
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2015

Efficient Reverse Top-k Boolean Spatial Keyword Queries on Road Efficient Reverse Top-k Boolean Spatial Keyword Queries on Road

Networks Networks

Yunjun GAO
Singapore Management University

Xu QIN

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Gang CHEN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, Numerical Analysis and Scientific

Computing Commons, and the Transportation Commons

Citation Citation
GAO, Yunjun; QIN, Xu; ZHENG, Baihua; and CHEN, Gang. Efficient Reverse Top-k Boolean Spatial Keyword
Queries on Road Networks. (2015). IEEE Transactions on Knowledge and Data Engineering (TKDE). 27,
(5), 1205-1218.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2455

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2455&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X 1

Efficient Reverse Top-k Boolean Spatial
Keyword Queries on Road Networks

Yunjun Gao, Member, IEEE, Xu Qin, Baihua Zheng, Member, IEEE, and Gang Chen

Abstract—Reverse k nearest neighbor (RkNN) queries have a broad application base such as decision support, profile-based
marketing, and resource allocation. Previous work on RkNN search does not take textual information into consideration or limits
to the Euclidean space. In the real world, however, most spatial objects are associated with textual information and lie on road
networks. In this paper, we introduce a new type of queries, namely, reverse top-k Boolean spatial keyword (RkBSK) retrieval,
which assumes objects are on the road network and considers both spatial and textual information. Given a data set P on a
road network and a query point q with a set of keywords, an RkBSK query retrieves the points in P that have q as one of answer
points for their top-k Boolean spatial keyword queries. We formalize the RkBSK query and then propose filter-and-refinement
framework based algorithms for answering RkBSK search with arbitrary k and no any pre-computation. To accelerate the query
process, several novel pruning heuristics that utilize both spatial and textual information are employed to shrink the search
space efficiently. In addition, a new data structure called count tree has been developed to further improve query performance.
A comprehensive experimental evaluation using both real and synthetic data sets demonstrates the effectiveness of our
presented pruning heuristics and the performance of our proposed algorithms.

Index Terms—Boolean Spatial Keyword Query, Reverse Top-k Boolean Spatial Keyword Query, Road Network, Query Processing.

——————————  ——————————

1 INTRODUCTION

kNN retrieval has received lots of attention from the
database research community in the past decade, due

to its importance in a wide spectrum of applications such
as decision support, profile-based marketing, and re-
source allocation [9, 21, 22]. Given a set P of data points
and a query point q in a Euclidean space, a reverse k near-
est neighbor (RkNN) query finds the points in P that have
q as one of their k nearest neighbors. Consider the exam-
ple shown in Fig. 1, where two RNN (k = 1) queries are
issued at q1 and q2 respectively in the Euclidean space.
The RNN of q1 is , as none of the objects takes q1 as its
nearest neighbor (NN); and the RNN of q2 is A as A’s NN
is q2. RkNN search and its variants (e.g., [4, 8, 10]) have
been well-studied in the literature. In this work, we en-
hance traditional RkNN retrieval from two aspects. First,
different from existing RkNN search that assumes a
Euclidean space, we consider a road network. We believe
this setting is more realistic since spatial objects in the real
world are always restricted to the road network. Second,
in addition to objects’ spatial properties that are consid-
ered by existing RkNN queries, we also take into account
textual characteristics of objects. The combination of spa-
tial and textual properties offers greater flexibility to its

users when looking for interesting objects. It also aligns
nicely with the industry practice. For example, more and
more real life applications call for new forms of queries
that satisfy both spatial and textual constraints. In view of
this, we propose a new type of queries, namely, reverse
top-k Boolean spatial keyword (RkBSK) query, which assumes
objects on the road network, and returns the objects hav-
ing a specified query point q as one of the answer objects
for the top-k Boolean spatial keyword query1.

RkBSK queries constitute a suite of interesting and
practical problems from not only the research point of
view but also the application point of view. For instance,
as illustrated in Fig. 1, assume that Hard Rock Cafe plans
to open a new restaurant that serves pizza, coffee, and steak
(represented as a set of keywords) in a new industry park.
If there are two places (e.g., q1, q2) available to host the
new restaurant, we need to identify a better one. One
common strategy is to choose the place with fewer com-
petitors. Obviously, if restaurant C takes the new restau-
rant as its nearest neighbor and all the items served by C
will be served by the new restaurant as well, the restau-
rant C is considered as a competitor for the new restau-
rant. By taking into account both textual information and
distance (i.e., the shortest path), the RkBSK query can find
the location out of a given set of potential places that have
the fewest competitors. In this case, q2 offers a better
choice, since it has fewer competitors compared with q1.
As another example, suppose all the customers subscrib-
ing to a coupon service specify their shopping interests
via keywords (e.g., baby, clothing, mobile devices, etc.).
The service provider can issue an RkBSK query at every
1 To be detailed later, a top-k Boolean spatial keyword query re-
trieves the k objects that are the closest to a given query point among
all the objects containing all the query keywords.

xxxx-xxxx/0x/$xx.00 © 201x IEEE

————————————————
 Y. Gao, X. Qin, and G. Chen are with the College of Computer Science,

Zhejiang University, 38 Zheda Road, Hangzhou 310027, China. E-mail:
{gaoyj, ccrsno1, cg}@zju.edu.cn.

 B. Zheng is with the School of Information Systems, Singapore Manage-
ment University, 80 Stamford Road, Singapore 178902, Singapore. E-
mail: bhzheng@smu.edu.sg.

Manuscript received XX XXX. 201X; revised XX XXX. 201X; accepted XX
XXX. 201X; published online XX XXX. 201X.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-201X-XX-XXX.
Digital Object Identifier no. XX.XXXX/TKDE.201X.XX.

R

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X

shopping mall m with the textual keyword set to the
products available in m. All the customers whose shop-
ping interests could be satisfied by m and meanwhile
have m as their closest shopping mall will be returned as
the potential customer base for m. The service provider
can send shopping coupons of the shopping mall m to m’s
potential customer base as they are more likely to shop in
m, compared with other customers.

A simple way to answer RkBSK queries is to issue a
top-k Boolean spatial keyword query at every data point p
 P, and those have q in their corresponding result sets
form the answer set for RkBSK search. It is straightfor-
ward but very inefficient. It needs to traverse the whole
dataset multiple times (i.e., at worst case (|P| + 1) times, 1
for fetching data points and |P| times for verification),
incurring high I/O overhead and expensive CPU cost.

Motivated by the significance of RkBSK queries and the
lack of efficient search algorithm for processing RkBSK
retrieval, in this paper, we propose efficient algorithms
based on filter-and-refinement framework to support RkBSK
search. Our solution utilizes both spatial and textual in-
formation to prune the search space significantly. More-
over, it can tackle exact RkBSK retrieval with an arbitrary k,
without any pre-computation. In brief, our key contribu-
tions in this paper are summarized as follows:

 We identify the problem of RkBSK queries on road
networks. To the best of our knowledge, this is the
first work to address this problem.

 We propose efficient RkBSK search algorithms based
on a filter-and-refinement framework, which can han-
dle arbitrary k and no any pre-computation.

 We develop several novel pruning heuristics for the
filtering phase and the refinement phase, to effec-
tively prune unqualified objects. In addition, we de-
sign a new data structure so-called count tree to fur-
ther boost query performance.

 We conduct extensive experiments using both real
and synthetic data sets to demonstrate the effective-
ness of our presented pruning heuristics and the
performance of our proposed algorithms.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 formulates the problem,
introduces the index structure and reveals its characteris-
tics. Section 4 and Section 5 propose two efficient algo-
rithms for processing RkBSK queries. Extensive experi-
mental evaluation and our findings are reported in Sec-
tion 6. Finally, Section 7 concludes the paper with some
directions for future work.

2 RELATED WORK
In this section, we overview the existing work related to
RkBSK queries, focusing mostly on RkNN search and spa-
tial keyword retrieval.

2.1 Conventional Spatial Queries
Since the concept of RNN was first introduced in [9],
many algorithms have been proposed in answering
RNN/RkNN query and its variants in Euclidean spaces [8,
10, 21, 22, 27]. RkNN retrieval in road networks has also
received significant attention. Safar et al. [19] deploy the
network Voronoi diagram and apply a progressive in-
cremental network expansion for processing RNN queries.
Yiu et al. [29] present two methods, namely, eager algo-
rithm and lazy algorithm, to tackle RNN search in a large
graph. Cheema et al. [4] adopt a filter-and-refinement
technique to solve continuous RkNN (CRkNN) search in
Euclidean spaces and road networks, respectively. Their
approach does not require expensive pre-computation, by
assigning each object and query with a safe region. Li et al.
[13] also explore the CRkNN query on road networks.
They present a new data structure, called DLM tree, to
represent the whole monitoring region of a CRkNN query.
However, it is worth noting that all the above approaches
are unsuitable for RkBSK search because they only focus
on spatial geometric information without considering any
textual information.

Recently, the reverse top-k query is attracting much at-
tention. Vlachou et al. [24] first indentify and solve re-
verse top-k queries. Later, they [25] also propose a new
branch-and-bound algorithm called BBR to address the
bichromatic reverse top-k query. Nevertheless, it is worth
mentioning that, their work differs from ours in at least
two aspects. First, their work is based on the weighting
vector offered by users. Second, they do not take the tex-
tual constraint into consideration.

2.2 Spatial Keyword Queries
Combining traditional spatial queries with keywords has
received considerable attention in the last few years [1, 2,
3, 5, 12, 31]. Boolean spatial keyword query and score
based spatial keyword query are two important types of
spatial keyword queries.

The Boolean spatial keyword query is to find the k ob-
jects nearest to the users’ location among the set of objects
whose textual description contains the query keyword set.
Felipe et al. [7] augment the R-tree with a signature file,
termed as IR2-tree, to facilitate the top-k spatial keyword
query. Unfortunately, the IR2-tree inherits a drawback of
false hits from the signature file. To overcome it, Tao and
Sheng [23] develop a new access method, i.e., spatial in-
verted (SI) index, which extends the conventional inverted
index to cope with this problem. As demonstrated in [23],
SI index outperforms IR2-tree. There are some other ef-
forts on Boolean spatial keyword queries. Cary et al. [3]
study the Boolean spatial keyword query under different
logical semantics. Wu et al. [28] utilize an IR-tree to solve
the problem of joint spatial keyword query processing.
Cao et al. [2] investigate collective spatial keyword search,
a variant of Boolean spatial keyword queries, which re-

{pizza, steak, coffee}

{pizza, steak, coffee}

{coffee}
D

{pizza, steak}

B {coffee}

 A {steak}

q2

C

q1
Restaurant
Query point

Fig. 1. Illustration of a motivating example

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

GAO ET AL.: REVERSE TOP-K BOOLEAN SPATIAL KEYWORD QUERIES ON ROAD NETWORKS 3

trieves a group of spatial web objects such that the
group’s keywords cover query keywords and meanwhile
the objects are closest to the query location and have the
minimal inter-object distances. In particular, due to the
complexity of this problem (i.e., NP-complete), they pre-
sent solutions for both exact search and approximate
search. Nonetheless, all the above queries differ from the
RkBSK query as they only aim at the Euclidean space.

