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Efficient Reverse Top-k Boolean Spatial 
Keyword Queries on Road Networks 

Yunjun Gao, Member, IEEE, Xu Qin, Baihua Zheng, Member, IEEE, and Gang Chen  

Abstract—Reverse k nearest neighbor (RkNN) queries have a broad application base such as decision support, profile-based 
marketing, and resource allocation. Previous work on RkNN search does not take textual information into consideration or limits 
to the Euclidean space. In the real world, however, most spatial objects are associated with textual information and lie on road 
networks. In this paper, we introduce a new type of queries, namely, reverse top-k Boolean spatial keyword (RkBSK) retrieval, 
which assumes objects are on the road network and considers both spatial and textual information. Given a data set P on a 
road network and a query point q with a set of keywords, an RkBSK query retrieves the points in P that have q as one of answer 
points for their top-k Boolean spatial keyword queries. We formalize the RkBSK query and then propose filter-and-refinement 
framework based algorithms for answering RkBSK search with arbitrary k and no any pre-computation. To accelerate the query 
process, several novel pruning heuristics that utilize both spatial and textual information are employed to shrink the search 
space efficiently. In addition, a new data structure called count tree has been developed to further improve query performance. 
A comprehensive experimental evaluation using both real and synthetic data sets demonstrates the effectiveness of our 
presented pruning heuristics and the performance of our proposed algorithms.  

Index Terms—Boolean Spatial Keyword Query, Reverse Top-k Boolean Spatial Keyword Query, Road Network, Query Processing.  

——————————      —————————— 

1 INTRODUCTION

kNN retrieval has received lots of attention from the 
database research community in the past decade, due 

to its importance in a wide spectrum of applications such 
as decision support, profile-based marketing, and re-
source allocation [9, 21, 22]. Given a set P of data points 
and a query point q in a Euclidean space, a reverse k near-
est neighbor (RkNN) query finds the points in P that have 
q as one of their k nearest neighbors. Consider the exam-
ple shown in Fig. 1, where two RNN (k = 1) queries are 
issued at q1 and q2 respectively in the Euclidean space. 
The RNN of q1 is , as none of the objects takes q1 as its 
nearest neighbor (NN); and the RNN of q2 is A as A’s NN 
is q2. RkNN search and its variants (e.g., [4, 8, 10]) have 
been well-studied in the literature. In this work, we en-
hance traditional RkNN retrieval from two aspects. First, 
different from existing RkNN search that assumes a 
Euclidean space, we consider a road network. We believe 
this setting is more realistic since spatial objects in the real 
world are always restricted to the road network. Second, 
in addition to objects’ spatial properties that are consid-
ered by existing RkNN queries, we also take into account 
textual characteristics of objects. The combination of spa-
tial and textual properties offers greater flexibility to its 

users when looking for interesting objects. It also aligns 
nicely with the industry practice. For example, more and 
more real life applications call for new forms of queries 
that satisfy both spatial and textual constraints. In view of 
this, we propose a new type of queries, namely, reverse 
top-k Boolean spatial keyword (RkBSK) query, which assumes 
objects on the road network, and returns the objects hav-
ing a specified query point q as one of the answer objects 
for the top-k Boolean spatial keyword query1.  

RkBSK queries constitute a suite of interesting and 
practical problems from not only the research point of 
view but also the application point of view. For instance, 
as illustrated in Fig. 1, assume that Hard Rock Cafe plans 
to open a new restaurant that serves pizza, coffee, and steak 
(represented as a set of keywords) in a new industry park. 
If there are two places (e.g., q1, q2) available to host the 
new restaurant, we need to identify a better one. One 
common strategy is to choose the place with fewer com-
petitors. Obviously, if restaurant C takes the new restau-
rant as its nearest neighbor and all the items served by C 
will be served by the new restaurant as well, the restau-
rant C is considered as a competitor for the new restau-
rant. By taking into account both textual information and 
distance (i.e., the shortest path), the RkBSK query can find 
the location out of a given set of potential places that have 
the fewest competitors. In this case, q2 offers a better 
choice, since it has fewer competitors compared with q1. 
As another example, suppose all the customers subscrib-
ing to a coupon service specify their shopping interests 
via keywords (e.g., baby, clothing, mobile devices, etc.). 
The service provider can issue an RkBSK query at every  
1 To be detailed later, a top-k Boolean spatial keyword query re-
trieves the k objects that are the closest to a given query point among 
all the objects containing all the query keywords.  
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shopping mall m with the textual keyword set to the 
products available in m. All the customers whose shop-
ping interests could be satisfied by m and meanwhile 
have m as their closest shopping mall will be returned as 
the potential customer base for m. The service provider 
can send shopping coupons of the shopping mall m to m’s 
potential customer base as they are more likely to shop in 
m, compared with other customers.  

A simple way to answer RkBSK queries is to issue a 
top-k Boolean spatial keyword query at every data point p 
 P, and those have q in their corresponding result sets 
form the answer set for RkBSK search. It is straightfor-
ward but very inefficient. It needs to traverse the whole 
dataset multiple times (i.e., at worst case (|P| + 1) times, 1 
for fetching data points and |P| times for verification), 
incurring high I/O overhead and expensive CPU cost.  

Motivated by the significance of RkBSK queries and the 
lack of efficient search algorithm for processing RkBSK 
retrieval, in this paper, we propose efficient algorithms 
based on filter-and-refinement framework to support RkBSK 
search. Our solution utilizes both spatial and textual in-
formation to prune the search space significantly. More-
over, it can tackle exact RkBSK retrieval with an arbitrary k, 
without any pre-computation. In brief, our key contribu-
tions in this paper are summarized as follows:  

 We identify the problem of RkBSK queries on road 
networks. To the best of our knowledge, this is the 
first work to address this problem.  

 We propose efficient RkBSK search algorithms based 
on a filter-and-refinement framework, which can han-
dle arbitrary k and no any pre-computation.  

 We develop several novel pruning heuristics for the 
filtering phase and the refinement phase, to effec-
tively prune unqualified objects. In addition, we de-
sign a new data structure so-called count tree to fur-
ther boost query performance.  

 We conduct extensive experiments using both real 
and synthetic data sets to demonstrate the effective-
ness of our presented pruning heuristics and the 
performance of our proposed algorithms.  

The rest of the paper is organized as follows. Section 2 
reviews related work. Section 3 formulates the problem, 
introduces the index structure and reveals its characteris-
tics. Section 4 and Section 5 propose two efficient algo-
rithms for processing RkBSK queries. Extensive experi-
mental evaluation and our findings are reported in Sec-
tion 6. Finally, Section 7 concludes the paper with some 
directions for future work.  

2 RELATED WORK  
In this section, we overview the existing work related to 
RkBSK queries, focusing mostly on RkNN search and spa-
tial keyword retrieval.  

2.1 Conventional Spatial Queries  
Since the concept of RNN was first introduced in [9], 
many algorithms have been proposed in answering 
RNN/RkNN query and its variants in Euclidean spaces [8, 
10, 21, 22, 27]. RkNN retrieval in road networks has also 
received significant attention. Safar et al. [19] deploy the 
network Voronoi diagram and apply a progressive in-
cremental network expansion for processing RNN queries. 
Yiu et al. [29] present two methods, namely, eager algo-
rithm and lazy algorithm, to tackle RNN search in a large 
graph. Cheema et al. [4] adopt a filter-and-refinement 
technique to solve continuous RkNN (CRkNN) search in 
Euclidean spaces and road networks, respectively. Their 
approach does not require expensive pre-computation, by 
assigning each object and query with a safe region. Li et al. 
[13] also explore the CRkNN query on road networks. 
They present a new data structure, called DLM tree, to 
represent the whole monitoring region of a CRkNN query. 
However, it is worth noting that all the above approaches 
are unsuitable for RkBSK search because they only focus 
on spatial geometric information without considering any 
textual information.  

Recently, the reverse top-k query is attracting much at-
tention. Vlachou et al. [24] first indentify and solve re-
verse top-k queries. Later, they [25] also propose a new 
branch-and-bound algorithm called BBR to address the 
bichromatic reverse top-k query. Nevertheless, it is worth 
mentioning that, their work differs from ours in at least 
two aspects. First, their work is based on the weighting 
vector offered by users. Second, they do not take the tex-
tual constraint into consideration.  

2.2 Spatial Keyword Queries  
Combining traditional spatial queries with keywords has 
received considerable attention in the last few years [1, 2, 
3, 5, 12, 31]. Boolean spatial keyword query and score 
based spatial keyword query are two important types of 
spatial keyword queries.  

