
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2014

An air index for spatial query processing in road networks An air index for spatial query processing in road networks

Weiwei SUN
Fudan University

Chunan CHEN
Fudan University

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Chong CHEN
Fudan University

Peng LIU
Fudan University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Transportation Commons

Citation Citation
SUN, Weiwei; CHEN, Chunan; ZHENG, Baihua; CHEN, Chong; and LIU, Peng. An air index for spatial query
processing in road networks. (2014). IEEE Transactions on Knowledge and Data Engineering (TKDE). 27,
(2), 382-395.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2454

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2454&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

An Air Index for Spatial Query
Processing in Road Networks

Weiwei Sun, Chunan Chen, Baihua Zheng,Member, IEEE, Chong Chen, and Peng Liu

Abstract—Spatial queries such as range query and kNN query in road networks have received a growing number of attention in real

life. Considering the large population of the users and the high overhead of network distance computation, it is extremely important to

guarantee the efficiency and scalability of query processing. Motivated by the scalable and secure properties of wireless broadcast

model, this paper presents an air index called Network Partition Index (NPI) to support efficient spatial query processing in road

networks via wireless broadcast. The main idea is to partition the road network into a number of regions and then build the index to

carry some pre-computation information of each region. We also propose multiple client-side algorithms to facilitate the processing of

different spatial queries such as kNN query, range query and CNN query. A comprehensive experimental study has been conducted to

demonstrate the efficiency of our scheme.

Index Terms—Wireless data broadcast, kNN query, air indexing, road network

Ç

1 INTRODUCTION

MOBILE devices with computational and wireless com-
munication capabilities are becoming more and more

popular in our daily life. Most of these mobile devices such
as smart phones and pads are equipped with positioning
systems. The integration of positioning techniques and
mobile computing techniques has led to the rapid rise of
Location-Based Services (LBSs). For example, mobile users
ask for nearby information via issuing spatial queries in
road networks (e.g., range queries and kNN queries) [1].

In most, if not all, of the works, point-to-point accessmodel
is employed to process queries in road networks [2], [3], [4].
It assumes the mobile client posts a query to the server, and
then the server returns the query result to the client through
a point-to-point channel. Although this model is ideal for
many applications, it has some disadvantages in supporting
spatial query processing in the road network. For example,
when multiple clients located in the same area request for
the same information, this model wastes network resources
to deliver the same information multiple times. In other
words, this model might cause network overloading when
the number of mobile clients increases. In addition, it is
very hard for the clients to protect their location privacy
under this model as the mobile clients have to send the
details of their locations to the server.

Wireless data broadcast is an alternative to disseminate
data to mobile clients. Under this model, the server periodi-
cally broadcasts the data via a wireless channel, while the

clients tune in the channel to retrieve the information inter-
ested in. A broadcast of the common requested data can sat-
isfy an arbitrary number of mobile clients simultaneously,
which is of great significance in wireless networks with lim-
ited bandwidth. In other words, the unique feature that the
network overload is independent of the number of clients
offers the broadcast systems with super scalability. Another
advantage of this model is that there is no need to pass the
clients’ locations to the server, and hence the location pri-
vacy of clients is well protected.

Traditional technologies utilize disk-based spatial index
[1], [2], [3], [4] to speed up spatial query processing in road
networks. These indexes are not suitable in broadcast model
for two reasons: i) Existing indexing techniques consider
only random access in disk-based environments, whereas
broadcast model only supports sequential access; ii) Disk-
based indexes mainly aim at reducing access latency (AT);
while in wireless broadcast model, the tuning time (TT) is
the other important metric, which determines the energy
consumption and Internet traffic charge. The development
of new air indexes for spatial query processing in wireless
broadcast environments is in high demand.

In the literature, there are a lot of works on wireless data
broadcast to address various system issues, among which
several proposals are on delivering spatial data via wireless
data broadcast. These techniques mainly focus on euclidean
space [5], [6], [7]. However, in most of real life applications,
the objects’ movement is constrained by road networks.
Recently, [8], [9] propose air indexes to support shortest
path queries in wireless broadcast environments. However,
the issue of supporting spatial queries (e.g., range queries
and kNN queries) on road networks via broadcasting sys-
tems has not been addressed yet.

