, we directly use the 101 semantic concepts
(categories) as the textual query keywords to perform image
search.

NUS-WIDE Dataset [7]: This dataset is a more challenging
collection of real-world social images from Flickr. It contains
269 648 images from 81 semantic categories, with a total num-
ber of 5018 unique tags, and the average number of tags for
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each image is 2. It is worth noting that there are some sub-
ordinate tags (such as “water” and “lake”) and abstract tags
(such as “military” and “earthquake”) contained in this dataset.
Therefore, search on this large-scale web image dataset is quite
challenging for all the state-of-the-art methods. We use the 81
semantic category as query keywords to perform retrieval.!
MIRFlickr Dataset [19]: The MIRFlickr-25k collection con-
sists of 25000 images collected from Flickr. It contains
1386 tags which occur in at least 20 images. The average
number of tags per image is 8.94. Here, we use the 25 most
common tags whose ground truth annotations with respect to
all the images have been provided by the MIRFlickr dataset:

EEINT3 EEINT3 9 9% 29 9%

“sky,” “water,” “portrait,” “night,” “nature,” “sunset,” “clouds,”
“flower,” “beach,” “landscape,” “street,” “dog,” “architecture,’
“grafﬁti’” “tree’” ‘épeople,” “City’” “Sea’” “Sun’” 6‘gir1,’9 “SnOW’”

“food,” “bird,” “sign,” and “car.”

For low-level visual representation, we combine the follow-

ing two different low-level features.

1) Color Features: We use the 64-dimensional color his-
togram and 144-dimensional color correlogram as image
color features. More specifically, the color histogram
serves as an effective representation for the color con-
tent of an image, whereas the color correlogram can
be used to characterize color distributions and spatial
correlations.

2) Local Features: Here, we use 128-dimensional SIFT
descriptor for describing the local information of each
image and then quantize them into a vocabulary of
1000 visual words generated by the k-means method.
Then, each SIFT feature point is mapped to an inte-
ger (visual word index) between 1 and 1000, leading
to the BoW image representation. Finally, we obtain a
64 + 144 + 1000 = 1208 dimensional feature vector to
describe each image.

B. Exp-1: Cross-Modality Image Search

1) Experimental Configuration: In this experiment, all the
three datasets are used for the evaluation. For Caltech-101,
we randomly select 15 samples from each category to form a
training set. So, there are 15 x 101 = 1515 training images in
total. For the proposed CSM method, these training images are
used to learn the semantic embedding matrix and all the left
samples in this database are projected into the latent seman-
tic space, which are further used for the consequent image
search experiments. For the CBIR method, the images in the
training set are used as the queries, resulting in 1515 query
images in total. To realize SBIR, for each semantic category
in Caltech-101, we use the selected 15 training images from
this category as positive samples and all the left samples in the
training set as negative samples to train an SVM model. The
predicted scores obtained by the SVM model are then used
to measure the relevance levels of the database images with
respect to the query. Finally, for CCA, we also use the selected

]Actually, we can use all the 5018 tags as query keywords to perform
image search. But the lack of ground truth annotations brings difficulty for
evaluation. Therefore, we only report the search results on the 81 semantic
categories (tags) for which ground truth annotations have been provided in
the NUS-WIDE dataset.

IEEE TRANSACTIONS ON CYBERNETICS

TABLE I
CROSS-MODALITY SEARCH RESULTS ON THE NUS-WIDE DATASET
WITH DIFFERENT CONCEPT DISTANCES

[ Algorithm # | Google Distance | WordNet Distance | Employed Method |

MAP@100 0.312 0.301 0.318
MAP@500 0.227 0.208 0.229
MAP@1000 0.175 0.16 0.183

training set to learn two mapping matrices that maximize the
correlation between the visual contents and semantic labels.
Then, the visual contents and semantic labels are mapped into
a common CCA space by the corresponding mapping matri-
ces. For the NUS-WIDE and MIRFlickr datasets, the numbers
of training samples are both set to 50 for each category.

2) Results and Analysis: The comparisons between the
baseline methods and the proposed CSM method on
Caltech-101, NUS-WIDE, and MIRFlickr are shown in
Fig. 3(a)-(c), (d)—(f), and (g)—(i), respectively. From the
results, we have the following observations.

1) The CSM method achieves much better performance
than CBIR. The precision, recall, and MAP curves all
clearly validate the effectiveness of CSM. The main rea-
son is that CSM method well captures the semantic
correlation between textual queries and image contents.

2) The CSM method outperforms the SBIR method, which
is substantially owing to the exploration of the interme-
diate representation of both textual and visual modalities
in the CSM method.

3) The CSM method clearly outperforms the CCA method.
One explanation is that CCA method does not explicitly
enforce that the images related to the same keyword
should be close in the projected common CCA space.