The Boolean spatial keyword query is to find the k ob-
jects nearest to the users’ location among the set of objects 
whose textual description contains the query keyword set. 
Felipe et al. [7] augment the R-tree with a signature file, 
termed as IR2-tree, to facilitate the top-k spatial keyword 
query. Unfortunately, the IR2-tree inherits a drawback of 
false hits from the signature file. To overcome it, Tao and 
Sheng [23] develop a new access method, i.e., spatial in-
verted (SI) index, which extends the conventional inverted 
index to cope with this problem. As demonstrated in [23], 
SI index outperforms IR2-tree. There are some other ef-
forts on Boolean spatial keyword queries. Cary et al. [3] 
study the Boolean spatial keyword query under different 
logical semantics. Wu et al. [28] utilize an IR-tree to solve 
the problem of joint spatial keyword query processing. 
Cao et al. [2] investigate collective spatial keyword search, 
a variant of Boolean spatial keyword queries, which re-

{pizza, steak, coffee}

{pizza,  steak, coffee}

{coffee}
D

{pizza, steak} 

B {coffee}

 A {steak}

q2

C

q1
Restaurant
Query point

 
Fig. 1. Illustration of a motivating example  
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trieves a group of spatial web objects such that the 
group’s keywords cover query keywords and meanwhile 
the objects are closest to the query location and have the 
minimal inter-object distances. In particular, due to the 
complexity of this problem (i.e., NP-complete), they pre-
sent solutions for both exact search and approximate 
search. Nonetheless, all the above queries differ from the 
RkBSK query as they only aim at the Euclidean space.  

Score based spatial keyword query aims to retrieve the 
k objects with the highest ranking scores, measured as a 
combination of their distances to the query location (a 
point) and the relevance of their textual descriptions to 
the query keywords. To address this, Cong et al. [6] pro-
pose an index, i.e., IR-tree, which combines an R-tree and 
an inverted file, to find the query result. Rocha-Junior et 
al. [17] develop a novel index named spatial inverted in-
dex (S2I) to boost the performance of the top-k spatial 
keyword query.  

More recently, Lu et al. [14] investigate reverse spatial 
and textual k nearest neighbor (RSTkNN) search, which 
takes into account textual similarity in RkNN retrieval. 
An RSTkNN query is to find the objects that take a speci-
fied query object as one of their k most spatial-textual 
similar objects. It is worth noting that, their work is also 
different from ours. First, their rank function is based on 
the similarity score, which combines the spatial distance 
with textual similarity. Second, they only consider the 
Euclidean space, and their algorithms use some geometric 
properties that are only valid in Euclidean spaces but not 
road networks.  

Last but not least, spatial keyword queries on road 
networks have also been studied in the literature [15, 18, 
30, 32]. Rocha-Junior et al. [18] employ spatio-textual in-
dexes that combine R-trees and inverted files to process 
the top-k spatial keyword query on road networks. Zhang 
et al. [32] explore the problem of diversified spatial key-
word search on the road network, which takes into ac-
count both the textual relevance and the spatial diversity 
of the results. Zhang et al. [30] develop a spatial keyword 
query evaluation system that is comprised of keyword 
constraint filter, keyword and spatial refinement, and 
spatial keyword ranker for processing spatial keyword k 
nearest neighbor and spatial keyword range queries. It is 
worth pointing out that, these approaches are designed 
only for top-k spatial keyword queries on road networks, 
without considering the reverse version. Thus, they are 

not capable of supporting efficient RkBSK retrieval.  

3 PRELIMINARIES  
In this section, we first formally define the RkBSK query 
on the road network, and then, we introduce the disk 
based storage model, and propose a baseline method 
which performs better than the naive approach men-
tioned in Section 1. Table 1 summarizes the symbols used 
frequently in this paper.  

3.1 Problem Statement  
In this paper, we model a road network by an undirected 
weighted graph G = (V, E, W), in which V is a set of verti-
ces (i.e., road conjunctions or road borders), E is a set of 
edges, and W is a set of weights that map every edge (ni, 
nj) in E to a positive real number (indicating the road dis-
tance or the travel time). Without loss of generality, we 
suppose bidirectional traffic, which is ubiquitous in real 
life. We also assume that a set of spatial objects loc (e.g., 
restaurants, hotels, etc.) associated with a set of keywords 
key (e.g., the menu of restaurants) lies on the road net-
work. These spatial points are referred to as the points of 
interest (POIs), with each denoted by a two-vector tuple 
(loc, key). For two POIs p1 and p2, the path from p1 to p2 
with the shortest distance represents the shortest path. 
The network distance between p1 and p2, denoted as ||p1, 
p2||, is the length of the corresponding shortest path.  

Definition 1 (top-k Boolean spatial keyword (TkBSK) 
query on the road network). Given a query q(loc, key), a 
parameter k, and a data set P with each POI p  P in the 
form of (loc, key), let Pq.key be the set of POIs in P that con-
tain q.key, i.e., Pq.key = {p  P | q.key  p.key}. A TkBSK 
query (on the road network) issued at q, denoted as 
TkBSK(q), returns the k POIs in Pq.key having the minimal 
network distances to q, formally, TkBSK(q) = {S  Pq.key | 
|S| = k   s  S,  p  (Pq.key  S), ||q, s|| ≤ ||q, p||}. For any 
data point in TkBSK(q), we say that it is one of the Boolean 
spatial keyword nearest neighbors of q.  

Definition 2 (reverse top-k Boolean spatial keyword 
(RkBSK) query on the road network). Given a query 
q(loc, key), a parameter k, and a data set P, an RkBSK 
query (on the road network) issued at q, denoted as 
RkBSK(q), retrieves all the POIs in P whose top-k Boolean 
spatial keyword queries include q, formally, RkBSK(q) = {p 
 P | q  TkBSK(p)}.  

n0

p2{a}

p3{a,b}

p4{a,b}

p5{a}

p6{b}

p7{a}

p8{b}
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n4 n5
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n7

n8

n9
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Fig. 2. Example of the road network with POIs  

TABLE 1: SYMBOLS AND DESCRIPTION  

Notation Description 
P  a set of points with keywords on a road network 
q a spatial query point with keywords 
||p, p’|| the network distance between two points p and p’ 
SPqp The set of elements including vertexes, POIs, and 

edges located on the shortest path between q and p 
Sc the candidate set of POIs including all RkBSK points  
Sr the result set of an RkBSK query  
ni[key].cnt the count # of the keyword set key of a node ni 
TkBSK(q) the result set of a TkBSK query issued at q 
RkBSK(q) the result set of an RkBSK query issued at q 
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As an example, in Fig. 2, T1BSK(q) is p1 as q.key  p1.key 
and p1 is the nearest neighbor of q. Also, p1 is an answer 
point of R1BSK(q) due to q  T1BSK(p1).  

After formulating the RkBSK query, we are ready to 
reveal its important properties, as stated in Property 1 
and Property 2, which can be utilized to handle RkBSK 
search. Property 1 states that the size of a result set for an 
RkBSK query could be very different from k. As shown in 
Fig. 2, given an R3BSK (k = 3) query issued at q with a 
keyword set q.key = {a, b}, the result set R3BSK(q) = {p1} 
whose size is different from k. Property 2 states that the 
relationship between an answer point p for the RkBSK 
query issued at q and the query point q, in terms of their 
keywords set. As depicted in Fig. 2, POI p9 cannot be an 
answer point for RkBSK(q) as p9.key  q.key while p1 is a 
potential answer point due to p1.key  q.key.  

Property 1. Given an RkBSK query issued at q with a fixed k, 
its result set (i.e., RkBSK(q)) varies, which depends on the 
position of q, the keyword set of q, and the distribution of 
data points.  

Property 2. Given a query point q with a keyword set q.key, for 
any point p  RkBSK(q), we have p.key  q.key.  

Proof. Assume the above statement is not valid, and there 
is at least one point p  RkBSK(q) with p.key  q.key. 
Thus, based on Definition 2, q  TkBSK(p). According 
to Definition 1, for q  TkBSK(p), we have p.key  q.key, 
which contradicts with our assumption p.key  q.key. 
Hence, property 2 holds, and the proof completes.      

3.2 Disk Based Storage Model  
In real-life applications, the size of a road network and its 
POIs could be very large. Therefore, we assume that the 
road network and its POIs are too large to be fit in main 
memory, and we design a disk-based storage model to 
support our algorithms seamlessly. The model we adopt 
is to group network nodes based on their connectivity 
and distances, as proposed in [20]. A graphical illustra-
tion of an adjacency file and a point file along with the 
index for our example road network is shown in Fig. 3. 
Our model allows efficient access to the adjacency lists 
and points which are stored in the adjacency file and the 
point file, respectively. A B+-tree is employed to facilitate 
efficient access to adjacency files.  

All the POIs on the same edge form one group, and the 
points file is used to collect and store the POI groups. For 
every group, we need to maintain the edge where the 

group of POIs are located and the number of POIs. Sub-
sequently, for each POI p on this edge, we store p’s ID, the 
distance between p and the edge node with smaller ID, 
and p’s associated set of keywords. A group of POIs are 
stored in ascending order of their offset distances to the 
node with smaller ID. The adjacency file stores an adja-
cency list for each node. Given a node ni, all its adjacent 
nodes form ni’s adjacency list. At the beginning of the 
adjacency list, we maintain the total number of ni’s adja-
cent nodes. Then, for every adjacent node n, we store ID, 
the edge distance between node ni and n (i.e., ||ni, n||), and 
a pointer to its POI group in the point file. If there is no 
POI on this edge, a NULL pointer is kept. Take the node 
n1 in Fig. 2 as an example. As shown in Fig. 3, it has three 
adjacent nodes, and thus, we store 3 at the beginning of 
n1’s adjacent list. Thereafter, three adjacent nodes (i.e., n0, 
n2, n3) are stored. For each adjacent node, we store its ID 
(e.g., n0), the edge length (e.g., ||n0, n1|| = 3), and a pointer 
to POIs on the edge (e.g., p1 is located on the edge (n0, n1)).  