Score based spatial keyword query aims to retrieve the
k objects with the highest ranking scores, measured as a
combination of their distances to the query location (a
point) and the relevance of their textual descriptions to
the query keywords. To address this, Cong et al. [6] pro-
pose an index, i.e., IR-tree, which combines an R-tree and
an inverted file, to find the query result. Rocha-Junior et
al. [17] develop a novel index named spatial inverted in-
dex (S2I) to boost the performance of the top-k spatial
keyword query.

More recently, Lu et al. [14] investigate reverse spatial
and textual k nearest neighbor (RSTkNN) search, which
takes into account textual similarity in RkNN retrieval.
An RSTkNN query is to find the objects that take a speci-
fied query object as one of their k most spatial-textual
similar objects. It is worth noting that, their work is also
different from ours. First, their rank function is based on
the similarity score, which combines the spatial distance
with textual similarity. Second, they only consider the
Euclidean space, and their algorithms use some geometric
properties that are only valid in Euclidean spaces but not
road networks.

Last but not least, spatial keyword queries on road
networks have also been studied in the literature [15, 18,
30, 32]. Rocha-Junior et al. [18] employ spatio-textual in-
dexes that combine R-trees and inverted files to process
the top-k spatial keyword query on road networks. Zhang
et al. [32] explore the problem of diversified spatial key-
word search on the road network, which takes into ac-
count both the textual relevance and the spatial diversity
of the results. Zhang et al. [30] develop a spatial keyword
query evaluation system that is comprised of keyword
constraint filter, keyword and spatial refinement, and
spatial keyword ranker for processing spatial keyword k
nearest neighbor and spatial keyword range queries. It is
worth pointing out that, these approaches are designed
only for top-k spatial keyword queries on road networks,
without considering the reverse version. Thus, they are

not capable of supporting efficient RkBSK retrieval.

3 PRELIMINARIES
In this section, we first formally define the RkBSK query
on the road network, and then, we introduce the disk
based storage model, and propose a baseline method
which performs better than the naive approach men-
tioned in Section 1. Table 1 summarizes the symbols used
frequently in this paper.

3.1 Problem Statement
In this paper, we model a road network by an undirected
weighted graph G = (V, E, W), in which V is a set of verti-
ces (i.e., road conjunctions or road borders), E is a set of
edges, and W is a set of weights that map every edge (ni,
nj) in E to a positive real number (indicating the road dis-
tance or the travel time). Without loss of generality, we
suppose bidirectional traffic, which is ubiquitous in real
life. We also assume that a set of spatial objects loc (e.g.,
restaurants, hotels, etc.) associated with a set of keywords
key (e.g., the menu of restaurants) lies on the road net-
work. These spatial points are referred to as the points of
interest (POIs), with each denoted by a two-vector tuple
(loc, key). For two POIs p1 and p2, the path from p1 to p2
with the shortest distance represents the shortest path.
The network distance between p1 and p2, denoted as ||p1,
p2||, is the length of the corresponding shortest path.

Definition 1 (top-k Boolean spatial keyword (TkBSK)
query on the road network). Given a query q(loc, key), a
parameter k, and a data set P with each POI p  P in the
form of (loc, key), let Pq.key be the set of POIs in P that con-
tain q.key, i.e., Pq.key = {p  P | q.key  p.key}. A TkBSK
query (on the road network) issued at q, denoted as
TkBSK(q), returns the k POIs in Pq.key having the minimal
network distances to q, formally, TkBSK(q) = {S  Pq.key |
|S| = k   s  S,  p  (Pq.key  S), ||q, s|| ≤ ||q, p||}. For any
data point in TkBSK(q), we say that it is one of the Boolean
spatial keyword nearest neighbors of q.

Definition 2 (reverse top-k Boolean spatial keyword
(RkBSK) query on the road network). Given a query
q(loc, key), a parameter k, and a data set P, an RkBSK
query (on the road network) issued at q, denoted as
RkBSK(q), retrieves all the POIs in P whose top-k Boolean
spatial keyword queries include q, formally, RkBSK(q) = {p
 P | q  TkBSK(p)}.

n0

p2{a}

p3{a,b}

p4{a,b}

p5{a}

p6{b}

p7{a}

p8{b}

p9{b,c}

p10{a,b,c}
p11{c}

p12{a,b}

p13{a} p14{a,b}

p15{b}

p16{a}
p17{a,b}

p18 {a,b}

p21{a,b}

p24{a,b}

p19 {c}

p20 {b}

p23{b}

p22{b}p1{a,b}
q{a,b} n1 n3n2

n4 n5
n6

n7

n8

n9

|| q, n0 || = 0.5

Fig. 2. Example of the road network with POIs

TABLE 1: SYMBOLS AND DESCRIPTION

Notation Description
P a set of points with keywords on a road network
q a spatial query point with keywords
||p, p’|| the network distance between two points p and p’
SPqp The set of elements including vertexes, POIs, and

edges located on the shortest path between q and p
Sc the candidate set of POIs including all RkBSK points
Sr the result set of an RkBSK query
ni[key].cnt the count # of the keyword set key of a node ni
TkBSK(q) the result set of a TkBSK query issued at q
RkBSK(q) the result set of an RkBSK query issued at q

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X

As an example, in Fig. 2, T1BSK(q) is p1 as q.key  p1.key
and p1 is the nearest neighbor of q. Also, p1 is an answer
point of R1BSK(q) due to q  T1BSK(p1).

After formulating the RkBSK query, we are ready to
reveal its important properties, as stated in Property 1
and Property 2, which can be utilized to handle RkBSK
search. Property 1 states that the size of a result set for an
RkBSK query could be very different from k. As shown in
Fig. 2, given an R3BSK (k = 3) query issued at q with a
keyword set q.key = {a, b}, the result set R3BSK(q) = {p1}
whose size is different from k. Property 2 states that the
relationship between an answer point p for the RkBSK
query issued at q and the query point q, in terms of their
keywords set. As depicted in Fig. 2, POI p9 cannot be an
answer point for RkBSK(q) as p9.key  q.key while p1 is a
potential answer point due to p1.key  q.key.

Property 1. Given an RkBSK query issued at q with a fixed k,
its result set (i.e., RkBSK(q)) varies, which depends on the
position of q, the keyword set of q, and the distribution of
data points.

Property 2. Given a query point q with a keyword set q.key, for
any point p  RkBSK(q), we have p.key  q.key.

Proof. Assume the above statement is not valid, and there
is at least one point p  RkBSK(q) with p.key  q.key.
Thus, based on Definition 2, q  TkBSK(p). According
to Definition 1, for q  TkBSK(p), we have p.key  q.key,
which contradicts with our assumption p.key  q.key.
Hence, property 2 holds, and the proof completes. 

3.2 Disk Based Storage Model
In real-life applications, the size of a road network and its
POIs could be very large. Therefore, we assume that the
road network and its POIs are too large to be fit in main
memory, and we design a disk-based storage model to
support our algorithms seamlessly. The model we adopt
is to group network nodes based on their connectivity
and distances, as proposed in [20]. A graphical illustra-
tion of an adjacency file and a point file along with the
index for our example road network is shown in Fig. 3.
Our model allows efficient access to the adjacency lists
and points which are stored in the adjacency file and the
point file, respectively. A B+-tree is employed to facilitate
efficient access to adjacency files.

All the POIs on the same edge form one group, and the
points file is used to collect and store the POI groups. For
every group, we need to maintain the edge where the

group of POIs are located and the number of POIs. Sub-
sequently, for each POI p on this edge, we store p’s ID, the
distance between p and the edge node with smaller ID,
and p’s associated set of keywords. A group of POIs are
stored in ascending order of their offset distances to the
node with smaller ID. The adjacency file stores an adja-
cency list for each node. Given a node ni, all its adjacent
nodes form ni’s adjacency list. At the beginning of the
adjacency list, we maintain the total number of ni’s adja-
cent nodes. Then, for every adjacent node n, we store ID,
the edge distance between node ni and n (i.e., ||ni, n||), and
a pointer to its POI group in the point file. If there is no
POI on this edge, a NULL pointer is kept. Take the node
n1 in Fig. 2 as an example. As shown in Fig. 3, it has three
adjacent nodes, and thus, we store 3 at the beginning of
n1’s adjacent list. Thereafter, three adjacent nodes (i.e., n0,
n2, n3) are stored. For each adjacent node, we store its ID
(e.g., n0), the edge length (e.g., ||n0, n1|| = 3), and a pointer
to POIs on the edge (e.g., p1 is located on the edge (n0, n1)).

3.3 Baseline Method
As mentioned in Section 1, a naive solution for the RkBSK
query is to invoke |P| times TkBSK queries to form a
RkBSK result, i.e., for each POI p in P we need to expand
the road network around p to form TkBSK(p) and judge
whether q belongs to TkBSK(p). In worst case, the whole
data set has to be traversed (|P|+1) times, i.e., one for
fetching data points and |P| times for verification using
TkBSK search, resulting in high I/O overhead and expen-
sive CPU cost, especially when |RkBSK(q)|<<|P|. To
improve performance, we develop a non-trivial baseline
method (BM) that performs much better than the above
naive solution. It is worth noting that, BM utilizes the
properties presented in Section 3.1 to prune unqualified
data points effectively.

To facilitate RkBSK retrieval, we adopt a filter and re-
finement framework. In the filtering step, we expand the
road network from q based on Dijkstra’s algorithm. Dur-
ing the expansion, we preserve all the data points p en-
countered that satisfy the keyword constraint (i.e., p.key 
q.key) in a candidate set Sc. The filtering step stops only
when the whole road network has been explored. In the
refinement step, we verify all the candidate points pre-
served in Sc. A data point p  RkBSK(q) iff it satisfies q 
TkBSK(p). Instead of issuing a TkBSK query at p like the
naive approach does, we adopt a Boolean Verification (BV)
method as presented in Algorithm 1. The basic idea is to
count the number of points p with p.key  p.key and ||p,
p|| ≤ ||p, q||, denoted as count. If count < k, it is guaranteed
that q  TkBSK(p) and the algorithm returns TRUE; oth-

Adjacency File Point File

Adjacency
List B+-tree

1

3

n1

n5

n2

n0

3

5.5
5
3

(n0, n1), 1
p1

p4

p3

p2

2

3
2
1

{a, b}

4p5

...