In this paper, we propose a novel spatial air index namely
Network Partition Index (NPI) to support a variety of spatial
queries in road networks. Compared with existing schemes,
NPI is a more general wireless broadcast scheme to dissemi-
nate the road network data to mobile clients. The main idea

� W. Sun, C. Chen, C. Chen, and P. Liu are with the School of Computer
Science, Fudan University, Shanghai 201203, P.R., China.
E-mail: {wwsun, chenchunan, chenchong, liupeng}@fudan.edu.cn.

� B. Zheng is with the School of Information Systems, Singapore Manage-
ment University, Singapore. E-mail: bhzheng@smu.edu.sg.

Manuscript received 30 May 2013; revised 14 Apr. 2014; accepted 19 Apr.
2014. Date of publication 12 June 2014; date of current version 23 Dec. 2014.
Recommended for acceptance by W.-S. Han.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2014.2330836

382 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2015

1041-4347� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Published in IEEE Transactions on Knowledge and Data Engineering, 2013 June, Volume 27, Issue 2, Pages 382-395
https://doi.org/10.1109/TKDE.2014.2330836

is to partition the original network into smaller cells, and to
pre-compute some information (e.g., the minimum network
distance between every two cells and the diameter of every
cell) that will be carried byNPI. On the server side, it periodi-
cally broadcasts NPI, together with the network connectivity
information of each cell. On the client side, upon issuing
queries, they tune in the channel to fetch the index informa-
tion first, based on which some cells that definitely do not
contain the query results can be pruned away. Then, the
mobile clients only need to retrieve the data corresponding
to those cells that might contain the results. After download-
ing the subset of the road network information, the query
processing is executed at the client side. The contributions of
this paper can be summarized as follows:

� We propose a novel air index namely NPI to broad-
cast road network data to mobile clients to support
spatial query processing at client side.

� We propose multiple client-side search algorithms to
support different spatial queries efficiently, includ-
ing range query, kNN query, and CNN query.

� An extensive simulation is constructed using real
road network data to demonstrate the efficiency of
NPI.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the wireless broadcast model
and overviews the existing work on air index for LBSs, as
well as the query processing techniques in road networks.
Section 3 presents our NPI broadcast scheme. Section 4 dis-
cusses how to process different spatial queries at the client
side. Section 5 discusses the optimal grid granularity selec-
tion. Section 6 reports the experimental evaluation results,
and finally Section 7 concludes this paper.

2 PRELIMINARIES

2.1 Wireless Data Broadcast

In the wireless data broadcast model, the server repeatedly
broadcasts the data to the clients via a wireless channel,
while the mobile clients tune into the broadcast channel to
retrieve the data on air and process the query locally. Usu-
ally, access latency and tuning time are the main perfor-
mance metrics for a wireless broadcast system [10]. The
former refers to the time elapsed from the moment a query
is issued to the moment it is answered; and the latter is the
time a mobile client stays in active mode to receive the
requested spatial data and index information. On the one
hand, access latency well demonstrates the responsiveness
of the system and is very important to user experience. On
the other hand, tuning time is the determinant factor of the
power consumption at client side [11] and hence a smaller
tuning time is preferred. In addition, smaller tuning time
means less Internet usage by the clients. This is desirable
as the mobile users might be charged by the amount of
Internet traffic.

Air indexing techniques are often used for conserving the
energy of mobile clients. With indexing information (includ-
ing searchable attributes and delivery time of data objects)
carried by air indexes, mobile clients can find out the arrival
time of desired data objects and schedule the sleep time for
sub-sequential data access. Consequently, the search of data
objects is facilitated.

The (1, m) indexing scheme [10], as depicted in Fig. 1, is
the most common organization of the broadcast cycle. It
divides the broadcast data into m equal parts (data seg-
ments) and broadcasts each data segment preceded by the
index on the broadcast channel. In other words, the index
information is broadcast m times within one broadcast
cycle. Although the repeated index information extends the
broadcast cycle and hence the average access latency, it
effectively cuts down the tuning time.