3.3 Baseline Method  
As mentioned in Section 1, a naive solution for the RkBSK 
query is to invoke |P| times TkBSK queries to form a 
RkBSK result, i.e., for each POI p in P we need to expand 
the road network around p to form TkBSK(p) and judge 
whether q belongs to TkBSK(p). In worst case, the whole 
data set has to be traversed (|P|+1) times, i.e., one for 
fetching data points and |P| times for verification using 
TkBSK search, resulting in high I/O overhead and expen-
sive CPU cost, especially when |RkBSK(q)|<<|P|. To 
improve performance, we develop a non-trivial baseline 
method (BM) that performs much better than the above 
naive solution. It is worth noting that, BM utilizes the 
properties presented in Section 3.1 to prune unqualified 
data points effectively.  

To facilitate RkBSK retrieval, we adopt a filter and re-
finement framework. In the filtering step, we expand the 
road network from q based on Dijkstra’s algorithm. Dur-
ing the expansion, we preserve all the data points p en-
countered that satisfy the keyword constraint (i.e., p.key  
q.key) in a candidate set Sc. The filtering step stops only 
when the whole road network has been explored. In the 
refinement step, we verify all the candidate points pre-
served in Sc. A data point p  RkBSK(q) iff it satisfies q  
TkBSK(p). Instead of issuing a TkBSK query at p like the 
naive approach does, we adopt a Boolean Verification (BV) 
method as presented in Algorithm 1. The basic idea is to 
count the number of points p with p.key  p.key and ||p, 
p|| ≤ ||p, q||, denoted as count. If count < k, it is guaranteed 
that q  TkBSK(p) and the algorithm returns TRUE; oth-
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Fig. 3. Example of the disk based storage model  

Algorithm 1 Boolean Verification Algorithm (BV)  
  Input: a data point p to be evaluated, a query point q, a parameter k  
  Output: TRUE if q  TkBSK(p), otherwise FALSE  
  1:  locate the edge (ni, nj) that p locates and initialize count = 0  
  2:  priority queue U = {(p, ni), ||ni, p||, (p, nj), ||nj, p||}   // edges in U  
                             are sorted in ascending order of their distances to p 
  3:  while U is not empty do  
  4:     edge (n, n) = de-queue (U)  
  5:     count += |{p on edge (n, n)  p.key  p.key  ||p, p|| ≤ ||p, q||}|  
  6:     if count  k then return FALSE  
  7:     for each unvisited adjacent nodes nx of n do  
  8:        en-queue (p, nx), ||nx, p|| to U  
  9:     if ||p, n|| > ||p, q|| then break  
10:  return TRUE  
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erwise, it returns FALSE. To simplify our discussion, giv-
en two adjacent nodes ni and nj with ni being visited be-
fore nj during the network expansion, we call the edge (ni, 
nj) as nj’s previous edge, and refer to the edge(s) from nj to 
its adjacent node(s) visited after (ni, nj) as nj’s next edge(s). 
Take the road network illustrated in Fig. 2 as an example. 
Assume that we expand the road network in the order of 
n0, n1, n2, n5, n3, n6, …. Then, for n1, its previous edge is (n0, 
n1), and its next edges are (n1, n2) and (n1, n5). Similarly, 
for n2, its previous edge is (n1, n2), and its next edges are 
(n2, n3) and (n2, n6).  

4 RKBSK ALGORITHM  
In this section, we propose our RkBSK algorithm that is 
based on two newly developed lemmas to shrink the 
search space. In the following, we first present two lem-
mas and then describe our RkBSK algorithm.  

4.1 Theoretical Foundation  
The main drawback of BM algorithm can be summarized 
as follows. First, it needs to explore the entire road net-
work, even if the answer points are all located near the 
query point. Second, it has to verify all the data points 
that satisfy the keyword constraint (i.e., all the points in 
Sc). When the keyword constraint is common and/or the 
data set is huge, the size of the candidate set Sc might be 
large (i.e., |Sc| >> |RkBSK(q)|). Evaluating all the candidate 
points in Sc using BV algorithm (presented in Algorithm 1) 
could be costly. To address these, we develop two lem-
mas to prune away unqualified data points and terminate 
the network expansion earlier.  

Lemma 1: Let q(loc, key) be a query point, p be a data point 
with p.key  q.key, SPqp be the shortest path from p to q, and 
Sl1 be the set of data points (including p) located on SPqp 
with their keyword sets the same as p.key, i.e., Sl1 = {p  P 
| p.key = p.key  p  SPqp}. Then, we have p  RkBSK(q) 
 |Sl1| ≤ k.  

Proof. Assume, on the contrary, that Lemma 1 is not valid, 
and we have p  RkBSK(q) and meanwhile |Sl1| > k. 
Without loss of generality, we assume that points in Sl1 
(i.e., p1, p2, , pk, pk+1, ) are sorted in ascending order 
of their distances to q (i.e., ||pi, q||  ||pi+1, q||), and let the 
point p be the last data point. Obviously, these k points 
in Sl1 have their minimal distances to q smaller than ||p, 
q|| and meanwhile have their keywords covered by 
q.key, i.e., i  [1, k], pi.key = p.key  q.key and ||pi, q||  ||p, 
q||. As all the points in Sl1 lie on the shortest path SPqp, 
we have ||pi, p|| = ||p, q||  ||pi, q|| < ||p, q||. Consequently, q 
 TkBSK(p) and p  RkBSK(q), which contradicts with 
our assumption that p  RkBSK(q). Thus, our assump-
tion is invalid, and the proof completes.                        

In order to illustrate Lemma 1, let us consider the ex-

ample shown in Fig. 4. Assume that an R2BSK (k = 2) que-
ry is issued at a query point q with q.key = {a, b}. Let the 
path depicted in Fig. 4 be the shortest path from a node n1 
to q, denoted as SPqn1. Given the fact that points p1 and p2 
are located on SPqn1 and meanwhile p1.key = p2.key = {a}  
q.key, all the points p with p.key = {a} located on SPqn1 after 
p1 and p2 cannot be the actual answer point(s) for the 
R2BSK query according to Lemma 1. In other words, dur-
ing the network expansion from q, the expansion via SPqn1 
can safely ignore any point p with p.key = {a}, which helps 
to reduce the size of Sc.  

Lemma 2: Given a query point q(loc, key) and the shortest path 
SPqn from q to a node n, let set Skeyi preserve all the candidate 
points p for RkBSK(q) located on SPqn and having p.key = 
keyi  q.key. If  keyi  q.key, we have |Skeyi| = k (i.e., keyi  

q.key |Skeyi| = (2|q.key|  1)  k), and the network expansion via 
SPqn can be safely terminated.  

Proof. Assume that the above statement is not valid, and 
there is at least one point p that belongs to RkBSK(q) 
but its shortest path to q bypasses the node n, i.e., ||q, n|| 
< ||q, p||. As p  RkBSK(q), p.key  q.key. Without loss of 
generality, let p.key = keyi  q.key, i.e., point p will be in-
cluded in set Skeyi

. In other words, |Skeyi
| = k + 1, which 

contradicts with Lemma 1. Hence, our assumption is 
invalid, and the proof completes.                                    

Continue our example illustrated in Fig. 4. Given q.key 
= {a, b}, there are in total three (i.e., 2|q.key|  1 = 3) possible 
subsets (i.e., key1 = {a}, key2 = {b}, and key3 = {a, b}). On the 
shortest path SPqn1 from q to n1, as depicted in Fig. 4, we 
have Skey1 = {p1, p2}, Skey2 = {p3, p4}, and Skey3 = {p5, p6}. Thus, 
as guaranteed by Lemma 2, the network expansion via 
SPqn1 can be safely stopped at the node n1.  

4.2 Algorithm Details  
Based on the aforementioned two Lemmas, we present an 
algorithm called RkBSK algorithm to retrieve the exact re-
sult of an RkBSK query. In particular, our RkBSK algo-
rithm improves the filtering step of BM algorithm by ter-
minating the network expansion earlier as guided by 
Lemma 2. Next, we detail two steps of RkBSK algorithm.  