...
...

{a}

{a, b}

{a, b}
{a}

(n1, n2), 4
0

1

Fig. 3. Example of the disk based storage model

Algorithm 1 Boolean Verification Algorithm (BV)
 Input: a data point p to be evaluated, a query point q, a parameter k
 Output: TRUE if q  TkBSK(p), otherwise FALSE
 1: locate the edge (ni, nj) that p locates and initialize count = 0
 2: priority queue U = {(p, ni), ||ni, p||, (p, nj), ||nj, p||} // edges in U
 are sorted in ascending order of their distances to p
 3: while U is not empty do
 4: edge (n, n) = de-queue (U)
 5: count += |{p on edge (n, n)  p.key  p.key  ||p, p|| ≤ ||p, q||}|
 6: if count  k then return FALSE
 7: for each unvisited adjacent nodes nx of n do
 8: en-queue (p, nx), ||nx, p|| to U
 9: if ||p, n|| > ||p, q|| then break
10: return TRUE

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

GAO ET AL.: REVERSE TOP-K BOOLEAN SPATIAL KEYWORD QUERIES ON ROAD NETWORKS 5

erwise, it returns FALSE. To simplify our discussion, giv-
en two adjacent nodes ni and nj with ni being visited be-
fore nj during the network expansion, we call the edge (ni,
nj) as nj’s previous edge, and refer to the edge(s) from nj to
its adjacent node(s) visited after (ni, nj) as nj’s next edge(s).
Take the road network illustrated in Fig. 2 as an example.
Assume that we expand the road network in the order of
n0, n1, n2, n5, n3, n6, …. Then, for n1, its previous edge is (n0,
n1), and its next edges are (n1, n2) and (n1, n5). Similarly,
for n2, its previous edge is (n1, n2), and its next edges are
(n2, n3) and (n2, n6).

4 RKBSK ALGORITHM
In this section, we propose our RkBSK algorithm that is
based on two newly developed lemmas to shrink the
search space. In the following, we first present two lem-
mas and then describe our RkBSK algorithm.

4.1 Theoretical Foundation
The main drawback of BM algorithm can be summarized
as follows. First, it needs to explore the entire road net-
work, even if the answer points are all located near the
query point. Second, it has to verify all the data points
that satisfy the keyword constraint (i.e., all the points in
Sc). When the keyword constraint is common and/or the
data set is huge, the size of the candidate set Sc might be
large (i.e., |Sc| >> |RkBSK(q)|). Evaluating all the candidate
points in Sc using BV algorithm (presented in Algorithm 1)
could be costly. To address these, we develop two lem-
mas to prune away unqualified data points and terminate
the network expansion earlier.

Lemma 1: Let q(loc, key) be a query point, p be a data point
with p.key  q.key, SPqp be the shortest path from p to q, and
Sl1 be the set of data points (including p) located on SPqp
with their keyword sets the same as p.key, i.e., Sl1 = {p  P
| p.key = p.key  p  SPqp}. Then, we have p  RkBSK(q)
 |Sl1| ≤ k.

Proof. Assume, on the contrary, that Lemma 1 is not valid,
and we have p  RkBSK(q) and meanwhile |Sl1| > k.
Without loss of generality, we assume that points in Sl1
(i.e., p1, p2, , pk, pk+1, ) are sorted in ascending order
of their distances to q (i.e., ||pi, q||  ||pi+1, q||), and let the
point p be the last data point. Obviously, these k points
in Sl1 have their minimal distances to q smaller than ||p,
q|| and meanwhile have their keywords covered by
q.key, i.e., i  [1, k], pi.key = p.key  q.key and ||pi, q||  ||p,
q||. As all the points in Sl1 lie on the shortest path SPqp,
we have ||pi, p|| = ||p, q||  ||pi, q|| < ||p, q||. Consequently, q
 TkBSK(p) and p  RkBSK(q), which contradicts with
our assumption that p  RkBSK(q). Thus, our assump-
tion is invalid, and the proof completes. 

In order to illustrate Lemma 1, let us consider the ex-

ample shown in Fig. 4. Assume that an R2BSK (k = 2) que-
ry is issued at a query point q with q.key = {a, b}. Let the
path depicted in Fig. 4 be the shortest path from a node n1
to q, denoted as SPqn1. Given the fact that points p1 and p2
are located on SPqn1 and meanwhile p1.key = p2.key = {a} 
q.key, all the points p with p.key = {a} located on SPqn1 after
p1 and p2 cannot be the actual answer point(s) for the
R2BSK query according to Lemma 1. In other words, dur-
ing the network expansion from q, the expansion via SPqn1
can safely ignore any point p with p.key = {a}, which helps
to reduce the size of Sc.

Lemma 2: Given a query point q(loc, key) and the shortest path
SPqn from q to a node n, let set Skeyi preserve all the candidate
points p for RkBSK(q) located on SPqn and having p.key =
keyi  q.key. If  keyi  q.key, we have |Skeyi| = k (i.e., keyi 

q.key |Skeyi| = (2|q.key|  1)  k), and the network expansion via
SPqn can be safely terminated.

Proof. Assume that the above statement is not valid, and
there is at least one point p that belongs to RkBSK(q)
but its shortest path to q bypasses the node n, i.e., ||q, n||
< ||q, p||. As p  RkBSK(q), p.key  q.key. Without loss of
generality, let p.key = keyi  q.key, i.e., point p will be in-
cluded in set Skeyi

. In other words, |Skeyi
| = k + 1, which

contradicts with Lemma 1. Hence, our assumption is
invalid, and the proof completes. 

Continue our example illustrated in Fig. 4. Given q.key
= {a, b}, there are in total three (i.e., 2|q.key|  1 = 3) possible
subsets (i.e., key1 = {a}, key2 = {b}, and key3 = {a, b}). On the
shortest path SPqn1 from q to n1, as depicted in Fig. 4, we
have Skey1 = {p1, p2}, Skey2 = {p3, p4}, and Skey3 = {p5, p6}. Thus,
as guaranteed by Lemma 2, the network expansion via
SPqn1 can be safely stopped at the node n1.

4.2 Algorithm Details
Based on the aforementioned two Lemmas, we present an
algorithm called RkBSK algorithm to retrieve the exact re-
sult of an RkBSK query. In particular, our RkBSK algo-
rithm improves the filtering step of BM algorithm by ter-
minating the network expansion earlier as guided by
Lemma 2. Next, we detail two steps of RkBSK algorithm.

In general, RkBSK algorithm shares the same filtering

p1{a}
n0

q{a, b} n1
p2{a}

p3{b}

p4{b} p5{a, b}

p6{a, b}
pi{……}

Fig. 4. Example of the shortest path SPqn1 on a road network

Algorithm 2 Filter for RkBSK Algorithm (RkBSK-Filter)
 Input: q(loc, key), k, a set P of data points on a road network
 Output: the candidate set Sc of an RkBSK query
 1: locate the edge (ni, nj) that q is located (suppose q is closer to ni)
 2: U = {(q, ni), ||ni, q||, (q, nj), ||nj, q||} // edges in U are sorted in
 ascending order of their distances to q
 3: while U is not empty do
 4: e = (n, n) = de-queue (U)
 5: if q is located on the edge e then
 6: for each subset key  q.key do n[key].cnt = 0
 7: else
 8: for each subset key  q.key do n[key].cnt = n[key].cnt
 9: for every point p on e do // visit points based on ascending
 order of their distances to q
10: if p.key  q.key and n[p.key].cnt < k then // Lemma 1
11: n[p.key].cnt ++ and Sc = Sc ∪ {p}
12: if n[*].cnt < k then // Lemma 2
13: for each unvisited edge (n, n) in the edge set E do
14: en-queue (n, n), ||n, q|| to U
15: return Sc

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X

step as BM algorithm. It expands the road network from q
based on Dijkstra’s algorithm to form the candidate set Sc.
The only difference is that RkBSK algorithm is more selec-
tive in both candidate set formation and network expan-
sion. First, it does not blindly insert all the data points p
with p.key  q.key into Sc like BM algorithm does. As
shown in Algorithm 2 (lines 10-11), whenever a data
point p satisfying the textual constraint is encountered, it
checks the number of data points in Sc that share the same
keywords as p and meanwhile lie on the shortest path
from q to p (and then to node n), which is preserved by
n[p.key].cnt. Point p is a potential answer point for
RkBSK(q) only if n[p.key].cnt < k, as guaranteed by Lemma
1. Second, it enables an early termination for the network
expansion while BM algorithm has to explore the whole
road network. As depicted in Algorithm 2 (lines 12-14),
the expansion at node n is necessary only when the condi-
tion listed in Lemma 2 is not satisfied, i.e., at least for one
keyword set keyi  q.key, the number of data points p with
p.key = keyi  q.key located on the shortest path from q to n
is smaller than k. As demonstrated in our experiments,
these two lemmas can significantly boost the search per-
formance.

Algorithm 2 presents the pseudo-code of the filtering
step of RkBSK algorithm. It first locates the edge (ni, nj)
where q locates (line 1). The priority queue U maintains
all the edges (n, n) to be examined sorted based on as-
cending order of their distances to q, and initially it has
two edges (q, ni) and (q, nj) (line 2). Thereafter, the net-
work expansion starts by continuously de-queuing the
first element of U until U is empty (lines 3-14). For each
de-queued edge (n, n), the algorithm needs to initialize
the count list of n to facilitate the checking of lemmas. To
be more specific, for a given node n, each element of its
count list corresponds to one subset keyword keyi of q.key,
and it records the number of data points p located on the
shortest path from q to n with p.key = keyi, denoted as n
[keyi].cnt (lines 5-8). Note that, we treat the edge that q is
located on different from other edges. For the edge (ni, nj)
containing q, the count lists of nodes ni and nj are initial-
ized to zero since there is no other node located on the
shortest paths from q to ni or nj (line 5-6). For all the other
edges (n, n), the algorithm initializes the count list of n
by copying the count list of node n (lines 7-8). Then, it
checks the data points located on (n, n) and updates the
count list if necessary (lines 9-11). Note that, the algo-
rithm only enrolls a data point p into the candidate set Sc
if it cannot be discarded by Lemma 1. Once the examina-
tion of edge (n, n) finishes, the algorithm needs to en-
queue the next edge(s) of n, if any, to U in order to ex-
pand the network. Again, as guided by Lemma 2, n re-
quires expansion only if the shortest path from q to n
does not contain sufficient candidate points (lines 12-14).
Finally, the algorithm returns the candidate set Sc to com-
plete the filter step.