2.2 Spatial Query Processing in Wireless Broadcast
Environments

Hambrusch et al. [12] use a traditional spatial index, i.e.,
R*-tree,to support range queries in wireless broadcast envi-
ronments. This method can efficiently support range
queries but not those with answer objects not fixed, e.g.,
kNN query [6]. The D-tree [5] and Grid-index [13] have
been proposed to support NN queries in wireless broad-
cast environments. They use Voronoi Diagram to partition
the service area into disjoint Voronoi cells (VCs) with each
corresponding to one object. Given an object a, it is guaran-
teed to be the nearest neighbor to any client located inside
the corresponding VC. However, both D-tree and grid-
index are not general index structures as they only support
1NN query. The Hilbert space-filling curve, a spatially
optimal method to transform the multi-dimensional data
into a one-dimensional space, has been applied to organize
spatial data in the sequentially accessed broadcast channel.
Representatives include Hilbert Curve Index (HCI) [14] and
Distributed Spatial Index (DSI) [6]. Mouratidis et al. [7] pro-
pose the Broadcast Grid Index (BGI), which outperforms the
previous techniques in both static and dynamic environ-
ments. BGI uses grid cell as the index because grid cell is
not only of small size but also very efficient for objects
updates.

However, all above-mentioned approaches only consider
the spatial queries in a euclidean space. In many real life
applications, the objects’ movements are constrained in a
road network. The index techniques such as R*-tree based
method or grid cell can’t be directly applied in road net-
works because the network distance (i.e., the shortest path
distance) can’t be computed using only the boundary of the
minimum boundary rectangle (MBR) or grid cell. The same
problem occurs in the Voronoi-based technique and the Hil-
bert-curve based methods.

2.3 Spatial Query Processing in Road Networks

In general, a road network is modeled as an undirected
graph GðV;EÞ, with V being the set of vertices and E being
the set of edges. As road networks usually are sparse graphs,
it is common to store G using adjacency lists. An edge
ðvi; vjÞ 2 E represents that vertices vi and vj are connected in
the network. The weights of edges are captured by W . A

Fig. 1. (1,m) interleaving technique on the broadcast channel.

SUN ET AL.: AN AIR INDEX FOR SPATIAL QUERY PROCESSING IN ROAD NETWORKS 383

non-negative weight wðvi; vjÞ 2W of edge ðvi; vjÞ 2 E can
represent physical distance, travel time or other costs accord-
ing to different application context. Given two vertices vi and
vj of a graphGðV;EÞ, a path and the shortest path connecting
them are defined in Definition 1. In this paper, the distance
(or the network distance) between two vertices in a road net-
work refers to their shortest distance.

Definition 1 (Path and Shortest Path). Given a road network
GðV;EÞ and vi; vj 2 V , a path P ðvi; vjÞ connecting vi and vj
sequentially passes vertices vp1; vp2 . . . ; vpm, denoted as
P ðvi; vjÞ ¼ {vi, vp1, vp2, . . ., vpm, vj}. The length of P ðvi; vjÞ,
denoted as jP ðvi; vjÞj, is

Pm
n¼0 wðvpn, vpðnþ1ÞÞ with vp0 ¼ vi

and vpðmþ1Þ ¼ vj. The shortest path SP ðvi; vjÞ is the one with
the shortest length among all the paths from vi and vj, and its
length, denoted as jjvi; vjjjð¼ jSP ðvi; vjÞjÞ, is the network dis-
tance between vi and vj.

Fig. 2 depicts an example road network, which serves as
a running example in the remainder of this paper. It consists
of 14 vertices and 17 edges. The integer next to each edge
indicates its weight. From Fig. 2 we can easily see that
SP ðv1; v5Þ ¼ fv1; v4; v5g and jjv1; v5jj ¼ 2.

In traditional spatial databases, spatial query processing
in road networks has been well studied. R-trees have been
used to store the objects, the crosses in the road network,
and the shapes of the road segments [3]. Two different algo-
rithms, namely IER and INE, based on this storage schema
have been proposed. NVD applies Voronoi Diagrams on
road networks to support general kNN queries [2]. The net-
work embedding framework has also been utilized to pro-
cess kNN queries in road networks [1]. A distance signature
based solution (DS) has been proposed to process range
query and kNN query in road networks [15]. Shortest Path
Quad-tree (SPQ) has also been proposed to support best-
first kNN search [4].