In general, RkBSK algorithm shares the same filtering 

p1{a} 
n0

q{a, b} n1
p2{a} 

p3{b} 

p4{b} p5{a, b}

p6{a, b}
pi{……}

 
Fig. 4. Example of the shortest path SPqn1 on a road network  

Algorithm 2 Filter for RkBSK Algorithm (RkBSK-Filter)  
  Input: q(loc, key), k, a set P of data points on a road network  
  Output: the candidate set Sc of an RkBSK query  
  1:  locate the edge (ni, nj) that q is located (suppose q is closer to ni)  
  2:  U = {(q, ni), ||ni, q||, (q, nj), ||nj, q||}   // edges in U are sorted in  
                                                ascending order of their distances to q  
  3:  while U is not empty do  
  4:     e = (n, n) = de-queue (U)  
  5:     if q is located on the edge e then  
  6:        for each subset key  q.key do n[key].cnt = 0  
  7:     else  
  8:        for each subset key  q.key do n[key].cnt = n[key].cnt  
  9:     for every point p on e do   // visit points based on ascending  
                                                            order of their distances to q  
10:        if p.key  q.key and n[p.key].cnt < k then   // Lemma 1  
11:           n[p.key].cnt ++ and Sc = Sc ∪ {p}  
12:     if n[*].cnt < k then   // Lemma 2  
13:        for each unvisited edge (n, n) in the edge set E do  
14:           en-queue (n, n), ||n, q|| to U  
15:  return Sc  
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step as BM algorithm. It expands the road network from q 
based on Dijkstra’s algorithm to form the candidate set Sc. 
The only difference is that RkBSK algorithm is more selec-
tive in both candidate set formation and network expan-
sion. First, it does not blindly insert all the data points p 
with p.key  q.key into Sc like BM algorithm does. As 
shown in Algorithm 2 (lines 10-11), whenever a data 
point p satisfying the textual constraint is encountered, it 
checks the number of data points in Sc that share the same 
keywords as p and meanwhile lie on the shortest path 
from q to p (and then to node n), which is preserved by 
n[p.key].cnt. Point p is a potential answer point for 
RkBSK(q) only if n[p.key].cnt < k, as guaranteed by Lemma 
1. Second, it enables an early termination for the network 
expansion while BM algorithm has to explore the whole 
road network. As depicted in Algorithm 2 (lines 12-14), 
the expansion at node n is necessary only when the condi-
tion listed in Lemma 2 is not satisfied, i.e., at least for one 
keyword set keyi  q.key, the number of data points p with 
p.key = keyi  q.key located on the shortest path from q to n 
is smaller than k. As demonstrated in our experiments, 
these two lemmas can significantly boost the search per-
formance.  

Algorithm 2 presents the pseudo-code of the filtering 
step of RkBSK algorithm. It first locates the edge (ni, nj) 
where q locates (line 1). The priority queue U maintains 
all the edges (n, n) to be examined sorted based on as-
cending order of their distances to q, and initially it has 
two edges (q, ni) and (q, nj) (line 2). Thereafter, the net-
work expansion starts by continuously de-queuing the 
first element of U until U is empty (lines 3-14). For each 
de-queued edge (n, n), the algorithm needs to initialize 
the count list of n to facilitate the checking of lemmas. To 
be more specific, for a given node n, each element of its 
count list corresponds to one subset keyword keyi of q.key, 
and it records the number of data points p located on the 
shortest path from q to n with p.key = keyi, denoted as n 
[keyi].cnt (lines 5-8). Note that, we treat the edge that q is 
located on different from other edges. For the edge (ni, nj) 
containing q, the count lists of nodes ni and nj are initial-
ized to zero since there is no other node located on the 
shortest paths from q to ni or nj (line 5-6). For all the other 
edges (n, n), the algorithm initializes the count list of n 
by copying the count list of node n (lines 7-8). Then, it 
checks the data points located on (n, n) and updates the 
count list if necessary (lines 9-11). Note that, the algo-
rithm only enrolls a data point p into the candidate set Sc 
if it cannot be discarded by Lemma 1. Once the examina-
tion of edge (n, n) finishes, the algorithm needs to en-
queue the next edge(s) of n, if any, to U in order to ex-
pand the network. Again, as guided by Lemma 2, n re-
quires expansion only if the shortest path from q to n 
does not contain sufficient candidate points (lines 12-14). 
Finally, the algorithm returns the candidate set Sc to com-
plete the filter step.  

For the refinement step, our RkBSK algorithm does ex-
actly what BM algorithm does, and thus is omitted. It 
validates every data point p in the candidate set Sc using 
BV algorithm (depicted in Algorithm 1).  

Example 1. For ease of understanding, we illustrate how 

RkBSK algorithm works using an example. Based on the 
road network shown in Fig. 2, we assume that an R2BSK 
(k = 2) query with keywords {a, b} is issued at a query 
point q on edge (n0, n1) with ||q, n0|| = 0.5. Initially, the pri-
ority queue U contains {(q, n0), 0.5, (q, n1), 2.5. Then, the 
network expansion starts. The first de-queued edge is (q, 
n0). As it is the edge where q locates, an empty count list is 
initialized for the node n0 (i.e., n0[a].cnt = n0[b].cnt = n0[a, 
b].cnt = 0). Since there is no any data point on the edge (q, 
n0) and n0 does not have any not-yet-marked adjacent 
node, no action is taken. The second de-queued edge is (q, 
n1), and again an empty count list is initialized (i.e., 
n1[a].cnt = n1[b].cnt = n1[a, b].cnt = 0). As there is one point 
p1({a, b}) located on (q, n1), its count list is updated (i.e., 
n1[a, b].cnt = 1), and p1 is enrolled into the candidate set Sc 
(= {p1}). The algorithm then en-queues (n1, n2), 7.5 and 
(n1, n5), 8 into U to complete the evaluation of the edge 
(q, n1). Next, the algorithm evaluates edge (n1, n2). It lo-
cates three candidate points p2({a}), p3({a,b}), and p5({a}) 
that updates Sc to {p1, p2, p3, p5}), and the count list of n2 is 
updated accordingly, with n2[a].cnt = 2, n2[b].cnt = 0, n2[a, 
b].cnt = 2. Note that, p4({a, b}) is not a candidate point as 
n2[a, b].cnt has already reached 2. Since n2[b].cnt is not yet 
2, n2 requires further expansion, and both (n2, n3), || q, n3|| 
and (n2, n6), || q, n6|| are en-queued. Then, it verifies edge 
(n1, n5). As the algorithm does not locate any data point 
satisfying the textual constraint, it en-queues (n5, n4), ||q, 
n4||, (n5, n6), ||q, n6||, and (n5, n8), ||q, n8|| into U. Next, 
edge (n2, n3) is de-queued, and it has two candidate points 
p6({b}) and p8({b}) which update n3[b].cnt = 2. Here, 
n3[a].cnt = n3[b].cnt = n3[a, b].cnt = 2. That is to say, the 
network expansion at node n3 can be safely terminated, 
even if n3 has not-yet-visited adjacent nodes. The evalua-
tion proceeds until U = .  

In the RkBSK refinement step, it evaluates all candi-
dates using BV algorithm, in the same way as BM algo-
rithm does.                                                                                

5 ENHANCED RKBSK ALGORITHM  
Compared with Baseline algorithm, our proposed RkBSK 
algorithm actually shrinks the expanded network area 
and meanwhile reduces the size of candidate set Sc. How-
ever, the candidate set formed by RkBSK during the filter-
ing step is still much larger than the real result set 
RkBSK(q), especially when |q.key| is large. Furthermore, 
RkBSK has to evaluate all the candidate points in Sc as it 
does not implement any further pruning for the candidate 
points. In the sequel, we first present Heuristic 1 and 
Heuristic 2 which can efficiently cut down the size of the 
candidate set; and Heuristic 3 to enable candidate point 

pi{……}
p4{a}

p3{a, c}

n0

n1

q{a, b}

p2{a, c} 

n2

n3

p5{a, b}
p1{a, b}

p6{a, b}

p7{a}

p8{a, b}

 pruned by Heuristic 1

 pruned by Heuristic 2

 pruned by Heuristic 3   
Fig. 5. Illustration of Heuristics 1, 2, and 3  
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pruning. Then, we introduce a new data structure, count 
tree, to facilitate the implementation of our newly pro-
posed heuristics. Finally, we propose an enhanced RkBSK 
algorithm with better search performance.  

5.1 Pruning Heuristics for Filter  
Heuristic 1. Given a query point q(loc, key) and a data point p 

located on the road network, let SH1 be the set of data points 
p located on the shortest path SPqp from q to p (i.e., p  
SPqp) that have their keywords covering p.key, i.e., SH1 = {p 
 P| p.key  p.key  p  SPqp}. If |SH1| ≥ k, it is certain 
that p  RkBSK(q); otherwise |SH1| < k if p  RkBSK(q).  

Proof. First, we prove the first statement, i.e., |SH1| ≥ k  p 
 RkBSK(q), via contradiction. Assume that this state-
ment is not valid, i.e., |SH1| ≥ k  p  RkBSK(q). If a 
TkBSK query is issued at p, based on the fact that p  
SH1, p.key  p.key  ||p, q|| > ||p, q||  |SH1| ≥ k, and thus, q 
cannot be an answer point for TkBSK(p), which contra-
dicts with our assumption that p  RkBSK(q). Hence, 
our assumption is invalid, and the statement |SH1| ≥ k 
 p  RkBSK(q) holds.  