4) The CSM method produces much better results than the
CERM method. This clearly indicates that, besides the
dimensionality reduction process, the semantic similar-
ity also contributes significantly to the overall perfor-
mance, which confirms the advantage of exploring the
correlation of semantic concepts.

Fig. 4 illustrates the exemplary cross-modality image search
results for queries “waterfall” and “horse” produced by the
CSM method.

3) On the Impact of Concept Distance Estimation: Here,
we also compare different methods for the estimation of
concept distances D [see (1)]. We compare our approach
against Google distance and WordNet distance. That means,
we employ different methods to estimate Dy g and then
observe the cross-modality search results. Here, we tabulate
the MAP@100, MAP@500, and MAP@1000 results on the
NUS-WIDE dataset with different methods in Table I.

From the table, we can see that the WordNet distance has a
relatively large performance gap in comparison with the other
two methods. The performances of the employed method and
Google distance are close, but the employed method performs
slightly better.

C. Exp-II: Online Updating

As aforementioned, an online learning procedure is pro-
vided in the CSM method for dynamically updating the model



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: FACILITATING IMAGE SEARCH WITH A SCALABLE AND CSM

1 1
—+—CSM
09 c 09 —e—cCA
- S s —a— SBIR
c L o —&— CBR
9o = ' .7 —_—
8 g 07 £ AO CERM
o 4 g& 06 9
T c 06 g
S 3 3] <05
s S 05 < o4
= S -
0.4 E
03
=
03 02
0 0.2 0.1 L " 1 t t
100 200 300 400 500 600 700 800 900 1000 1000 2000 3000 4000 5000 6000 7000 8000 100 200 300 400 500 600 700 800 900 1000
Topn Topn Topn
(a) (b) (©
0.25 04
—+—CSM
c 035 —e—ccA
02 o —a— SBIR
c _ 3 o3 —&— CBR
S K < —+— CERM
@ 0.15 g o s
g 4 o &0
2 2
o s 8=
€ 01 @ < 02
3 = <
= § 0.15 s
0.05
= o
S —a
0 0.05
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Topn Topn x16 Topn
(d) (e ()
0.4 1 0.5
—+—CSM —+—CSM
0.35 & o4 —e—CCA
. 08 ® —&— SBIR
S A _ 5}
o = ® 044 —&— CBIR
2 o3 3 o
® @ =~ ~—+— CERM
& x 98 & %035
c 025 = g3 — ]
© Io} Q=
(7] s 04 z 0.3
= 02 < —+—CSM =
’ —e—CCA g 025
i 0.2 —A— SBR =
045 —=— CBR 02
—— CERM \N~'_A;
0.1 0
100 200 300 400 500 600 700 800 900 1000 0 05 1 15 2 25 100 200 300 400 500 600 700 800 900 1000
Topn Topn x18 Topn
(8) (h) (M)

Fig. 3.

Mean precision, mean recall, and MAP curves at different returned depths (Top n) on the (a)—(c) Caltech-101 dataset, (d)—(f) NUS-WIDE dataset,

and (g)—(i) MIRFlickr dataset, respectively, for Exp-I: cross-modality image search.

Waterfall

Fig. 4. Top ten results of the CSM method for queries “waterfall” and “horse.” The relevant images are highlighted with red boxes.

when new semantic concepts are involved. In this subsection,
we evaluate the performance of the proposed online updating
procedure.

1) Experimental Configuration: For the Caltech-101
dataset, we randomly choose 50 semantic categories to build
the semantic prototype set P and mapping matrix W, in which
the implementation details are the same as in the first exper-
iment in Section IV-B. So, the number of training samples
is 15 % 50 = 750. In this case, we can treat the gener-
ated 50 semantic concept prototypes and the corresponding

semantic mapping matrix as the initial component of the latent
semantic space, based on which the proposed online updat-
ing procedure can be further implemented. Here, we assume
that the semantic concepts arrive one-by-one. Each time when
a new semantic concept is involved, 15 images randomly
selected from this semantic category are employed as the train-
ing images of this category and added to the training set. Based
on the new semantic concept and the corresponding training
images, we employ our online updating procedure to incor-
porate the new concept prototype and update the semantic
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Fig. 5.
dataset, and (g)—(i) MIRFlickr dataset, respectively.

mapping matrix. For CBIR, SBIR, and CCA, the implemen-
tation details are also the same as in the first experiment in
Section IV-B. Similarly, on the NUS-WIDE dataset, we ran-
domly select 50 training samples from each of the 40 semantic
categories and utilize all the training images to construct the
latent semantic space which consists of 40 semantic con-
cepts. Furthermore, when a new semantic concept is involved,
additional 50 training samples of this semantic category are
randomly selected from the dataset, which are then used for the
consequent online updating procedure. For MIRFlickr dataset,
the beginning number of semantic categories is 15, and the left
process is the same with that for the NUS-WIDE dataset. In
addition, we also employ the Original CSM method (termed
as Org-CSM) which, instead of performing incremental learn-
ing, directly works on all concerned semantic categories and
corresponding training images.