However, the query processing techniques mentioned
above can’t be applied directly in wireless broadcast envi-
ronments. This is because in the traditional spatial data-
base, data are stored in disk or memory and can be
accessed randomly. Consequently, the algorithms devel-
oped assume the data are always available. However, in
wireless broadcast systems, the data are broadcast based

on certain fixed order. Once the information is broadcast,
the client has to wait for the next time the same informa-
tion is broadcast as the information is only available when
it is broadcast.

Due to space limitation, we only review three represen-
tative approaches, i.e., IER, INE, and NVD. Their ineffi-
ciency is actually common to other approaches as well.
Given a query point q and an integer k, IER needs search
the R-tree index to retrieve the kNN of q according to
euclidean distance. As discussed in Section 2.2, kNN algo-
rithms using R-tree index in wireless broadcast environ-
ments may cause long access latency due to backtracking.
INE shares some similarity with Dijkstra’s algorithm [16]
when exploring the road network. From the query issuing
point, it expands the road network based on network dis-
tance, while the adjacency lists of all the nodes are broad-
cast by the server based on certain fixed order. In other
words, it is very likely that when the client needs to retrieve
the adjacency list of node n, it has been already broadcast in
the current cycle. The client has to wait until the next
broadcast cycle to retrieve n’s information, which results in
long access latency. Alternatively, the client may read the
data in the entire broadcast cycle to cut down the access
latency, in cost of large tuning time. NVD suffers from the
same problem. Suppose a 2NN query is issued. The client
can find its nearest neighbor by locating the network Voro-
noi cell, says Vq, it is in. Then, it has to explore Vq’s adjacent
diagrams in order to find the second nearest neighbor.
However, some of the Vq’s adjacent diagrams might be
broadcast earlier than Vq in the current broadcast cycle. The
client has to either wait until the next cycle or blindly
retrieve all the data within one cycle.

The wireless broadcast model is first adopted by Kellaris
and Mouratidis [8] to provide LBSs in road networks. Two
different methods, namely EB and NR, are proposed to sup-
port shortest path computation on air. An energy-efficient
air index, namely BagIndex, has also been proposed to sup-
port shortest path queries. Both [8] and [9] only support
shortest path queries but not common spatial queries such
as range query and kNN query. A more general index that
can support multiple spatial queries is desired.

3 NPI: AIR INDEX FOR SPATIAL QUERY

PROCESSING IN ROAD NETWORKS

The result of a spatial query often lies somewhere near the
client’s location. For example, the 10 nearest restaurants to a
query point q are centered at q and they are not far away
from q. This is because: i) points of interest such as restau-
rants are usually very dense in a real road network, and ii)
the value of k posted by the mobile user won’t be too large
because it is meaningless and not practical for a mobile
device to deal with hundreds or thousands of objects. In
other words, the client needs not to read the network infor-
mation too far away.

Motivated by this observation, we partition the original
road network into small regions and pre-compute certain
information for each region, which forms the index (i.e.,
NPI). The index information, as well as the adjacency lists
of each region, is interleaved in the broadcast channel. In
this section, we first introduce the network partition and

Fig. 2. Partitioning a road network into 2�2 grids.

384 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2015

some important concepts. Then, we present the information
carried by NPI. Next, we discuss the content of the data seg-
ment, i.e., the road network structure represented by the
adjacency lists as well as the objects location and descrip-
tion. Finally, we explain how to interleave the index and
data segment in a wireless channel.

3.1 Grid Partition of the Road Networks

There are several strategies to partition the road network
[17]. In this paper, we adopt the grid partitioning algorithm
for the size of a grid index is very small. Other partition
methods such as quadtree partition or kd-tree partition can
be applied into our NPI too. The road network is partitioned
into n� n (¼ N) equal-size grids. Here, n refers to the num-
ber of grids in each dimension. All the grid cells Gi;j

(1 � i,j � n) are in square shape with w being the side
length. The header of NPI contains the grid partition infor-
mation, i.e., the minimum/maximum x/y coordinate of the
service area (denoted as min x/min y, max x/max y), and
the grid width w. Given a client located at a position pðx; yÞ,
the grid cell Gi;j that the client falls in can be computed with
Equation (1). As shown in Fig. 2, the road network is parti-
tioned into 2� 2 (i.e., n ¼ 2 and N ¼ 4) grids. The nodes v1,
v3, and v4 are in the grid cell G2;1, the nodes v2, v5, and v6 are
in the grid cell G2;2, and so on.