Next, we prove the second statement that |SH1| < k 
if p  RkBSK(q) via contradiction as well. Assume that 
there is at least one answer point p  RkBSK(q) having 
its |SH1| ≥ k. Similar as the above proof, we have a 
TkBSK query issued at p. Based on the fact that p  
SH1, p.key  p.key  ||p, q|| > ||p, q||  |SH1| ≥ k, and hence, 
we are certain that q  TkBSK(p), which contradicts 
with our assumption that p  RkBSK(q). The proof 
completes.                                                                            

Compared with Lemma 1 and Lemma 2 used by our 
RkBSK algorithm, Heuristic 1 implies a stronger pruning 
criterion. Lemma 1 prunes away a point p based on those 
data points located on the shortest path SPqp from q to p 
and having exactly the same keywords as p; while Heuris-
tic 1 discards the point p based on those data points lo-
cated on SPqp and having their keywords covering p.key. 
Besides, Heuristic 1 also serves as an early termination con-
dition. For example, if we have found at least k points 
bounding each non-empty subset of q.key on SPqn, we can 
safely terminate examination because no qualified data 
points will have the shortest path to q passing n.  

Consider, for instance, the example shown in Fig. 5. 
Assume that an R3BSK (k = 3) query is issued at a query 
point q, and currently we are evaluating the data points 
on edge (n0, n2), based on ascending order of their dis-
tances to q (i.e., in the order of p4, p5, p6, p7, p8, …). When 
point p7 is evaluated, we have its corresponding SH1 = {p1, 
p4, p5, p6}. Since |SH1| > k, the point p7 can be safely pruned 
by Heuristic 1. Similarly, for point p8, we have its corre-
sponding SH1 = {p1, p5, p6}. As |SH1| > k, the point p8  can also 
be safely discarded by Heuristic 1.  

Heuristic 2. Given a query point q(loc, key), let n be one of the 
vertices passed by the shortest path SPqp from q to p, and SH2 
be the set of data points that have their distances to n smaller 
than the distance from q to n and meanwhile have their key-
words covering p.key, i.e., SH2 = {p  P| ||p, n|| < ||q, n||  
p.key  p.key }. If |SH2| ≥ k, then p  RkBSK(q).  

Proof. Since n is one of the vertices passed by the shortest 

path SPqp from p to q, we have ||p, q|| = ||p, n|| + ||n, q||. 
On the other hand, based on the triangle inequality, for 
 p  SH2, we have ||p, p||  ||p, n|| + ||n, p|| < ||q, n|| + ||n, 
p|| = ||q, p||. As |SH2| ≥ k, it is certain that q cannot be an 
answer point for TkBSK(p), and hence, p  RkBSK(q). 
The proof completes.                                                         

Heuristic 2 considers not only those data points lo-
cated on a specified shortest path, but also all the points 
located around any node vertex on the shortest path. Dur-
ing the network expansion, Heuristic 2 can serve as a 
supplement to Heuristic 1. In the following, we first illus-
trate how Heuristic 2 can help to prune away unqualified 
data points using an example, and then, we will present a 
new structure to implement Heuristic 2 in Section 5.2.  

Consider the example depicted in Fig. 5 again, and 
suppose an R3BSK query is issued at q. Assume that the 
network expansion reaches point p4, and its shortest path 
from q passes node n0. If the network expansion has al-
ready identified three data points p1, p2, and p3 around the 
node n0 with p1.key = {a, b}, p2.key = {a, c}, and p3.key = {a, c}. 
Clearly, all these three data points have their distances to 
n0 smaller than ||q, n0||, and their keyword sets all contain 
p4.key = {a}, i.e., SH2 = {p1, p2, p3}. As |SH2| ≥ k = 3, p4 can be 
safely pruned away by Heuristic 2.  

In order to prune a point p, Heuristic 2 actually consid-
ers the points located around each node on the shortest 
path SPqp from q to p. Nonetheless, this kind of checking 
might be expensive, and it does not align with our net-
work expansion order. In this paper, we adopt an ap-
proximated implementation of Heuristic 2, and try to in-
tegrate Heuristic 2 with our network expansion. Instead 
of considering all the nodes located on SPqp, we only take 
into account the node n closest to p; instead of considering 
all the points with their distances to n bounded by ||q, n|| 
and meanwhile having their keywords satisfying the tex-
tual constraint, we only take a subset into consideration, 
i.e., those points located on SPqp and those points located 
on n’s next edge(s). We illustrate the difference between 
our implementation and Heuristic 2 in Fig. 6. Assume 
that the network expansion just reaches point p, which is 
located on edge (n3, n5). Now we need to check whether p 
can be discarded by Heuristic 2. The original Heuristic 2 
needs to examine all the nodes located along SPqp, i.e., 
nodes n1, n2, and n3. For each node n, we need to find its 
corresponding SH2 = {p| ||p, n|| < ||q, n||  p.key  p.key}. In 
other words, we have to issue a range query around eve-
ry node n along SPqp in order to identify those points p 
with ||p, n|| < ||q, n||. As shown in Fig. 6(a), those bold 
edges represent the set of edges Heuristic 2 has to scan. 

q n1

pn2
n3

n4

n6

n7

n5

||q, n2||

||q, n1||

        

q n1

pn2
n3

n4

n6
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||q, n1||
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(a) Original Heuristic 2                (b) Simplified Heuristic 2  

Fig. 6. Illustration of simplified Heuristic 2  
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Our implementation simplifies the processing. We only 
consider one node along SPqp that is closest to p, e.g., node 
n3 in this example. For node n3, we do not take into ac-
count all the points p with ||p, n3|| < ||q, n3||. Instead, we 
only consider those points located on the shortest path 
from q to n3, and those located on n3’s next edges, i.e., 
edge (n3, n4) and edge (n3, n5). In other words, the bold 
edges in Fig. 6(b) denote the set of edges our simplified 
checking needs to scan.  

Heuristic 3. Given a query point q(loc, key) and a data point p 
with p.key  q.key, let SH3 be the set of points p whose key-
words are subsets of p and whose shortest paths SPqp actu-
ally pass p, i.e., SH3 = {p| p.key  p.key  p  SPqp}. If p  
RkBSK(q), it is certain that  all the points in SH3 cannot be 
the answer points for RkBSK(q), i.e., p  RkBSK(q)   p 
 SH3, p  RkBSK(q).  

Proof. Assume that the above statement is invalid, i.e., 
there is at least one point p  SH3 that belongs to the 
result set RkBSK(q). Based on the definition of RkBSK 
search, p  RkBSK(q)  q  TkBSK(p). As |TkBSK(p)| = 
k, q and another (k  1) points form the result set 
TkBSK(p). On the other hand, we know that p  
RkBSK(q), and thus, q  TkBSK(p). Since |TkBSK(p)| = 
|TkBSK(p)| = k, q  TkBSK(p) and q  TkBSK(p), i.e., 
there is at least one point p≠ q) such that p  
TkBSK(p) and p  TkBSK(p). As p  TkBSK(p), q  
TkBSK(p), p.key  q.key, and p.key  p.key, we have 
||p, q|| < ||p, p||. Since the shortest path SPqp from q to p 
actually passes by p, we have ||p, q|| = ||p, q|| + ||p, p||. 
Based on the triangle inequality, we have ||p, p|| ≤ ||p, 
p|| + ||p, p||. Therefore, the above inequation ||p, q|| < 
||p, p|| can be converted to ||p, q|| + ||p, p|| < ||p, p|| + ||p, 
p||, i.e., ||p, q|| < ||p, p||, which contradicts with the fact 
that p  TkBSK(p) but q  TkBSK(p) with p.key  q.key 
and p.key  p.key. Consequently, our assumption is 
invalid and the proof completes.                                     

Back to our example shown in Fig. 5 with an R3BSK 
query issued at q. As discussed earlier, points p4, p7, and p8 
can be pruned by Heuristic 1 and Heuristic 2. In other 
words, only points p1, p5, and p6 are in the candidate set, 
and we need to invoke BV algorithm to verify each of 
them. However, using Heuristic 3, once we know p5 is not 
a real answer point for R3BSK(q), we can discard p6 with-
out any further evaluation. This is because the shortest 
path from q to p6 passes p5 and p6.key  p5.key.  

To sum up, three Heuristics developed in this section 
can help to prune points p4, p6, p7, and p8, as illustrated in 
Fig. 5. Their pruning power will be also verified through 
extensive experiments to be presented in Section 6.  

5.2 The Count Tree 
In order to further improve search performance, we 

also propose a novel data structure so-called count tree as 
a replacement of the count list used in our RkBSK algo-
rithm. The main drawback of the count list is that it has 
no fast access method to fetch all subsets of a given key-
word set, which definitely affects the search efficiency.  