For the refinement step, our RkBSK algorithm does ex-
actly what BM algorithm does, and thus is omitted. It
validates every data point p in the candidate set Sc using
BV algorithm (depicted in Algorithm 1).

Example 1. For ease of understanding, we illustrate how

RkBSK algorithm works using an example. Based on the
road network shown in Fig. 2, we assume that an R2BSK
(k = 2) query with keywords {a, b} is issued at a query
point q on edge (n0, n1) with ||q, n0|| = 0.5. Initially, the pri-
ority queue U contains {(q, n0), 0.5, (q, n1), 2.5. Then, the
network expansion starts. The first de-queued edge is (q,
n0). As it is the edge where q locates, an empty count list is
initialized for the node n0 (i.e., n0[a].cnt = n0[b].cnt = n0[a,
b].cnt = 0). Since there is no any data point on the edge (q,
n0) and n0 does not have any not-yet-marked adjacent
node, no action is taken. The second de-queued edge is (q,
n1), and again an empty count list is initialized (i.e.,
n1[a].cnt = n1[b].cnt = n1[a, b].cnt = 0). As there is one point
p1({a, b}) located on (q, n1), its count list is updated (i.e.,
n1[a, b].cnt = 1), and p1 is enrolled into the candidate set Sc
(= {p1}). The algorithm then en-queues (n1, n2), 7.5 and
(n1, n5), 8 into U to complete the evaluation of the edge
(q, n1). Next, the algorithm evaluates edge (n1, n2). It lo-
cates three candidate points p2({a}), p3({a,b}), and p5({a})
that updates Sc to {p1, p2, p3, p5}), and the count list of n2 is
updated accordingly, with n2[a].cnt = 2, n2[b].cnt = 0, n2[a,
b].cnt = 2. Note that, p4({a, b}) is not a candidate point as
n2[a, b].cnt has already reached 2. Since n2[b].cnt is not yet
2, n2 requires further expansion, and both (n2, n3), || q, n3||
and (n2, n6), || q, n6|| are en-queued. Then, it verifies edge
(n1, n5). As the algorithm does not locate any data point
satisfying the textual constraint, it en-queues (n5, n4), ||q,
n4||, (n5, n6), ||q, n6||, and (n5, n8), ||q, n8|| into U. Next,
edge (n2, n3) is de-queued, and it has two candidate points
p6({b}) and p8({b}) which update n3[b].cnt = 2. Here,
n3[a].cnt = n3[b].cnt = n3[a, b].cnt = 2. That is to say, the
network expansion at node n3 can be safely terminated,
even if n3 has not-yet-visited adjacent nodes. The evalua-
tion proceeds until U = .

In the RkBSK refinement step, it evaluates all candi-
dates using BV algorithm, in the same way as BM algo-
rithm does. 

5 ENHANCED RKBSK ALGORITHM
Compared with Baseline algorithm, our proposed RkBSK
algorithm actually shrinks the expanded network area
and meanwhile reduces the size of candidate set Sc. How-
ever, the candidate set formed by RkBSK during the filter-
ing step is still much larger than the real result set
RkBSK(q), especially when |q.key| is large. Furthermore,
RkBSK has to evaluate all the candidate points in Sc as it
does not implement any further pruning for the candidate
points. In the sequel, we first present Heuristic 1 and
Heuristic 2 which can efficiently cut down the size of the
candidate set; and Heuristic 3 to enable candidate point

pi{……}
p4{a}

p3{a, c}

n0

n1

q{a, b}

p2{a, c}

n2

n3

p5{a, b}
p1{a, b}

p6{a, b}

p7{a}

p8{a, b}

 pruned by Heuristic 1

 pruned by Heuristic 2

 pruned by Heuristic 3
Fig. 5. Illustration of Heuristics 1, 2, and 3

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

GAO ET AL.: REVERSE TOP-K BOOLEAN SPATIAL KEYWORD QUERIES ON ROAD NETWORKS 7

pruning. Then, we introduce a new data structure, count
tree, to facilitate the implementation of our newly pro-
posed heuristics. Finally, we propose an enhanced RkBSK
algorithm with better search performance.

5.1 Pruning Heuristics for Filter
Heuristic 1. Given a query point q(loc, key) and a data point p

located on the road network, let SH1 be the set of data points
p located on the shortest path SPqp from q to p (i.e., p 
SPqp) that have their keywords covering p.key, i.e., SH1 = {p
 P| p.key  p.key  p  SPqp}. If |SH1| ≥ k, it is certain
that p  RkBSK(q); otherwise |SH1| < k if p  RkBSK(q).

Proof. First, we prove the first statement, i.e., |SH1| ≥ k  p
 RkBSK(q), via contradiction. Assume that this state-
ment is not valid, i.e., |SH1| ≥ k  p  RkBSK(q). If a
TkBSK query is issued at p, based on the fact that p 
SH1, p.key  p.key  ||p, q|| > ||p, q||  |SH1| ≥ k, and thus, q
cannot be an answer point for TkBSK(p), which contra-
dicts with our assumption that p  RkBSK(q). Hence,
our assumption is invalid, and the statement |SH1| ≥ k
 p  RkBSK(q) holds.

Next, we prove the second statement that |SH1| < k
if p  RkBSK(q) via contradiction as well. Assume that
there is at least one answer point p  RkBSK(q) having
its |SH1| ≥ k. Similar as the above proof, we have a
TkBSK query issued at p. Based on the fact that p 
SH1, p.key  p.key  ||p, q|| > ||p, q||  |SH1| ≥ k, and hence,
we are certain that q  TkBSK(p), which contradicts
with our assumption that p  RkBSK(q). The proof
completes. 

Compared with Lemma 1 and Lemma 2 used by our
RkBSK algorithm, Heuristic 1 implies a stronger pruning
criterion. Lemma 1 prunes away a point p based on those
data points located on the shortest path SPqp from q to p
and having exactly the same keywords as p; while Heuris-
tic 1 discards the point p based on those data points lo-
cated on SPqp and having their keywords covering p.key.
Besides, Heuristic 1 also serves as an early termination con-
dition. For example, if we have found at least k points
bounding each non-empty subset of q.key on SPqn, we can
safely terminate examination because no qualified data
points will have the shortest path to q passing n.

Consider, for instance, the example shown in Fig. 5.
Assume that an R3BSK (k = 3) query is issued at a query
point q, and currently we are evaluating the data points
on edge (n0, n2), based on ascending order of their dis-
tances to q (i.e., in the order of p4, p5, p6, p7, p8, …). When
point p7 is evaluated, we have its corresponding SH1 = {p1,
p4, p5, p6}. Since |SH1| > k, the point p7 can be safely pruned
by Heuristic 1. Similarly, for point p8, we have its corre-
sponding SH1 = {p1, p5, p6}. As |SH1| > k, the point p8 can also
be safely discarded by Heuristic 1.

Heuristic 2. Given a query point q(loc, key), let n be one of the
vertices passed by the shortest path SPqp from q to p, and SH2
be the set of data points that have their distances to n smaller
than the distance from q to n and meanwhile have their key-
words covering p.key, i.e., SH2 = {p  P| ||p, n|| < ||q, n|| 
p.key  p.key }. If |SH2| ≥ k, then p  RkBSK(q).

Proof. Since n is one of the vertices passed by the shortest

path SPqp from p to q, we have ||p, q|| = ||p, n|| + ||n, q||.
On the other hand, based on the triangle inequality, for
 p  SH2, we have ||p, p||  ||p, n|| + ||n, p|| < ||q, n|| + ||n,
p|| = ||q, p||. As |SH2| ≥ k, it is certain that q cannot be an
answer point for TkBSK(p), and hence, p  RkBSK(q).
The proof completes. 

Heuristic 2 considers not only those data points lo-
cated on a specified shortest path, but also all the points
located around any node vertex on the shortest path. Dur-
ing the network expansion, Heuristic 2 can serve as a
supplement to Heuristic 1. In the following, we first illus-
trate how Heuristic 2 can help to prune away unqualified
data points using an example, and then, we will present a
new structure to implement Heuristic 2 in Section 5.2.

Consider the example depicted in Fig. 5 again, and
suppose an R3BSK query is issued at q. Assume that the
network expansion reaches point p4, and its shortest path
from q passes node n0. If the network expansion has al-
ready identified three data points p1, p2, and p3 around the
node n0 with p1.key = {a, b}, p2.key = {a, c}, and p3.key = {a, c}.
Clearly, all these three data points have their distances to
n0 smaller than ||q, n0||, and their keyword sets all contain
p4.key = {a}, i.e., SH2 = {p1, p2, p3}. As |SH2| ≥ k = 3, p4 can be
safely pruned away by Heuristic 2.

In order to prune a point p, Heuristic 2 actually consid-
ers the points located around each node on the shortest
path SPqp from q to p. Nonetheless, this kind of checking
might be expensive, and it does not align with our net-
work expansion order. In this paper, we adopt an ap-
proximated implementation of Heuristic 2, and try to in-
tegrate Heuristic 2 with our network expansion. Instead
of considering all the nodes located on SPqp, we only take
into account the node n closest to p; instead of considering
all the points with their distances to n bounded by ||q, n||
and meanwhile having their keywords satisfying the tex-
tual constraint, we only take a subset into consideration,
i.e., those points located on SPqp and those points located
on n’s next edge(s). We illustrate the difference between
our implementation and Heuristic 2 in Fig. 6. Assume
that the network expansion just reaches point p, which is
located on edge (n3, n5). Now we need to check whether p
can be discarded by Heuristic 2. The original Heuristic 2
needs to examine all the nodes located along SPqp, i.e.,
nodes n1, n2, and n3. For each node n, we need to find its
corresponding SH2 = {p| ||p, n|| < ||q, n||  p.key  p.key}. In
other words, we have to issue a range query around eve-
ry node n along SPqp in order to identify those points p
with ||p, n|| < ||q, n||. As shown in Fig. 6(a), those bold
edges represent the set of edges Heuristic 2 has to scan.

q n1

pn2
n3

n4

n6

n7

n5

||q, n2||

||q, n1||

q n1

pn2
n3

n4

n6

n7

n5

||q, n1||

||q, n2||

(a) Original Heuristic 2 (b) Simplified Heuristic 2

Fig. 6. Illustration of simplified Heuristic 2

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X

Our implementation simplifies the processing. We only
consider one node along SPqp that is closest to p, e.g., node
n3 in this example. For node n3, we do not take into ac-
count all the points p with ||p, n3|| < ||q, n3||. Instead, we
only consider those points located on the shortest path
from q to n3, and those located on n3’s next edges, i.e.,
edge (n3, n4) and edge (n3, n5). In other words, the bold
edges in Fig. 6(b) denote the set of edges our simplified
checking needs to scan.