i ¼ ðy�min yÞ=wd e
j ¼ ðx�min xÞ=wd e:

�
(1)

For the purpose of convenience in expression, we assign
each cell with one unique ID (from 1 to N) based on some
specific mapping function. In the rest of this paper, we use
the notation Ca to refer to the cell with ID of a and avoid
using the two-dimensional notation Gi;j. Fig. 3 shows the
mapping result of the cells in Fig. 2. For example, C1 refers
to the grid cell G1;1 and C3 refers to the grid cell G2;2. The
details of the mapping function will be given later.

3.2 Pre-Computation Information

As we mentioned before, NPI contains the grid partition
information in its header. Now we explain the second type
of information carried by NPI, i.e., some pre-computation
information of the road network. Before we present the
details of the pre-computation information, we first intro-
duce the concept of border points, as defined in Definition 2.

Definition 2 (Border points). Given a vertex u located in the
grid cell Ca, u is called a border point of Ca if u is connected to
another vertex v that is located in another grid cell Cb (a 6¼ b)
via an edge ðu; vÞ.

Border points refer to those vertices lying on the edges
bypassing more than one grid cell. For example, as shown
in Fig. 2, vertices v2 and v4 are border points as the corre-
sponding edge (v2, v4) bypasses two grid cells, i.e., C2 and
C3. All the border points are indicated by hollow-circles in
Fig. 2. We use BPa to refer to all the border points located
inside cell Ca, e.g., BP1 ¼ {v8} and BP2 ¼{v3, v4}.

Obviously, the border points of a given cellCa serve as the
only entrances to and exits from Ca, e.g., all the paths from a
point located outside cell C1 to a point inside C1 must pass
v8, the only border point ofC1. Consequently, for each pair of
cells Ca and Cb, we pre-compute the minimum network dis-
tance aa;b (or maximum network distance ba;b) between any

border point p of Ca and any border point p0 of Cb, i.e., aa;b ¼
MINp2BPa;p02BPb (jjp; p0jj), and ba;b ¼ MAXp2BPa;p02BPb
(jjp; p0jj). aa;b and ba;b can facilitate the approximation of the

network distance from a point in cell Ca to a point located in
another grid cellCb. This will be detailed in the next section.

Take the cells C2 and C4 in our example road network
as an example. Since BP2 ¼ {v3, v4} and BP4 ¼ v9, v13, a2;4

¼ MIN(jjv3; v9jj, jjv3; v13jj, jjv4; v9jj, jjv4; v13jj) ¼ jjv4; v9jj ¼ 4,
and b2;4 ¼MAX(jjv3; v9jj, jjv3; v13jj, jjv4; v9jj, jjv4; v13jj) ¼
jjv4; v13jj ¼ 6. These distance data are maintained by a
N �N matrix M, namely distance bound matrix. Each ele-
ment of M, denoted as da;b, contains the lower bound aa;b

and the upper bound ba;b of the network distance between

the border points of cell Ca and border points of another
cell Cb. That’s, da;b ¼ ðaa;b;ba;bÞ, for (1 � a, b � N). The dis-

tance bound matrix for our example road network is
depicted in Fig. 4. The other pre-computation information
is the diameter of each cell, as defined in Definition 3. Back
to our example network. The diameters of C1, C2, C3, and
C4 are 3, 1, 1 and 6 respectively (notice that dia(C4) ¼
jv9; v14j jj ¼ 6).

Definition 3 (Cell Diameter). Given a grid cell Ca, the diame-
ter of Ca is defined as the maximum distance between all pairs
of vertices located in Ca, i.e., diaðCaÞ ¼MAXv;v02Ca ðjjv; v0jjÞ.
In addition, the number of objects located inside each cell

is also pre-computed. The objects in Ca is denoted as Ca:obj,
and the number thereof is denoted as Caj j. The four black
squares in Fig. 2 indicate the objects in the road network.
We can easily see that C1j j ¼ C2j j ¼ C3j j ¼ C4j j ¼ 1.