As shown in Fig. 7, the count tree is comprised of 
2|q.key|-1 nodes, and each tree node tn in the count tree 
corresponds to a non-empty subset tn.key of q.key, i.e., 
tn.key  q.key. In addition to the keyword tn.key, it also 
maintains three counters, namely, c1, c2, and c3. Here, c1 
represents the number of points p located on the shortest 
path SPqn from q to n with p.key = tn.key, c2 denotes the 
number of points p located on SPqn with tn.key  p.key, 
and c3 represents the number of points located on n’s next 
edges. In other words, counter c1 is to serve Lemma 1, 
counter c2 is to serve Heuristic 1, and counter c3 is to serve 
Heuristic 2. We will utilize Example 2 to further explain 
these three counters later. The height of the count tree is 
set to |q.key|. Assume that all the leaf nodes are at level 1, 
and the root node is at level |q.key|. Then, nodes in the l-th 
level of the count tree correspond to the keywords with 
length l, e.g., a leaf node at level 1 only contains one key-
word of q.key, a node at level 2 includes two keywords of 
q.key, and so forth. A tree node tn1 at level (l + 1) is a par-
ent of a tree node tn2 at level l if the keywords of tn2 are a 
subset of the keywords corresponding to node tn1, i.e., 
tn2.key  tn1.key.  

Example 2. Take the road network depicted in Fig. 2 as an 
example. Assume that an R3BSK query is issued at a 
query point q with q.key = {a, b}, and it expands the road 
network in order of n0, n1, n2, n5, n3, n6, …. When node n1 
is encountered, a new count tree CT(n1) is created. As 
shown in Figure 7(a), it has two levels as |q.key| = 2. For 

(a, b)
1 1

1evel 1

1evel 2

tree node tnkeyword tn.key

c1

c2

(a) CT(n1) 

2 c3

(a)
0 1 3

(b)
0 1 3

(a, b)
3 3

(b) CT(n2) 

0

(b)
0 3 0

(a)
2 5 0

Fig. 7. Example of count trees  

TABLE 2: TRACE OF N1’S COUNT TREE  

key counter edge (q, n1) edge (n1, n2) edge (n1, n5) 
c1 (01) p1 － － 
c2 (01) p1 － － 

a,b 

c3 (02) － p3 p10 
c1 (00)  － － 
c2 (01) p1 － － 

a 

c3 (03) － p2, p3 p10 
c1 (00)  － － 
c2 (01) p1 － － 

b 

c3 (03) － p3 p9, p10 
 

TABLE 3: TRACE OF N2’S COUNT TREE 

key counter edge (n1, n2) edge (n2, n3) edge (n2, n6) 
c1 (13) p3, p4 － － 
c2 (13) p3, p4 － － 

a,b 

c3 (00) － unvisited unvisited 
c1 (02) p2, p5 － － 
c2 (15) p2, p3, p4, p5 － － 

a 

c2 (00) － unvisited unvisited 
c1 (00)  － － 
c2 (13) p3, p4 － － 

b 

c3 (00) － unvisited unvisited 
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each tree node tn, its counters c1 and c2 are initially set to 0, 
and they are increased only when a point p located on 
the shortest path from q to n1 (i.e., edge (q, n1)) with tn.key 
= p.key or tn.key  p.key is found. Given the fact that there 
is only one point p1 ({a, b}) located on the edge (q, n1), the 
counter c1 of {a, b} is increased by 1, and the counters c2 of 
all three tree nodes are increased by 1. Similarly, for every 
tree node tn, its counter c3 is initially set to 0, and it is in-
creased only when a point p located on n1’s next edge(s) 
with tn.key  p.key is found. Table 2 lists the located data 
points that trigger the updates of the counters, and Fig. 
7(a) illustrates the final count tree CT(n1). Note that, in 
Table 2, ‘’ means there is zero qualified point on the edge 
that can trigger any update of corresponding counters, 
and ‘－’ indicates the point(s) on the edge does(do) not 
trigger any update on corresponding counter(s).  

Next, we explain the count tree CT(n2) of node n2. First 
of all, a tree similar as CT(n1) is created, with all the c1s 
and c2s of CT(n2) copy the values of corresponding c1s and 
c2s in CT(n1), and all the c3s of CT(n2) are set to 0. This rea-
son behind is that, c1 and c2 of a tree node tn in CT(n2) 
represent the number of points p located on the shortest 
path SPqn2 from q to n2 with p.key = tn.key and tn.key  
p.key, respectively. As node n1 is located on SPqn2, SPqn2 
actually can be divided into two sub-paths, i.e., the short-
est path SPqn1 from q to n1 and edge (n1, n2). Since c1 and c2 
of CT(n1) actually capture those qualified data points lo-
cated on SPqn1, we only need to focus on edge (n1, n2) by 
initializing c1s and c2s in CT(n2) to corresponding c1s and 
c2s in CT(n1). As listed in Table 3, on edge (n1, n2), we lo-
cate a few qualified points which help to update the val-
ues of c1 and c2. Then, on edge (n2, n3) and edge (n2, n6), 
we locate another set of qualified points which help to 
update the values of c3 if the algorithm does not terminate 
at n2. The final CT(n2) is depicted in Fig. 7(b). We would 
like to highlight that, although we separate the count tree 
formation for node n1 and node n2 in the above explana-
tion, they are actually formed in a parallel fashion. As 
shown in Table 2 and Table 3, when points on edge (n1, n2) 
are evaluated, it updates the c3s of CT(n1) as well as the c1s 
and c2s of CT(n2).                                                                       

Last but not least, we explain the idea of count tree re-
use. Every time, when we evaluate a new vertex n, it is 
not always necessary to create a new count tree CT(n) 
because we might be able to reuse some existing count 
tree CT(v) if CT(v) no longer needed. In the following, we 
explain when a count tree CT(v) corresponding to a vertex 
v is no longer needed. Given a vertex v, its count tree CT(v) 
is to preserve the information related to the points located 
on SPqv and to initiate count trees CT(v’)s with v’ being n’s 
adjacent vertices. Consequently, if vertex v and all its ad-
jacent vertices v’ have been visited, the information re-
lated to points located on SPqv is actually preserved by 
count trees CT(v’)s and CT(v) is no longer needed. In this 
case, we can re-use CT(v) for another newly visit vertex. 
The reason we promote the reuse of count trees is that all 
count trees share the same structure, which is dependent 
on keywords specified by the query point. Although the 
reuse technique is simple, it is efficient which will be fur-
ther demonstrated in our experiments.  

5.3 Algorithm Details  
Now, we are ready to present our Enhanced RkBSK (ERk-
BSK) algorithm that fully utilizes the above pruning heu-
ristics. In the sequel, we present the ERkBSK-Filter proc-
ess which prunes unnecessary data points based on not 
only Lemma 1 and Lemma 2 but also Heuristic 1 and 
Heuristic 2, and then explain the ERkBSK-Refinement 
process using Heuristic 3.  

5.3.1 Filtering for ERkBSK Algorithm  
ERkBSK algorithm shares the same framework as RkBSK 
algorithm. It expands the road network from a specified 
query point q, and only inserts potential answer points to 
the candidate set Sc after applying certain pruning rules 
(e.g., Lemma 1).  

Algorithm 3 presents the pseudo-code of the filtering 
step for ERkBSK algorithm (ERkBSK-Filter). Different from 
RkBSK-Filter algorithm (mentioned in Section 4.2), 
ERkBSK-Filter integrates new pruning heuristics, i.e., 
Heuristic 1 and Heuristic 2. It first locates edge (ni, nj) that 
q is located (line 1). We assume that q is closer to node ni, 
and split edge (ni, nj) into two edges (q, ni) and (q, nj) 
which are en-queued into the priority queue U (line 2). 
Like RkBSK algorithm, edges (n, n) in U are sorted based 
on ascending order of the network distances from node n 
to q. Note that, CT(key, c1, c2, c3) is a constructor function 
to create a new count tree, with the parameter key deter-
mining the height and keys of the tree, and c1, c2, c3 de-
termining the initial values of the counters. An empty 
count tree is initiated for node q (line 3).  