2) Results and Analysis: The experimental results on differ-
ent datasets are shown in Fig. 5(a)—(c) (Caltech-101), (d)—(f)
(NUS-WIDE), and (g)-(i) (MIRFlickr), respectively. From

these results, we have the following observations.
1) The proposed CSM with online updating procedure

clearly outperforms CBIR, SBIR, and CCA, which
well validates the effectiveness of the online updating
strategy.

Mean precision, mean recall, and MAP curves (Top 100) for the online updating task (Exp-II) on (a)—(c) Caltech-101 dataset, (d)—(f) NUS-WIDE

TABLE 11
AVERAGE RUNNING TIMES (SECOND) OF DIFFERENT METHODS FOR
UPDATING A NEW CONCEPT IN ONLINE LEARNING TASK
ON NUS-WIDE DATASET

[ Algorithm # || CSM | CBIR | SBIR | CCA |
[ Time(s) ][ 035 | 1049 | 2996 | 827 ]

2) The performance of CSM with online updating proce-
dure is quite close to Org-CSM, which clearly shows
that CSM with online updating procedure is well gen-
eralizable.

Besides performance superiority, our proposed CSM with
online updating method also possesses the advantages in time
complexity. Table II lists the running times of different meth-
ods in the task of online learning on NUS-WIDE dataset. As
can be seen, our proposed method can update the semantic
space and the mapping matrix for a new semantic concept
and the corresponding images within 0.35 s in average, which
is much faster than the other methods. This further validates
the scalability and efficiency of our proposed algorithm.

3) On the Impact of LSH Code Length: In online updating,
we have used LSH to select images for mapping with the
newly obtained projection matrix. Here, we also carry an
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Fig. 6. Variation of performance and time cost with different number of hash-
ing bits in the online updating task. (a) MAP@100 scores on the NUS-WIDE
dataset after 41 new concepts are all processed. (b) Time costs for processing
a new concept in average.

experiment to test the influence of the code length in our LSH.
We vary the code length from 32 to 112 bits and observe
the final MAP@100 results on the NUS-WIDE dataset after
41 concepts are all processed by our approach. Fig. 6 illus-
trates the results. We can see that, generally the increasing of
code length reduces time cost, but the performance will also
degrade. This is because, with a large number of bits, less
images will be remapped, but it may miss some images that
are relevant to the new concept and should be remapped. We
choose 64 bits as this length well compromises performance
and computational cost.

D. Exp-III: Multiple-Query-Term Image Search

In this subsection, we evaluate the effectiveness of the pro-
posed CSM method under the setting where a query contains
multiple keyword terms. Notably, multiple-query-term image
search usually requires complex structural learning models to
facilitate such function [27], [34]. But our proposed scheme
can be directly applied to such scenario as the image sub-
set close enough to the prototypes of the query terms in the
unified space can be returned as search results. This provides
a simple paradigm for multiple-query-term image search and
further verifies the advantages of the proposed algorithm.

1) Experimental Setup: We conduct experiments on the
NUS-WIDE dataset.? To be detailed, we select ten multiple-
terms queries, each of which is composed of two different
keywords.> To properly choose the two-term queries, we count
the TF-IDF [53] of each tag pair in the image set and select
the top ten tag pairs as the query terms. In this way, the

2For the Caltech-101 dataset, the images solely contain a single seman-
tic concept. For the MIRFlickr dataset, we observed the fact that, for many
multiple-query terms, there are very few relevant images in the returned
results. Therefore, we only conduct experiments on the largest one among
the three datasets, namely the NUS-WIDE dataset.

3t is worth noting that our proposed method can support complex queries
that contain more than two terms. However, to simplify the implementation,
here we only use the query with two terms.
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TABLE III
MULTIPLE-TERM QUERIES USED IN Exp-II1

Sand
Tiger

Water
Grass

Bear
Tree

Grass
House

Tree Horse
Waterfall | Water

Cow

Coral
Grass

Fish

Railroad | Castle
Tower Sand

TABLE IV
MEAN PRECISION AND MAP RESULTS (ToP 100) FOR THE
MULTIPLE-QUERY-TERM IMAGE SEARCH SUB-TASK

[Algorithm # ]| CSM_| CBIR | SBIR | CCA |

0.2142 | 0.0431 | 0.1625 | 0.0881
0.1925 | 0.0513 | 0.1456 | 0.1032

Precision
MAP

combination of each tag pair corresponds to a reasonable
portion of the images in the dataset. The detailed list of the
two-term queries is shown in Table III. In the online search
stage, when a two-term query is input, we can obtain two
image ranking lists from the latent semantic space. Each of
the ranking lists is indexed by one of the concepts and the
corresponding images are ranked according to their seman-
tic closeness to the concept. To obtain the desired search
results, the images are ranked based on the sum of their square
distances to both of these two concept prototypes.*

For the other three baseline methods, in order to realize
multiple-query-term image search, we implement each of them
in the following manner.