Heuristic 3. Given a query point q(loc, key) and a data point p
with p.key  q.key, let SH3 be the set of points p whose key-
words are subsets of p and whose shortest paths SPqp actu-
ally pass p, i.e., SH3 = {p| p.key  p.key  p  SPqp}. If p 
RkBSK(q), it is certain that all the points in SH3 cannot be
the answer points for RkBSK(q), i.e., p  RkBSK(q)   p
 SH3, p  RkBSK(q).

Proof. Assume that the above statement is invalid, i.e.,
there is at least one point p  SH3 that belongs to the
result set RkBSK(q). Based on the definition of RkBSK
search, p  RkBSK(q)  q  TkBSK(p). As |TkBSK(p)| =
k, q and another (k  1) points form the result set
TkBSK(p). On the other hand, we know that p 
RkBSK(q), and thus, q  TkBSK(p). Since |TkBSK(p)| =
|TkBSK(p)| = k, q  TkBSK(p) and q  TkBSK(p), i.e.,
there is at least one point p≠ q) such that p 
TkBSK(p) and p  TkBSK(p). As p  TkBSK(p), q 
TkBSK(p), p.key  q.key, and p.key  p.key, we have
||p, q|| < ||p, p||. Since the shortest path SPqp from q to p
actually passes by p, we have ||p, q|| = ||p, q|| + ||p, p||.
Based on the triangle inequality, we have ||p, p|| ≤ ||p,
p|| + ||p, p||. Therefore, the above inequation ||p, q|| <
||p, p|| can be converted to ||p, q|| + ||p, p|| < ||p, p|| + ||p,
p||, i.e., ||p, q|| < ||p, p||, which contradicts with the fact
that p  TkBSK(p) but q  TkBSK(p) with p.key  q.key
and p.key  p.key. Consequently, our assumption is
invalid and the proof completes. 

Back to our example shown in Fig. 5 with an R3BSK
query issued at q. As discussed earlier, points p4, p7, and p8
can be pruned by Heuristic 1 and Heuristic 2. In other
words, only points p1, p5, and p6 are in the candidate set,
and we need to invoke BV algorithm to verify each of
them. However, using Heuristic 3, once we know p5 is not
a real answer point for R3BSK(q), we can discard p6 with-
out any further evaluation. This is because the shortest
path from q to p6 passes p5 and p6.key  p5.key.

To sum up, three Heuristics developed in this section
can help to prune points p4, p6, p7, and p8, as illustrated in
Fig. 5. Their pruning power will be also verified through
extensive experiments to be presented in Section 6.

5.2 The Count Tree
In order to further improve search performance, we

also propose a novel data structure so-called count tree as
a replacement of the count list used in our RkBSK algo-
rithm. The main drawback of the count list is that it has
no fast access method to fetch all subsets of a given key-
word set, which definitely affects the search efficiency.

As shown in Fig. 7, the count tree is comprised of
2|q.key|-1 nodes, and each tree node tn in the count tree
corresponds to a non-empty subset tn.key of q.key, i.e.,
tn.key  q.key. In addition to the keyword tn.key, it also
maintains three counters, namely, c1, c2, and c3. Here, c1
represents the number of points p located on the shortest
path SPqn from q to n with p.key = tn.key, c2 denotes the
number of points p located on SPqn with tn.key  p.key,
and c3 represents the number of points located on n’s next
edges. In other words, counter c1 is to serve Lemma 1,
counter c2 is to serve Heuristic 1, and counter c3 is to serve
Heuristic 2. We will utilize Example 2 to further explain
these three counters later. The height of the count tree is
set to |q.key|. Assume that all the leaf nodes are at level 1,
and the root node is at level |q.key|. Then, nodes in the l-th
level of the count tree correspond to the keywords with
length l, e.g., a leaf node at level 1 only contains one key-
word of q.key, a node at level 2 includes two keywords of
q.key, and so forth. A tree node tn1 at level (l + 1) is a par-
ent of a tree node tn2 at level l if the keywords of tn2 are a
subset of the keywords corresponding to node tn1, i.e.,
tn2.key  tn1.key.

Example 2. Take the road network depicted in Fig. 2 as an
example. Assume that an R3BSK query is issued at a
query point q with q.key = {a, b}, and it expands the road
network in order of n0, n1, n2, n5, n3, n6, …. When node n1
is encountered, a new count tree CT(n1) is created. As
shown in Figure 7(a), it has two levels as |q.key| = 2. For

(a, b)
1 1

1evel 1

1evel 2

tree node tnkeyword tn.key

c1

c2

(a) CT(n1)

2 c3

(a)
0 1 3

(b)
0 1 3

(a, b)
3 3

(b) CT(n2)

0

(b)
0 3 0

(a)
2 5 0

Fig. 7. Example of count trees

TABLE 2: TRACE OF N1’S COUNT TREE

key counter edge (q, n1) edge (n1, n2) edge (n1, n5)
c1 (01) p1 － －
c2 (01) p1 － －

a,b

c3 (02) － p3 p10
c1 (00)  － －
c2 (01) p1 － －

a

c3 (03) － p2, p3 p10
c1 (00)  － －
c2 (01) p1 － －

b

c3 (03) － p3 p9, p10

TABLE 3: TRACE OF N2’S COUNT TREE

key counter edge (n1, n2) edge (n2, n3) edge (n2, n6)
c1 (13) p3, p4 － －
c2 (13) p3, p4 － －

a,b

c3 (00) － unvisited unvisited
c1 (02) p2, p5 － －
c2 (15) p2, p3, p4, p5 － －

a

c2 (00) － unvisited unvisited
c1 (00)  － －
c2 (13) p3, p4 － －

b

c3 (00) － unvisited unvisited

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

GAO ET AL.: REVERSE TOP-K BOOLEAN SPATIAL KEYWORD QUERIES ON ROAD NETWORKS 9

each tree node tn, its counters c1 and c2 are initially set to 0,
and they are increased only when a point p located on
the shortest path from q to n1 (i.e., edge (q, n1)) with tn.key
= p.key or tn.key  p.key is found. Given the fact that there
is only one point p1 ({a, b}) located on the edge (q, n1), the
counter c1 of {a, b} is increased by 1, and the counters c2 of
all three tree nodes are increased by 1. Similarly, for every
tree node tn, its counter c3 is initially set to 0, and it is in-
creased only when a point p located on n1’s next edge(s)
with tn.key  p.key is found. Table 2 lists the located data
points that trigger the updates of the counters, and Fig.
7(a) illustrates the final count tree CT(n1). Note that, in
Table 2, ‘’ means there is zero qualified point on the edge
that can trigger any update of corresponding counters,
and ‘－’ indicates the point(s) on the edge does(do) not
trigger any update on corresponding counter(s).

Next, we explain the count tree CT(n2) of node n2. First
of all, a tree similar as CT(n1) is created, with all the c1s
and c2s of CT(n2) copy the values of corresponding c1s and
c2s in CT(n1), and all the c3s of CT(n2) are set to 0. This rea-
son behind is that, c1 and c2 of a tree node tn in CT(n2)
represent the number of points p located on the shortest
path SPqn2 from q to n2 with p.key = tn.key and tn.key 
p.key, respectively. As node n1 is located on SPqn2, SPqn2
actually can be divided into two sub-paths, i.e., the short-
est path SPqn1 from q to n1 and edge (n1, n2). Since c1 and c2
of CT(n1) actually capture those qualified data points lo-
cated on SPqn1, we only need to focus on edge (n1, n2) by
initializing c1s and c2s in CT(n2) to corresponding c1s and
c2s in CT(n1). As listed in Table 3, on edge (n1, n2), we lo-
cate a few qualified points which help to update the val-
ues of c1 and c2. Then, on edge (n2, n3) and edge (n2, n6),
we locate another set of qualified points which help to
update the values of c3 if the algorithm does not terminate
at n2. The final CT(n2) is depicted in Fig. 7(b). We would
like to highlight that, although we separate the count tree
formation for node n1 and node n2 in the above explana-
tion, they are actually formed in a parallel fashion. As
shown in Table 2 and Table 3, when points on edge (n1, n2)
are evaluated, it updates the c3s of CT(n1) as well as the c1s
and c2s of CT(n2). 

Last but not least, we explain the idea of count tree re-
use. Every time, when we evaluate a new vertex n, it is
not always necessary to create a new count tree CT(n)
because we might be able to reuse some existing count
tree CT(v) if CT(v) no longer needed. In the following, we
explain when a count tree CT(v) corresponding to a vertex
v is no longer needed. Given a vertex v, its count tree CT(v)
is to preserve the information related to the points located
on SPqv and to initiate count trees CT(v’)s with v’ being n’s
adjacent vertices. Consequently, if vertex v and all its ad-
jacent vertices v’ have been visited, the information re-
lated to points located on SPqv is actually preserved by
count trees CT(v’)s and CT(v) is no longer needed. In this
case, we can re-use CT(v) for another newly visit vertex.
The reason we promote the reuse of count trees is that all
count trees share the same structure, which is dependent
on keywords specified by the query point. Although the
reuse technique is simple, it is efficient which will be fur-
ther demonstrated in our experiments.

5.3 Algorithm Details
Now, we are ready to present our Enhanced RkBSK (ERk-
BSK) algorithm that fully utilizes the above pruning heu-
ristics. In the sequel, we present the ERkBSK-Filter proc-
ess which prunes unnecessary data points based on not
only Lemma 1 and Lemma 2 but also Heuristic 1 and
Heuristic 2, and then explain the ERkBSK-Refinement
process using Heuristic 3.

5.3.1 Filtering for ERkBSK Algorithm
ERkBSK algorithm shares the same framework as RkBSK
algorithm. It expands the road network from a specified
query point q, and only inserts potential answer points to
the candidate set Sc after applying certain pruning rules
(e.g., Lemma 1).

Algorithm 3 presents the pseudo-code of the filtering
step for ERkBSK algorithm (ERkBSK-Filter). Different from
RkBSK-Filter algorithm (mentioned in Section 4.2),
ERkBSK-Filter integrates new pruning heuristics, i.e.,
Heuristic 1 and Heuristic 2. It first locates edge (ni, nj) that
q is located (line 1). We assume that q is closer to node ni,
and split edge (ni, nj) into two edges (q, ni) and (q, nj)
which are en-queued into the priority queue U (line 2).
Like RkBSK algorithm, edges (n, n) in U are sorted based
on ascending order of the network distances from node n
to q. Note that, CT(key, c1, c2, c3) is a constructor function
to create a new count tree, with the parameter key deter-
mining the height and keys of the tree, and c1, c2, c3 de-
termining the initial values of the counters. An empty
count tree is initiated for node q (line 3).