Thereafter, the network expansion starts. For each de-
queued edge (n, n), ERkBSK-Filter first needs to initialize 
the count tree for node n. It needs to copy the values of 
counter c1 and counter c2 from the count tree CT(n). For 
counter c3, ERkBSK-Filter needs to check the qualified 
points located on edge (n, n) which fits nicely with our 
network expansion strategy. Then, it scans all the points 
located on edge (n, n) one by one, based on their dis-

Algorithm 3 Filter for ERkBSK Algorithm (ERkBSK-Filter)  
  Input: q(loc, key), k, a set P of data points on a road network  
  Output: the candidate set Sc of an RkBSK query  
  1:  locate the edge (ni, nj) that q is located (assume q is closer to ni)  
  2:  U = {(q, ni), ||ni, q||, (q, nj), ||nj, q||}   // edges in U are sorted in  
                                                ascending order of their distances to q  
  3:  CT(q) = new CT(q.key, 0, 0, 0)   // q is regarded as a road vertex  
  4:  while U is not empty do  
  5:     e = (n, n) = de-queue (U)  
  6:     CT(n) = new CT(q.key, CT(n).tn[*].c1, CT(n).tn[*].c2, 0)  
  7:     for each data point p on e do   // visit points in ascending  
                                                                   order of their distances to q 
  8:        if CT(n).tn[p.key].c1 < k and CT(n).tn [p.key].c2 < k and  
             CT(n).tn[p.key].c2 + CT(n).tn[p.key].c3) < k then  
  9:           Sc = Sc ∪ {p}   // Lemma 1, Heuristics 1 and 2  
10:           if p.key  q.key) then CT(n).tn[p.key].c1 ++   // Lemma 1  
11:           if (key = p.key ∩ q.key) ≠  then  
12:              for each kj  key do CT(n).tn[kj].c2 ++   // Heuristic 1  
13:              if ||p, n || < ||n, q|| then  
14:                 for each kj  key do CT(n).tn[kj].c3 ++   // Heuristic 2  
15:     if CT(n).tn [*].c1 < k, CT(n).tn [*].c2 < k, and (CT(n).tn[*].c2  
          + CT(n).tn[*].c3) < k then   // Lemma 2, Heuristics 1 and 2 
16:        for each unvisited edge (n, n) in the edge set E do  
17:           en-queue (n, n), ||n, q|| to U  
18:  return Sc  
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tances to q. For each located point p, the algorithm first 
examines if it can be pruned by our pruning heuristics, 
and it enrolls p to the candidate set iff it cannot be dis-
carded by Lemma 1, Heuristic 1, and Heuristic 2 (lines 8-
9). Next, ERkBSK-Filter updates counters of CT(n) and 
CT(n) based on p.key. First, using Lemma 1, counter c1 of 
CT(n) w.r.t. p.key is increased by one if p.key is bounded 
by q.key (i.e., p.key  q.key) (line 10). Second, based on 
Heuristic 1, counter c2 of CT(n) w.r.t. any non-empty sub-
set of p.key ∩ q.key is increased by one if p.key overlaps 
with q.key (i.e., p.key ∩ q.key ≠ ) (lines 11-12). Third, using 
Heuristic 3, counter c3 of CT(n) w.r.t. any non-empty sub-
set of p.key ∩ q.key is increased by one if p.key overlaps 
with q.key (i.e., p.key ∩ q.key ≠ ) and meanwhile ||p, n|| < 
||n, q|| (lines 13-14). Once all the points located on edge (n, 
n) are evaluated, the algorithm en-queues n’s next edges 
into U to expand the network based on Lemma 2, Heuris-
tic 1, and Heuristic 2 (lines 15-17). Once the expansion 
finishes, the candidate set is returned to complete the al-
gorithm (line 18).  

Example 3. We illustrate ERkBSK-Filter algorithm using 
the dataset in Fig. 2. Assume that an R3BSK query is is-
sued at a query point q with q.key = {a, b}, and the road 
network is expanded in order of n0, n1, n2, n5, n3, n6, . 
The algorithm starts by locating q and initializing U and 
CT(q). We depict the trace of the filtering step in Table 4, 
and the changes of count trees are shown in Fig. 8.           

5.3.2 Refinement for ERkBSK Algorithm  
The refinement step of ERkBSK algorithm (ERkBSK-
Refinement) applies Heuristic 3, which is different from 
that of RkBSK algorithm. Specifically, it has three tasks, 
i.e., verifying data points in Sc based on the BV algorithm, 
pruning false candidates in Sc based on Heuristic 3 with-
out incurring other verification procedure, and returning 
the final answer points. Initially, ERkBSK-Refinement 
sorts the candidate points in Sc based on ascending order 
of their distances to q, and then evaluates them one by 
one. For each evaluated point p, if p is validated to be an 
actual answer point, p is added to the result set Sr; other-
wise, ERkBSK-Refinement discards p, together with all the 
other not-yet-checked candidates p’ in Sc whose shortest 
paths to q contain p and p.key  p.key. The algorithm ter-
minates when all the candidate points in Sc have either 
been evaluated or discarded, and the final query result set 
Sr is returned.  

Example 4. Continue Example 3. After the filter step, Sc = 
{p1, p2, p3, p4}. ERkBSK-Refinement then verifies them 
based on ascending order of their distances to q. First, p1 
is evaluated and is reported as a real answer point with Sr 
= {p1}. Next, p2 is verified, and is reported as a false an-

swer point. As SH3 w.r.t. p2 is empty, it does not help to 
prune any other candidate point. Then, p3 is checked and 
also reported as a false answer point, and p4  SH3 w.r.t. p3. 
Hence, both p3 and p4 are discarded. Finally, the refine-
ment step stops with Sr = {p1}.                                                

5.4 Discussion  
In a 2D space, like existing TPL and RSTkNN methods for 
RNN search and its variants, the proposed ERkBSK algo-
rithm with several pruning heuristics does not require 
any pre-computation, and it can return the exact result. 
However, compared with TPL and RSTkNN, ERkBSK 
algorithm incurs a higher query cost, especially when 
data points are sparse and |q.key| is large. This is because 
ERkBSK algorithm needs to consider the distance of the 
shortest path and the keyword constraint. In what follows, 
we first briefly discuss the cost of ERkBSK algorithm, and 
then prove its correctness.  

Lemma 3. If m shortest paths ended in a specified query point 
q have been expanded in the filtering step, the ERkBSK algo-
rithm traverses the dataset P at most (|Sc| + 1) times with Sc 
being the candidate set and |Sc|  (2|q.key|  1)  mk.  

Proof. As shown in Algorithm 3, ERkBSK-Filter algorithm 
only traverses a given data set P at most once to form a 
candidate set Sc. Since ERkBSK algorithm uses Lemma 
2 to set the upper bound of Sc, the number of points in 
Sc is no more than (2|q.key|  1)  mk. Then, ERkBSK-
Refinement algorithm invokes BV algorithm once for 
every point in Sc in the worst case (i.e., if Heuristic 3 
does not help to prune away any candidate point). 
Consequently, ERkBSK algorithm traverses P at most 
((2|q.key|  1)  mk + 1) times.                                                

TABLE 4: TRACE OF ERKBSK-FILTER  

Step Action U Sc 
1 de-queue (q,n0), 0.5 (q, n1), 2.5  

2 de-queue (q,n1), 2.5 
(q, n2), 7.5  
(q, n5), 8 

p1 

3 de-queue (q, n2), 7.5 (q, n5), 8 p1, p2, p3, p4 
4 de-queue (q, n5), 8  p1, p2, p3, p4 
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(d) CT(n2)

(f) CT(n5)  
Fig. 8. Trace of count trees after each step  

Algorithm 4 Refinement for ERkBSK Algorithm (ERkBSK-Refinement)  
  Input: a candidate set Sc, a query point q, a parameter k  
  Output: the result set Sr of an RkBSK query  
  1:  Initialize Sr =   
  2:  for each candidate point p in Sc do  
  3:     if BV(p, q, k) = TRUE then Sr = Sr ∪ {p}  
  4:     else Sc = Sc  {p| p.key  p.key  p  SPqp}   // Heuristic 3  
  5:  return Sr  
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Theorem 1. The ERkBSK algorithm returns exactly the result 
set RkBSK(q), i.e., the algorithm has no false negative and 
no false positive.  

Proof. First, ERkBSK algorithm only prunes away those 
unqualified points or network area in the filtering step, 
by using our proposed pruning heuristics. Therefore, 
no answer points are missed (i.e., no false negative). 
Second, every candidate point p  Sc either is verified 
in the refinement step by BV algorithm or is discarded 
by Heuristic 3, which ensures no false positive. Conse-
quently, the proof completes.                                            

6 EXPERIMENTAL EVALUATION 
In this section, we experimentally evaluate the effective-
ness and efficiency of our proposed algorithms for RkBSK 
search through extensive experiments on both real and 
synthetic data sets. We describe the experimental settings 
in Section 6.1, verify the pruning power of the developed 
heuristics in Section 6.2, compare the efficiency of count 
list and count tree in Section 6.3, and report the perform-
ance of our proposed algorithms for RkBSK queries in 
Section 6.4. All the algorithms were implemented in C++, 
and all the experiments were conducted on a PC with an 
Intel Core 2 Duo 2.93 GHZ E7500 CPU and 3GB RAM, 
running Ubuntu 13.04 desktop edition.  

6.1 Experimental Setup  
We deploy both real and synthetic data sets. As summa-
rized in Table 5, we employ three real road networks2 CA, 
NA, and SF as our data sets. For these datasets, POIs with 
real keyword sets are randomly generated in a way simi-
lar as [18]. We also generate two synthetic datasets. The 
first data set is to study the impact of the keyword set size 
per data point on the search performance. We preserve 
the road network and the data points of NA but change 
the keyword settings to generate five sets, viz., NA-K2, 
NA-K4, NA-K6, NA-K8 and NA-K10 as [18]. The average 
distinct number of keywords per data point in each data-
set is roughly 2, 4, 6, 8, and 10, respectively. The second 
data set is to explore the impact of data point density on 
the search performance. We preserve the road network of 
NA but change the number of data points per edge to 
generate five datasets, i.e., NA-C4, NA-C6, NA-C8, NA-
C10, and NA-C12. For every dataset NA-Ci, the average 
number of data points per edge is approximately set to i.  