The structure of NPI is depicted in Fig. 5. To be more spe-
cific, NPI contains three components: i) the header part
which contains the grid information, i.e., the size of the road
network represented by (min x, min y) and (max x,
max y), the grid width w, and an array of N elements, with
each element ei carrying the number of objects in Ci and the
diameter of Ci respectively, i.e., ei ¼ (Cij j, dia(Ci)); ii) a
pointer array with each pi pointing to the next broadcast
time of the ith row in the distance bound matrix M; and iii)
the distance bound matrixM.

Fig. 3. Grid cells ordered by Hilbert Curve.

Fig. 4. Example distance bound matrix.

SUN ET AL.: AN AIR INDEX FOR SPATIAL QUERY PROCESSING IN ROAD NETWORKS 385

3.3 Data Segment

As depicted in Fig. 1, a broadcast program contains index
and data. In the context of this work, the index refers to
NPI, while the data refers to the network structure of the
road network and the object information1, in the unit of grid
cell. Here, we assume the road network structure is cap-
tured by the adjacency lists.

For example, the data corresponding to the grid cell C2 of
our example network is depicted in Fig. 6. The first part is
the adjacency lists corresponding to all the vertices inside
C2, which are broadcast according to order of the node ID.
Take the structure of v1’s adjacency list as an example. The
integer “2” in the first row indicates the number of neigh-
bors of v1; in the following two rows, those two neighbors
are listed. Each neighbor is represented by a four-tuple vec-
tor. Take the vector (v3, 1, 0, null) corresponding to v3 as the
example. The first field ”v3” is the adjacent node which
means v3 is connected to v1; the second field is an integer
”1” indicating the weight of the edge (v1, v3); the third field
is an integer ”0” which means the number of object lying on
this edge; and the last field is a pointer (offset in the chan-
nel) which points to the first object on this edge. If there is
no object on this edge, the pointer is set to null.

Notice that objects corresponding to the same edge are
always broadcast together. In other words, with the third
and fourth fields, the client is able to retrieve all the objects
associated with a given edge. All the objects are broadcast
in the second part right after the adjacency lists, as shown in
Fig. 6. First, dis indicates the distance from the object to the
vertex of the edge with smaller node ID, i.e., it represents
the location of object along the edge. In our example, dis ¼
0.8 means: along the edge ðv1; v4Þ, the distance between
object o4 and the vertex with smaller ID (i.e., v1) is 0.8. Then,
different information of the objects can be carried by the tex-
tual description, which is based on the application settings.
As shown in Fig. 6, we assume the objects are restaurants,
and the textual description it carries includes the name of
the restaurant, the average price, and so on.

3.4 Data Organization on Air

After presenting the index structure and data segment con-
tent, we are ready to discuss how to organize them in a
wireless channel. First, as service area is partitioned into N
grid cells, we need to decide the broadcast order of grid
cells. The order might not be important for some queries,

but it has a direct impact on the performance of spatial
query processing. In this paper, we use the Hilbert space fill-
ing curve as the mapping function to sort grid cells into a
one-dimensional space, which is widely used for spatial
query processing in wireless broadcast environment [6], [7],
[14]. Fig. 3 depicts the Hilbert curve for a (2� 2) grid of our
example road network. The Hilbert values for cell G1;1 and
G2;2 are 1 and 3, respectively. According to [14], given a cell
Gi;j, the client can compute the Hilbert value ofGi;j in a con-
stant time. Moreover, as Hilbert curve can preserve the spa-
tial locality, the cells with close Hilbert values are normally
close to each other as well. In other words, the grid cells
that contain the objects requested by a user will appear
closely in the wireless channel, which will facilitate the cli-
ent’s data retrieval process.

We assume NPI is much smaller, compared with the data
segments, and hence we adopt (1, m) scheme as the data
organization strategy for better tuning time performance.
Each index segment contains the entire NPI. The grid cells
are ordered based on their Hilbert values, and their data are
partitioned into m parts with each part carried by one data
segment. In the broadcast channel, we interleave index seg-
ments with data segments, as shown in Fig. 1.

4 CLIENT-SITE QUERY PROCESSING

As explained before, the NPI enables the client to easily get
the following information:i) the distribution of the objects;
ii) the approximate network distance from the query point
to other grid cells and hence to the objects; and iii) the
arrival time of the data in each grid cell. Based on the above
information, clients can answer various kinds of spatial
queries in road networks. In this section, we discuss the
search algorithms based on NPI for range queries, snapshot
kNN queries, and continuous kNN queries.