Thereafter, the network expansion starts. For each de-
queued edge (n, n), ERkBSK-Filter first needs to initialize
the count tree for node n. It needs to copy the values of
counter c1 and counter c2 from the count tree CT(n). For
counter c3, ERkBSK-Filter needs to check the qualified
points located on edge (n, n) which fits nicely with our
network expansion strategy. Then, it scans all the points
located on edge (n, n) one by one, based on their dis-

Algorithm 3 Filter for ERkBSK Algorithm (ERkBSK-Filter)
 Input: q(loc, key), k, a set P of data points on a road network
 Output: the candidate set Sc of an RkBSK query
 1: locate the edge (ni, nj) that q is located (assume q is closer to ni)
 2: U = {(q, ni), ||ni, q||, (q, nj), ||nj, q||} // edges in U are sorted in
 ascending order of their distances to q
 3: CT(q) = new CT(q.key, 0, 0, 0) // q is regarded as a road vertex
 4: while U is not empty do
 5: e = (n, n) = de-queue (U)
 6: CT(n) = new CT(q.key, CT(n).tn[*].c1, CT(n).tn[*].c2, 0)
 7: for each data point p on e do // visit points in ascending
 order of their distances to q
 8: if CT(n).tn[p.key].c1 < k and CT(n).tn [p.key].c2 < k and
 CT(n).tn[p.key].c2 + CT(n).tn[p.key].c3) < k then
 9: Sc = Sc ∪ {p} // Lemma 1, Heuristics 1 and 2
10: if p.key  q.key) then CT(n).tn[p.key].c1 ++ // Lemma 1
11: if (key = p.key ∩ q.key) ≠  then
12: for each kj  key do CT(n).tn[kj].c2 ++ // Heuristic 1
13: if ||p, n || < ||n, q|| then
14: for each kj  key do CT(n).tn[kj].c3 ++ // Heuristic 2
15: if CT(n).tn [*].c1 < k, CT(n).tn [*].c2 < k, and (CT(n).tn[*].c2
 + CT(n).tn[*].c3) < k then // Lemma 2, Heuristics 1 and 2
16: for each unvisited edge (n, n) in the edge set E do
17: en-queue (n, n), ||n, q|| to U
18: return Sc

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X

tances to q. For each located point p, the algorithm first
examines if it can be pruned by our pruning heuristics,
and it enrolls p to the candidate set iff it cannot be dis-
carded by Lemma 1, Heuristic 1, and Heuristic 2 (lines 8-
9). Next, ERkBSK-Filter updates counters of CT(n) and
CT(n) based on p.key. First, using Lemma 1, counter c1 of
CT(n) w.r.t. p.key is increased by one if p.key is bounded
by q.key (i.e., p.key  q.key) (line 10). Second, based on
Heuristic 1, counter c2 of CT(n) w.r.t. any non-empty sub-
set of p.key ∩ q.key is increased by one if p.key overlaps
with q.key (i.e., p.key ∩ q.key ≠ ) (lines 11-12). Third, using
Heuristic 3, counter c3 of CT(n) w.r.t. any non-empty sub-
set of p.key ∩ q.key is increased by one if p.key overlaps
with q.key (i.e., p.key ∩ q.key ≠ ) and meanwhile ||p, n|| <
||n, q|| (lines 13-14). Once all the points located on edge (n,
n) are evaluated, the algorithm en-queues n’s next edges
into U to expand the network based on Lemma 2, Heuris-
tic 1, and Heuristic 2 (lines 15-17). Once the expansion
finishes, the candidate set is returned to complete the al-
gorithm (line 18).

Example 3. We illustrate ERkBSK-Filter algorithm using
the dataset in Fig. 2. Assume that an R3BSK query is is-
sued at a query point q with q.key = {a, b}, and the road
network is expanded in order of n0, n1, n2, n5, n3, n6, .
The algorithm starts by locating q and initializing U and
CT(q). We depict the trace of the filtering step in Table 4,
and the changes of count trees are shown in Fig. 8. 

5.3.2 Refinement for ERkBSK Algorithm
The refinement step of ERkBSK algorithm (ERkBSK-
Refinement) applies Heuristic 3, which is different from
that of RkBSK algorithm. Specifically, it has three tasks,
i.e., verifying data points in Sc based on the BV algorithm,
pruning false candidates in Sc based on Heuristic 3 with-
out incurring other verification procedure, and returning
the final answer points. Initially, ERkBSK-Refinement
sorts the candidate points in Sc based on ascending order
of their distances to q, and then evaluates them one by
one. For each evaluated point p, if p is validated to be an
actual answer point, p is added to the result set Sr; other-
wise, ERkBSK-Refinement discards p, together with all the
other not-yet-checked candidates p’ in Sc whose shortest
paths to q contain p and p.key  p.key. The algorithm ter-
minates when all the candidate points in Sc have either
been evaluated or discarded, and the final query result set
Sr is returned.

Example 4. Continue Example 3. After the filter step, Sc =
{p1, p2, p3, p4}. ERkBSK-Refinement then verifies them
based on ascending order of their distances to q. First, p1
is evaluated and is reported as a real answer point with Sr
= {p1}. Next, p2 is verified, and is reported as a false an-

swer point. As SH3 w.r.t. p2 is empty, it does not help to
prune any other candidate point. Then, p3 is checked and
also reported as a false answer point, and p4  SH3 w.r.t. p3.
Hence, both p3 and p4 are discarded. Finally, the refine-
ment step stops with Sr = {p1}. 

5.4 Discussion
In a 2D space, like existing TPL and RSTkNN methods for
RNN search and its variants, the proposed ERkBSK algo-
rithm with several pruning heuristics does not require
any pre-computation, and it can return the exact result.
However, compared with TPL and RSTkNN, ERkBSK
algorithm incurs a higher query cost, especially when
data points are sparse and |q.key| is large. This is because
ERkBSK algorithm needs to consider the distance of the
shortest path and the keyword constraint. In what follows,
we first briefly discuss the cost of ERkBSK algorithm, and
then prove its correctness.

Lemma 3. If m shortest paths ended in a specified query point
q have been expanded in the filtering step, the ERkBSK algo-
rithm traverses the dataset P at most (|Sc| + 1) times with Sc
being the candidate set and |Sc|  (2|q.key|  1)  mk.

Proof. As shown in Algorithm 3, ERkBSK-Filter algorithm
only traverses a given data set P at most once to form a
candidate set Sc. Since ERkBSK algorithm uses Lemma
2 to set the upper bound of Sc, the number of points in
Sc is no more than (2|q.key|  1)  mk. Then, ERkBSK-
Refinement algorithm invokes BV algorithm once for
every point in Sc in the worst case (i.e., if Heuristic 3
does not help to prune away any candidate point).
Consequently, ERkBSK algorithm traverses P at most
((2|q.key|  1)  mk + 1) times. 

TABLE 4: TRACE OF ERKBSK-FILTER

Step Action U Sc
1 de-queue (q,n0), 0.5 (q, n1), 2.5 

2 de-queue (q,n1), 2.5
(q, n2), 7.5
(q, n5), 8

p1

3 de-queue (q, n2), 7.5 (q, n5), 8 p1, p2, p3, p4
4 de-queue (q, n5), 8  p1, p2, p3, p4

(a, b)
1 1 0

(b)
0 1 0

(a)
0 1 0

(a, b)
1 1 1

(b)
0 1 1

(a)
0 1 2

(a, b)
3 3 0

(b)
0 3 0

(a)
2 5 0

(a, b)
1 1 2

(b)
0 1 3

(a)
0 1 3

(a, b)
1 2 0

(b)
0 3 0

(a)
0 2 0

After steps 1 and 2

(a, b)
0 0 0

(b)
0 0 0

(a)
0 0 0

(a) CT(n0)

After step 3

After step 4

(c) CT(n1)

(e) CT(n1)

(b) CT(n1)

(d) CT(n2)

(f) CT(n5)
Fig. 8. Trace of count trees after each step

Algorithm 4 Refinement for ERkBSK Algorithm (ERkBSK-Refinement)
 Input: a candidate set Sc, a query point q, a parameter k
 Output: the result set Sr of an RkBSK query
 1: Initialize Sr = 
 2: for each candidate point p in Sc do
 3: if BV(p, q, k) = TRUE then Sr = Sr ∪ {p}
 4: else Sc = Sc  {p| p.key  p.key  p  SPqp} // Heuristic 3
 5: return Sr

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

GAO ET AL.: REVERSE TOP-K BOOLEAN SPATIAL KEYWORD QUERIES ON ROAD NETWORKS 11

Theorem 1. The ERkBSK algorithm returns exactly the result
set RkBSK(q), i.e., the algorithm has no false negative and
no false positive.

Proof. First, ERkBSK algorithm only prunes away those
unqualified points or network area in the filtering step,
by using our proposed pruning heuristics. Therefore,
no answer points are missed (i.e., no false negative).
Second, every candidate point p  Sc either is verified
in the refinement step by BV algorithm or is discarded
by Heuristic 3, which ensures no false positive. Conse-
quently, the proof completes. 

6 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the effective-
ness and efficiency of our proposed algorithms for RkBSK
search through extensive experiments on both real and
synthetic data sets. We describe the experimental settings
in Section 6.1, verify the pruning power of the developed
heuristics in Section 6.2, compare the efficiency of count
list and count tree in Section 6.3, and report the perform-
ance of our proposed algorithms for RkBSK queries in
Section 6.4. All the algorithms were implemented in C++,
and all the experiments were conducted on a PC with an
Intel Core 2 Duo 2.93 GHZ E7500 CPU and 3GB RAM,
running Ubuntu 13.04 desktop edition.

6.1 Experimental Setup
We deploy both real and synthetic data sets. As summa-
rized in Table 5, we employ three real road networks2 CA,
NA, and SF as our data sets. For these datasets, POIs with
real keyword sets are randomly generated in a way simi-
lar as [18]. We also generate two synthetic datasets. The
first data set is to study the impact of the keyword set size
per data point on the search performance. We preserve
the road network and the data points of NA but change
the keyword settings to generate five sets, viz., NA-K2,
NA-K4, NA-K6, NA-K8 and NA-K10 as [18]. The average
distinct number of keywords per data point in each data-
set is roughly 2, 4, 6, 8, and 10, respectively. The second
data set is to explore the impact of data point density on
the search performance. We preserve the road network of
NA but change the number of data points per edge to
generate five datasets, i.e., NA-C4, NA-C6, NA-C8, NA-
C10, and NA-C12. For every dataset NA-Ci, the average
number of data points per edge is approximately set to i.