The experiments investigate the performance of the 
proposed algorithms under a variety of parameters which 
are listed in Table 6. In the experiments, we measure (i) 
the response time (i.e., the average response time in proc- 
2 CA, NA and SF are available at http://www.cs.utah.edu/~lifeifei/.  

TABLE 5: STATISTICS OF REAL DATASETS  

Data Vertex Edge Objects 
CA 21,048 21,693 0.17M 
NA 175,813 179,179 1.4M 
SF 174,956 223,001 1.7M 

 

TABLE 6: PARAMETER SETTINGS  

Parameter Range Default 
# of query keywords (i.e., |q.key|)  1, 3, 5, 7, 9 5 
k  10, 20, 30, 40, 50 30 
avg # of POI (p) keywords (i.e., |p.key|)  2, 4, 6, 8,10 4 
avg # of POIs per edge (i.e., |POIs|)  4, 6, 8, 10, 12 8 
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Fig. 9. Pruning efficiency of heuristics vs. |q.key|  
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Fig. 10. Pruning efficiency of heuristics vs. k  
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essing a workload); (ii) the number of page accesses by 
various algorithms during the search; and (iii) the num-
ber of data points pruned by each pruning heuristic. All 
data sets are indexed by our modified CCAM model (dis-
cussed in Section 3.2) with the disk page size fixed to 
4,096 bytes. In each experiment, we vary only one pa-
rameter and fix other parameters at their defaults. 100 
random queries are evaluated in every experiment (as 
with [18]), and their average performance is reported. To 
be more specific, the query is randomly located in one 
edge of the road network, and the query keywords are 
randomly extracted from the vocabulary of the data set. 
We assume that the server maintains a buffer of 200 pages 
with LRU as the cache replacement policy.  

6.2 Effectiveness of Pruning Heuristics 
The first set of experiments is to verify the effectiveness of 
our presented pruning heuristics based on the number of 
data points pruned. As different lemmas/heuristics are 
introduced for different purposes, the points they try to 
prune are different.  For Lemma 1 and Lemma 2, they are 
integrated simultaneously in RkBSK algorithm, and hence 
we report their joint pruning power based on the number 

of data points they, but not BM, can discard. For Heuristic 
1 and Heuristic 2, we refer to the data points they, but not 
newly developed lemmas, can prune. For Heuristic 3, we 
measure those candidate points in the candidate set Sc 
that can be discarded without invoking BV algorithm.  

We change |q.key| from 1 to 9 and depict the results in 
Fig. 9. We also vary k and show the results in Fig. 10. Evi-
dently, all the lemmas and heuristics have excellent prun-
ing power. Take Heuristic 1 for NA as an example. It 
saves the detailed examination of about 33,026 points 
when |q.key| = 5. Based on our experiments, Heuristic 3 is 
not as effective as others. This is because Heuristic 3 is 
only applied to the candidate points in Sc. Since the ma-
jority of data points have already been pruned away by 
Lemmas, Heuristic 1, and Heuristic 2, the candidate set is 
not big, which leaves the room for improvement brought 
by Heuristic 3 very small. It is observed that although 
heuristics perform differently as parameters change, their 
overall effectiveness is significant.  

6.3 Effectiveness of Count Tree  
The second set of experiments evaluates the efficiency of 
count tree. Towards this, we deploy NA dataset, and vary 

1 3 5 7 9
number of query keywords

qu
er

y 
ti

m
e 

(s
ec

)

0

30

60

90

120

150

180

BM

RkBSK

ERkBSK

     
1 3 5 7 9

number of query keywords

# 
of

 p
ag

e 
ac

ce
ss

es
 (

K
)

0

20000

40000

60000

80000

BM

RkBSK

ERkBSK

 
(a) CA                                            (b) CA  

1 3 5 7 9
number of query keywords

qu
er

y 
ti

m
e 

(s
ec

)

0

500

1000

1500

2000

2500

BM

RkBSK

ERkBSK

     
1 3 5 7 9

number of query keywords

0

300000

600000

900000

BM

RkBSK

ERkBSK

# 
of

 p
ag

e 
ac

ce
ss

es
 (

K
)

 
(c) NA                                            (d) NA  

1 3 5 7 9
number of query keywords

qu
er

y 
ti

m
e 

(s
ec

)

0

400

800

1200

1600

2000

BM

RkBSK

ERkBSK

     
1 3 5 7 9

number of query keywords

# 
of

 p
ag

e 
ac

ce
ss

es
 (

K
)

0

150000

300000

450000

600000

750000

BM

RkBSK

ERkBSK

 
(e) SF                                             (f) SF  

Fig. 12. Query cost vs. |q.key|  
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Fig. 14. Query cost vs. |p.key|  
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Fig. 13. Query cost vs. k  
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the number k and |q.key|. We demonstrate the efficiency 
of count tree by comparing it with count list using the 
same algorithm, i.e., ERkBSK algorithm. The experimental 
results are illustrated in Fig. 11. It is observed that, the 
cost of ERkBSK using count list (denoted as ERkBSK-
Count List) increases more significantly with the growth 
of both k and |q.key|. Furthermore, when the values of k 
and |q.key| grow, the gap of ERkBSK using different data 
structures is also enlarged. The reason is that the cost of 
maintaining count list ascends with k and |q.key|, since 
finding count information using count list is more costly 
than that under count tree.  

6.4 Results on RkBSK Queries  
In this set of experiments, we evaluate the performance of 
BM, RkBSK, and ERkBSK algorithms. We study the influ-
ence of various parameters, including (i) the number of 
query keywords (i.e., |q.key|), (ii) k, (iii) the average num-
ber of keywords per point p in the dataset (i.e., |p.key|), 
and (iv) the average number of POIs per edge (i.e., |POIs|).  

First, we investigate the impact of |q.key| on the effi-
ciency of the algorithms, and show the results for k=30 in 
Fig. 12. As observed, ERkBSK exceeds BM and RkBSK in 
all cases. The reason is that, as mentioned in Section 4, 
BM needs to verify all data points p with p.keyq.key, and 
RkBSK, although performing better than BM, still needs to 
evaluate a large number of data points. We also observe 
that the cost of RkBSK retrieval increases with |q.key|. 
This is expected, as |q.key| grows, more points satisfy the 
keyword constraint, and thus, the candidate set is bigger.  

We then explore the impact of k with results depicted 
in Fig. 13. Similar to what has been observed previously, 
ERkBSK performs the best, followed by RkBSK, BM is the 
worst. Also, the value of k affects the performance.  

Next, we evaluate the performance of RkBSK algo-
rithms under different average number of keywords per 
data point p (i.e., |p.key|), with results plotted in Fig. 14. As 
expected, ERkBSK outperforms BM and RkBSK signifi-
cantly, especially for larger |p.key|. When |p.key| changes 
from 2 to 10, the cost of RkBSK retrieval decreases. This is 
because the number of candidate objects drops as |p.key| 
ascends, which helps to reduce the cost. Another observa-
tion is that the cost of ERkBSK decreases dramatically as 
|p.key| grows. The reason is that the pruning power of 
Heuristics increases with the growth of |p.key|.  

Last but not least, we study the effect of |POIs| (i.e., the 
average number of POIs per edge) on the performance of the 
algorithms, with the results shown in Fig. 15. Increasing 
|POIs| has different impacts on these three algorithms. As 
depicted in Fig. 15, when |POIs| grows, BM increases its 
costs significantly, while RkBSK and ERkBSK actually 
decrease their costs. This is because, as |POIs| ascends, BM 
needs to evaluate more data points, whereas RkBSK and 
ERkBSK actually expand a smaller area in the road net-
work with the help of efficient lemmas and heuristics.  

7 CONCLUSIONS  
In this paper, we identify and solve a novel type of que-
ries, namely, RkBSK search, on road networks by consid-

ering spatial and textual constraints. Although both 
RkNN retrieval and spatial keyword search on road net-
works have been studied, there is no previous work that 
takes into account both the reverse spatial proximity be-
tween objects on road networks and the textual constraint. 
On the other hand, RkBSK retrieval is useful in many de-
cision support applications involving keywords and road 
networks. Two efficient algorithms are developed to sup-
port RkBSK queries on road networks, assuming that the 
road network is modeled by a large graph. An extensive 
experimental evaluation with both real and synthetic data 
sets has been conducted to verify the performance of our 
proposed algorithms in answering RkBSK queries.  

This work also inspires several directions for future 
work. First, we only focus on Boolean spatial keywords 
search in this work. Thus, how to extend our solutions to 
score based spatial keyword retrieval needs further study. 
Second, we plan to explore the multi-source RkBSK query 
that is issued with respect to multiple query points, which 
can be regarded as the group version of RkBSK search. 
Finally, in addition to road networks, how to use RkBSK 
queries on social networks is also interesting.  
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