1) CBIR: We select 50 query images, and the images in
database are ranked based on the sum of their square
distances to each of these two categories.

2) SBIR: For each semantic concept, we train an SVM
model. We rank the images in database according to
the sum of the predicted scores of the two models.

3) CCA: After mapping tags and images into a CCA space,
we rank the images based on the sum of their square
distances to each of these two tags. For each algorithm,
the implementation settings are the same with those used
in the experiment in Section IV-B.

2) Results and Analysis: Table IV shows the results gen-
erated by different methods in the sub-task of multiple-query-
term image search. We can find that the proposed CSM method
can respond complex queries with better effectiveness than the
other methods. For example, in comparison with CCA, CSM
achieves 59.9% and 46.3% improvements in terms of Precision
and MAP, respectively. It can be attributed to the fact that
the proposed CSM method well organizes the semantic con-
cepts and the images in a unified compact semantic space,
whereby the complex queries can be simply analyzed accord-
ing to the spatial layout between the individual query terms
and the images.

Fig. 7 further shows the top search results of some example
multiple-term queries, which well illustrates the effectiveness
of the CSM method in multiple-query-term image search.

4Semantic concepts that simultaneously appear in one image typically have
strong semantic correlation, and thus their concept prototypes should be close
to each other. In this way, an image may locate near to multiple concept
prototypes.
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Fig. 7. Top ten results generated by the CSM method for example multiple-term queries “Coral Fish,” “Grass House,” and “Cow Grass.” The relevant images

are highlighted using red boxes.

E. Exp-1V: Example-Based Image Search

Finally, we also conduct a simple experiment to test
the effectiveness of the learned semantic space in conven-
tional CBIR, i.e., example-based image search. Although our
approach is designed for cross-modality image search, the
learned semantic space can also be employed in example-based
image search, as the distance of two images can be estimated
in the learned space.

1) Experimental Setup: We conduct experiments on the
NUS-WIDE dataset. Here, 100 images are randomly cho-
sen as queries from the whole dataset and the other images
are ranked according to their distances to the query images.
The first ten returned images are labeled as relevant or
irrelevant to each query by human (there are three label-
ers involved in the experiments and they label relevance
according to the semantic relatedness of the returned image
and the query). We estimate mean precision and MAP
scores use them to evaluate the performance of different
methods.

We compare the following three methods.

1) Image search with Euclidean distance (denoted as
“Euclidean”). Here, we directly rank the images accord-
ing to their Euclidean distances to the query image by
comparing visual feature vectors.

2) Image search with distance metric learning (denoted as
“metric learning”). We first perform a distance metric
learning method and then rank images based on the
learned distance metric. Here, we employ the relevance
component analysis algorithm. More specifically, we
select 100 images for each of the 81 semantic categories,
and so there are 8100 samples in 81 classes, whereby
we then perform RCA to learn a distance metric.

3) Image search with our semantic space (denoted as
“proposed”). We rank the images according to their
Euclidean distances to the query image in our semantic
space.

2) Results and Analysis: Table V demonstrates the results.
From the results we can see that, although the semantic space
learning approach is designed for cross-modality image search,
it can also facilitate example-based image search to some
extent. By employing the learned semantic space, image search
can yield much better performance than simply comparing the
visual features of images with Euclidean distance. Its perfor-
mance is also better than firstly learning a distance metric

TABLE V
MEAN PRECISION AND MAP RESULTS (TopP 100) FOR DIFFERENT
EXAMPLE-BASED IMAGE SEARCH METHODS

[ Algorithm # [ Euclidean | metric learning | proposed |
Mean Precision 0.48 0.57 0.62
MAP 0.56 0.61 0.68

with RCA and then performing image search with the learned
distance metric.

V. CONCLUSION

In this paper, we present a scalable cross-modality image
search scheme based on a CSM method. The proposed method
narrows semantic gap and scales well to dynamically increas-
ing semantic concepts and images. To achieve this, we derive
a method to construct a linear mapping matrix which maps
images into a semantic space such that the images and the
corresponding semantic concepts are as close as possible. In
this way, mapped images around a concept prototype can be
viewed as the retrieved results of the corresponding query.
To deal with dynamically increasing semantic concepts, we
also introduce an online learning procedure to incorporate new
semantic concepts and update the mapping matrix. Extensive
experiments on three widely-used benchmark datasets have
well demonstrated the effectiveness of the proposed scheme.
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