The experiments investigate the performance of the
proposed algorithms under a variety of parameters which
are listed in Table 6. In the experiments, we measure (i)
the response time (i.e., the average response time in proc-
2 CA, NA and SF are available at http://www.cs.utah.edu/~lifeifei/.

TABLE 5: STATISTICS OF REAL DATASETS

Data Vertex Edge Objects
CA 21,048 21,693 0.17M
NA 175,813 179,179 1.4M
SF 174,956 223,001 1.7M

TABLE 6: PARAMETER SETTINGS

Parameter Range Default
of query keywords (i.e., |q.key|) 1, 3, 5, 7, 9 5
k 10, 20, 30, 40, 50 30
avg # of POI (p) keywords (i.e., |p.key|) 2, 4, 6, 8,10 4
avg # of POIs per edge (i.e., |POIs|) 4, 6, 8, 10, 12 8

number of query keywords

10-1
100
101
102
103
104

10-2

105
106

nu
m

be
r

of
 P

O
I

pr
un

ed

1 3 5 7 9

Heuristic 2
Heuristic 3

Heuristic 1
Lemma 1 and Lemma 2

1 3 5 7 9

number of query keywords

nu
m

be
r

of
 P

O
I

pr
un

ed

100

101

102

103

104

105

106

107

Heuristic 1
Lemma 1 and Lemma 2

Heuristic 2
Heuristic 3

1 3 5 7 9

number of query keywords

10-1
100
101
102
103
104

10-2

105
106
107

nu
m

be
r

of
 P

O
I

pr
un

ed

Heuristic 1
Lemma 1 and Lemma 2

Heuristic 2
Heuristic 3

(a) CA (b) NA (c) SF

Fig. 9. Pruning efficiency of heuristics vs. |q.key|

10-1

100

101

102

103

104

105

nu
m

be
r

of
 P

O
I

pr
un

ed

10 20 30 40 50
k

Heuristic 2
Heuristic 3

Heuristic 1
Lemma 1 and Lemma 2

 k

nu
m

be
r

of
 P

O
I

pr
un

ed

100

101

102

103

104

105

106

10 20 30 40 50

Heuristic 1
Lemma 1 and Lemma 2

Heuristic 2
Heuristic 3

 k

100

101

102

103

104

105

106

nu
m

be
r

of
 P

O
I

pr
un

ed

10 20 30 40 50

Heuristic 1
Lemma 1 and Lemma 2

Heuristic 2
Heuristic 3

(a) CA (b) NA (c) SF

Fig. 10. Pruning efficiency of heuristics vs. k

1 3 5 7 9
number of query keywords

qu
er

y
ti

m
e

(s
ec

)

0

200

400

600

800

ERkBSK Count Tree

ERkBSK Count List

10 20 30 40 50

k

qu
er

y
tim

e
(s

ec
)

0

50

100

150

200

250

ERkBSK Count Tree

ERkBSK Count List

(a) NA (b) NA

Fig. 11. Efficiency of count tree and count list

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X

essing a workload); (ii) the number of page accesses by
various algorithms during the search; and (iii) the num-
ber of data points pruned by each pruning heuristic. All
data sets are indexed by our modified CCAM model (dis-
cussed in Section 3.2) with the disk page size fixed to
4,096 bytes. In each experiment, we vary only one pa-
rameter and fix other parameters at their defaults. 100
random queries are evaluated in every experiment (as
with [18]), and their average performance is reported. To
be more specific, the query is randomly located in one
edge of the road network, and the query keywords are
randomly extracted from the vocabulary of the data set.
We assume that the server maintains a buffer of 200 pages
with LRU as the cache replacement policy.

6.2 Effectiveness of Pruning Heuristics
The first set of experiments is to verify the effectiveness of
our presented pruning heuristics based on the number of
data points pruned. As different lemmas/heuristics are
introduced for different purposes, the points they try to
prune are different. For Lemma 1 and Lemma 2, they are
integrated simultaneously in RkBSK algorithm, and hence
we report their joint pruning power based on the number

of data points they, but not BM, can discard. For Heuristic
1 and Heuristic 2, we refer to the data points they, but not
newly developed lemmas, can prune. For Heuristic 3, we
measure those candidate points in the candidate set Sc
that can be discarded without invoking BV algorithm.

We change |q.key| from 1 to 9 and depict the results in
Fig. 9. We also vary k and show the results in Fig. 10. Evi-
dently, all the lemmas and heuristics have excellent prun-
ing power. Take Heuristic 1 for NA as an example. It
saves the detailed examination of about 33,026 points
when |q.key| = 5. Based on our experiments, Heuristic 3 is
not as effective as others. This is because Heuristic 3 is
only applied to the candidate points in Sc. Since the ma-
jority of data points have already been pruned away by
Lemmas, Heuristic 1, and Heuristic 2, the candidate set is
not big, which leaves the room for improvement brought
by Heuristic 3 very small. It is observed that although
heuristics perform differently as parameters change, their
overall effectiveness is significant.

6.3 Effectiveness of Count Tree
The second set of experiments evaluates the efficiency of
count tree. Towards this, we deploy NA dataset, and vary

1 3 5 7 9
number of query keywords

qu
er

y
ti

m
e

(s
ec

)

0

30

60

90

120

150

180

BM

RkBSK

ERkBSK

1 3 5 7 9

number of query keywords

of

 p
ag

e
ac

ce
ss

es
 (

K
)

0

20000

40000

60000

80000

BM

RkBSK

ERkBSK

(a) CA (b) CA

1 3 5 7 9
number of query keywords

qu
er

y
ti

m
e

(s
ec

)

0

500

1000

1500

2000

2500

BM

RkBSK

ERkBSK

1 3 5 7 9

number of query keywords

0

300000

600000

900000

BM

RkBSK

ERkBSK

of

 p
ag

e
ac

ce
ss

es
 (

K
)

(c) NA (d) NA

1 3 5 7 9
number of query keywords

qu
er

y
ti

m
e

(s
ec

)

0

400

800

1200

1600

2000

BM

RkBSK

ERkBSK

1 3 5 7 9

number of query keywords

of

 p
ag

e
ac

ce
ss

es
 (

K
)

0

150000

300000

450000

600000

750000

BM

RkBSK

ERkBSK

(e) SF (f) SF

Fig. 12. Query cost vs. |q.key|

2 4 6 8 10
average number of POI keywords

qu
er

y
ti

m
e

(s
ec

)

10-1

100

101

102

103

10-2

10-3

10-4

BM

RkBSK

ERkBSK

2 4 6 8 10
average number of POI keywords

of

 p
ag

e
ac

ce
ss

es
 (

K
)

10-1
100
101
102
103
104

10-2

105
106

BM

RkBSK

ERkBSK

(a) NA (b) NA

Fig. 14. Query cost vs. |p.key|

k

qu
er

y
ti

m
e

(s
ec

)

0

3

6

9

12

15

10 20 30 40 50

BM

RkBSK

ERkBSK

 k

of

 p
ag

e
ac

ce
ss

es
 (

K
)

0

40

80

120

160

200

10 20 30 40 50

BM

RkBSK

ERkBSK

(a) CA (b) CA

k

qu
er

y
ti

m
e

(s
ec

)

0

100

200

300

400

10 20 30 40 50

BM

RkBSK

ERkBSK

 k

of

 p
ag

e
ac

ce
ss

es
 (

K
)

0

30000

60000

90000

120000

10 20 30 40 50

BM

RkBSK

ERkBSK

(c) NA (d) NA

k

qu
er

y
ti

m
e

(s
ec

)

0

70

140

210

280

350

10 20 30 40 50

BM

RkBSK

ERkBSK

 k

of

 p
ag

e
ac

ce
ss

es
 (

K
)

0

20000

40000

60000

80000

100000
BM

RkBSK

ERkBSK

10 20 30 40 50

(e) SF (f) SF

Fig. 13. Query cost vs. k

4 6 8 10 12
average number of POI per edge

qu
er

y
ti

m
e

(s
ec

)

0

60

120

180

240

300

BM

RkBSK

ERkBSK

4 6 8 10 12

average number of POI per edge

of

 p
ag

e
ac

ce
ss

es
 (

K
)

0

15000

30000

45000

60000

75000

BM

RkBSK

ERkBSK

(a) NA (b) NA
Fig. 15. Query cost vs. |POIs|

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

GAO ET AL.: REVERSE TOP-K BOOLEAN SPATIAL KEYWORD QUERIES ON ROAD NETWORKS 13

the number k and |q.key|. We demonstrate the efficiency
of count tree by comparing it with count list using the
same algorithm, i.e., ERkBSK algorithm. The experimental
results are illustrated in Fig. 11. It is observed that, the
cost of ERkBSK using count list (denoted as ERkBSK-
Count List) increases more significantly with the growth
of both k and |q.key|. Furthermore, when the values of k
and |q.key| grow, the gap of ERkBSK using different data
structures is also enlarged. The reason is that the cost of
maintaining count list ascends with k and |q.key|, since
finding count information using count list is more costly
than that under count tree.

6.4 Results on RkBSK Queries
In this set of experiments, we evaluate the performance of
BM, RkBSK, and ERkBSK algorithms. We study the influ-
ence of various parameters, including (i) the number of
query keywords (i.e., |q.key|), (ii) k, (iii) the average num-
ber of keywords per point p in the dataset (i.e., |p.key|),
and (iv) the average number of POIs per edge (i.e., |POIs|).

First, we investigate the impact of |q.key| on the effi-
ciency of the algorithms, and show the results for k=30 in
Fig. 12. As observed, ERkBSK exceeds BM and RkBSK in
all cases. The reason is that, as mentioned in Section 4,
BM needs to verify all data points p with p.keyq.key, and
RkBSK, although performing better than BM, still needs to
evaluate a large number of data points. We also observe
that the cost of RkBSK retrieval increases with |q.key|.
This is expected, as |q.key| grows, more points satisfy the
keyword constraint, and thus, the candidate set is bigger.

We then explore the impact of k with results depicted
in Fig. 13. Similar to what has been observed previously,
ERkBSK performs the best, followed by RkBSK, BM is the
worst. Also, the value of k affects the performance.

Next, we evaluate the performance of RkBSK algo-
rithms under different average number of keywords per
data point p (i.e., |p.key|), with results plotted in Fig. 14. As
expected, ERkBSK outperforms BM and RkBSK signifi-
cantly, especially for larger |p.key|. When |p.key| changes
from 2 to 10, the cost of RkBSK retrieval decreases. This is
because the number of candidate objects drops as |p.key|
ascends, which helps to reduce the cost. Another observa-
tion is that the cost of ERkBSK decreases dramatically as
|p.key| grows. The reason is that the pruning power of
Heuristics increases with the growth of |p.key|.

Last but not least, we study the effect of |POIs| (i.e., the
average number of POIs per edge) on the performance of the
algorithms, with the results shown in Fig. 15. Increasing
|POIs| has different impacts on these three algorithms. As
depicted in Fig. 15, when |POIs| grows, BM increases its
costs significantly, while RkBSK and ERkBSK actually
decrease their costs. This is because, as |POIs| ascends, BM
needs to evaluate more data points, whereas RkBSK and
ERkBSK actually expand a smaller area in the road net-
work with the help of efficient lemmas and heuristics.

7 CONCLUSIONS
In this paper, we identify and solve a novel type of que-
ries, namely, RkBSK search, on road networks by consid-

ering spatial and textual constraints. Although both
RkNN retrieval and spatial keyword search on road net-
works have been studied, there is no previous work that
takes into account both the reverse spatial proximity be-
tween objects on road networks and the textual constraint.
On the other hand, RkBSK retrieval is useful in many de-
cision support applications involving keywords and road
networks. Two efficient algorithms are developed to sup-
port RkBSK queries on road networks, assuming that the
road network is modeled by a large graph. An extensive
experimental evaluation with both real and synthetic data
sets has been conducted to verify the performance of our
proposed algorithms in answering RkBSK queries.

This work also inspires several directions for future
work. First, we only focus on Boolean spatial keywords
search in this work. Thus, how to extend our solutions to
score based spatial keyword retrieval needs further study.
Second, we plan to explore the multi-source RkBSK query
that is issued with respect to multiple query points, which
can be regarded as the group version of RkBSK search.
Finally, in addition to road networks, how to use RkBSK
queries on social networks is also interesting.

Acknowledgments. Yunjun Gao was supported in part
by NSFC Grant No. 61379033, the National Key Basic Re-
search and Development Program (i.e., 973 Program) No.
2015CB352502, and the Cyber Innovation Joint Research
Center of Zhejiang University.

REFERENCES
[1] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard, D.

Wu, and M. L. Yiu, “Spatial Keyword Querying,” Proc. Int’l
Conf. Conceptual Modeling, pp. 16–29, 2012.

[2] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective Spatial
Keyword Querying,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 373–384, 2011.

[3] A. Cary, O. Wolfson, and N. Rishe, “Efficient and Scalable
Method for Processing Top-k Spatial Boolean Queries,” Proc.
Int’l Conf. Scientific and Statistical Database Management, pp. 87–
95, 2010.

[4] M. A. Cheema, W. Zhang, X. Lin, Y. Zhang, and X. Li, “Con-
tinuous Reverse k Nearest Neighbors Queries in Euclidean
Space and in Spatial Networks,” VLDB J., vol. 21, no. 1, pp. 69–
95, Feb. 2012.

[5] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial Keyword
Query Processing: An Experimental Evaluation,” PVLDB, vol. 6,
no. 3, pp. 217–228, Jan. 2013.

[6] G. Cong, C. S. Jensen, and D. Wu, “Efficient Retrieval of the
Top-k Most Relevant Spatial Web Objects,” PVLDB, vol. 2, no. 1,
pp. 337–348, Aug. 2009.

[7] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword Search on
Spatial Databases,” Proc. Int’l Conf. Data Eng., pp. 656–665, 2008.

[8] Y. Gao, B. Zheng, G. Chen, W.-C. Lee, K. C. Lee, and Q. Li,
“Visible Reverse k-Nearest Neighbor Query Processing in Spa-
tial Databases,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp.
1314–1327, Sep. 2009.

[9] F. Korn and S. Muthukrishnan, “Influence Sets Based on Re-
verse Nearest Neighbor Queries,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 201–212, 2000.

1041-4347 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2365820, IEEE Transactions on Knowledge and Data Engineering

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXXXXX 201X

[10] K. C. Lee, B. Zheng, and W.-C. Lee, “Ranked Reverse Nearest
Neighbor Search,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 7,
pp. 894–910, Jul. 2008.

[11] G. Li, J. Feng, and J. Xu, “Desks: Direction-Aware Spatial Key-
word Search,” Proc. Int’l Conf. Data Eng., pp. 474–485, 2012.

[12] Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee, X. Wang, IR-tree:
An Efficient Index for Geographic Document Search. IEEE
Trans. Knowl. Data Eng., vol. 23, no.4, pp. 585–599, Apr. 2011.

[13] G. Li, Y. Li, J. Li, L. Shu, and F. Yang, “Continuous Reverse k
Nearest Neighbor Monitoring on Moving Objects in Road Net-
works,” Inf. Syst., vol. 35, no. 8, pp. 860–883, Dec. 2010.

[14] J. Lu, Y. Lu, and G. Cong, “Reverse Spatial and Textual k Near-
est Neighbor Search,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 349–360, 2011.

[15] S. Luo, Y. Luo, S. Zhou, G. Cong, and J. Guan, “Distributed
Spatial Keyword Querying on Road Networks,” Proc. Int’l Conf.
Extending Database Technology, pp. 235–246, 2014.

[16] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query Proc-
essing in Spatial Network Databases,” Proc. Int’l Conf. Very
Large Data Bases, pp. 802–813, 2003.

[17] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Norvag,
“Efficient Processing of Top-k Spatial Keyword Queries,” Proc.
Int’l Symposium Advances in Spatial and Temporal Databases, pp.
205–222, 2011.

[18] J. B. Rocha-Junior and K. Norvag, “Top-k Spatial Keyword
Queries on Road Networks,” Proc. Int’l Conf. Extending Database
Technology, pp. 168–179, 2012.

[19] M. Safar, D. Ibrahimi, and D. Taniar, “Voronoi-Based Reverse
Nearest Neighbor Query Processing on Spatial Networks,”
Multimedia Syst., vol. 15, no. 5, pp. 295–308, Oct. 2009.

[20] S. Shekhar and D.-R. Liu, “CCAM: A Connectivity-Clustered
Access Method for Networks and Network Computations,”
IEEE Trans. Knowl. Data Eng., vol. 9, no. 1, pp. 102–119, Jan. 1997.

[21] I. Stanoi, D. Agrawal, and A. El Abbadi, “Reverse Nearest
Neighbor Queries for Dynamic Databases,” Proc. ACM SIG-
MOD Workshop DMKD, pp. 44–53, 2000.

[22] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN Search in Arbi-
trary Dimensionality,” Proc. Int’l Conf. Very Large Data Bases, pp.
744–755, 2004.

[23] Y. Tao and C. Sheng, “Fast Nearest Neighbor Search with Key-
words,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 4, pp. 878–888,
Apr. 2014.

[24] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Norvag, “Re-
verse Top-k Queries,” Proc. Int’l Conf. Data Eng., pp. 365–376,
2010.

[25] A. Vlachou, C. Doulkeridis, K. Norvag, and Y. Kotidis.
“Branch-and-Bound Algorithm for Reverse Top-k Queries,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 481–492,
2013.

[26] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou,
“Shortest Path and Distance Queries on Road Networks: An
Experimental Evaluation,” PVLDB, vol. 5, no. 5, pp. 406–417,
2012.

[27] W. Wu, F. Yang, C.-Y. Chan, and K.-L. Tan, “Finch: Evaluating
Reverse k-Nearest-Neighbor Queries on Location Data,”
PVLDB, vol. 1, no. 1, pp. 1056–1067, 2008.

[28] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint Top-k Spa-
tial Keyword Query Processing,” IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 10, pp. 1889–1903, Oct. 2012.

[29] M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao, “Reverse

Nearest Neighbors in Large Graphs,” IEEE Trans. Knowl. Data
Eng., vol. 18, no. 4, pp. 540–553, Apr. 2006.

[30] J. Zhang, W.-S. Ku, X. Jiang, X. Qin, and Y.-L. Hsueh, “Evalua-
tion of Spatial Keyword Queries with Partial Result Support on
Spatial Networks,” Proc. Int’l Conf. Mobile Data Management, pp.
279–282, 2013.

[31] D. Zhang, K. L. Tan, and A. K. H. Tung, “Scalable Top-k Spatial
Keyword Search,” Proc. Int’l Conf. Extending Database Technology,
pp. 359–370, 2013.

[32] C. Zhang, Y. Zhang, W. Zhang, X. Lin, M. A. Cheema, and X.
Wang, “Diversified Spatial Keyword Search On Road Net-
works,” Proc. Int’l Conf. Extending Database Technology, pp. 367–
378, 2014.

Yunjun Gao received the PhD degree in com-
puter science from Zhejiang University, China,
in 2008. He is currently an associate professor
in the College of Computer Science, Zhejiang
University, China. Prior to joining the faculty, he
was a Postdoctoral Fellow at the Singapore
Management University during 2008-2010, and
a Visiting Scholar or Research Assistant at the
Nanyang Technological University, Simon Fra-
ser University, and City University of Hong

Kong, respectively. His research interests include spatial and spatio-
temporal databases, uncertain and incomplete databases, and spa-
tio-textual data management. He has published papers in Journals
and conferences including TODS, VLDBJ, TKDE, SIGMOD, ICDE,
and SIGIR. He is a member of the ACM and the IEEE, and a senior
member of the CCF.

Xu Qin received the BS degree in network
engineering from Nanchang University, China,
in 2012. He is currently working toward the MS
degree in the College of Computer Science,
Zhejiang University, China. His research inter-
est includes spatial keyword queries.

Baihua Zheng received the PhD degree in
computer science from Hong Kong University of
Science & Technology, China, in 2003. She is
currently an associate professor in the School
of Information Systems, Singapore Manage-
ment University, Singapore. Her research inter-
ests include mobile/pervasive computing and
spatial databases. She has published papers in
Journals and conferences including TODS,
VLDBJ, TKDE, SIGMOD, VLDB, and ICDE.

She is a member of the IEEE.

Gang Chen received the PhD degree in com-
puter science from Zhejiang University. He is
currently a professor in the College of Com-
puter Science, Zhejiang University, China. He
has successfully led the investigation in re-
search projects which aim at building China’s
indigenous database management systems.
His research interests range from relational
database systems to large-scale data man-
agement technologies supporting massive

Internet users. He has published papers in Journals and conferences
including TODS, VLDBJ, TKDE, SIGMOD, VLDB, and ICDE. He is a
member of the ACM and senior member of the CCF.

	Efficient Reverse Top-k Boolean Spatial Keyword Queries on Road Networks
	Citation

	TKDE2365820.pdf