The basic idea of the search algorithms is to first locate the
grid cell containing the client and then to read the lower and
upper bound of its distance to other grid cells. According to
the distance bounds and the distribution of the objects, the
client can get the locations of the candidate objects. Then, fol-
lowing the NPI, the clients can retrieve the cells containing
the candidate objects but ignore the rest. When the candidate
objects are locally available, the clients can locate the result
objects based on real network distance via local processing.
Because the mobile clients usually ask for nearby informa-
tion (e.g., the range of range queries is normally small), the
number of candidate cells is much smaller compared with
the total number of cells. In other words, the retrieved grid

Fig. 5. Structure of NPI.

Fig. 6. Data structure of C2.

1. In this work, the object information contains the object’s location
and its description.

386 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2015

cells will form a sub-graph that is significantly smaller than
the original road network. In other words, it is practical for
mobile clients to adopt some basic road network exploring
techniques for the local processing. In our simulation, we
adapt Dijkstra’s algorithm because it is simple and efficient
in the small sub-graph downloaded by clients.

Before we present different search algorithms, we
highlight an important assumption we make. Like many
other existing works [4], [8], [9], we assume the clients’
locations are located at network nodes to simplify our dis-
cussion. However, our algorithms can be easily extended
to support cases where clients’ locations are located along
the network edges.

4.1 Range Queries

Given a query point q, a value d and a dataset S in a road
network, a range query retrieves all the objects in S that are
within the network distance d from q, denoted as Range
(q, d, S) = {o j o 2 S ^ jjo; qjj � d}. As the network distance
between objects a and b will not be shorter than the lower
bound ai;j between cells Ci and Cj with a 2 Ci:obj and
b 2 Cj:obj (i.e., jja; bj � ai;j), only those cells Cn with their
lower bound distances an;q to cell Cq bounded by dmay con-
tain the result objects, i.e., Rangeðq; d; SÞ � fo j o 2S

an;q�dCn:objg. The correctness of above statement is

guaranteed by Lemma 1.

Lemma 1. Given a point q located at grid cell Cq and a grid cell
Cn, if an;q > d, the network distance from any object inside Cn

to q is larger than d, i.e., q 2 Cq ^ an;q > d) 8 o 2 Cn.obj,
jjo; qjj � an;q > d.

Proof. The proof is straightforward and hence it is ignored
for space saving. tu
Based on above finding, the algorithm for supporting

range query is straightforward. We adopt the filtering-and-
refinement strategy, and Algorithm 1 lists its pseudo-code.
In the filtering phase, the client listens to NPI. It locates the
cell Cq it lies in based on its location and the grid partition
information, and then fetches the qth row of the distance
bound matrix (lines 1-4). Based on ai;q, it can decide all the
cells that might contain the result objects and filter out the
rest (lines 5-7). It then retrieves the candidate cells one by

one (lines 8-12), constructs a sub-graph locally based on all
the candidate cells, and finally retrieves the result objects
using Dijkstra’s algorithm to finish the processing (lines 13).
It is noticed that the shortest path located based on the sub-
graph locally at client side is the real shortest path guaran-
teed by Lemma 2.

Algorithm 1:NPI-Based Range Query Processing on Air

Input: a source point q, a value d and a dataset S
Output: Range(q, d, S)
Procedure:
1: TuneIntoChannel();
2: NPIHeader = retrieveIndexHeader();
3: locate the grid cell Cq containing q;
4: read the qth row Rq corresponding to Cq in the

matrix;
5: for each cell Ci do
6: if aq;i � d then add Ci to the candidate cells;
7: sort the candidate cells by their arrival time;
8: for each candidate cell do
9: sleepUntilCellBroadcast();

10: TuneIntoChannel();
11: adjacencyLists = retrieveCell();
12: subGraph.add(adjacencyLists);
13: return DijkstraExpansion(subGraph, q, d);

Lemma 2. Given a point q located at grid cell Cq and a distance
bound d, let set Ccan be the set of grid cells Cn with an;q � d,
i.e., Ccan ¼ { Cn jan;q � dg. For any given object located in the
road network, if its shortest distance to q is bounded by d, its
shortest path only passes the cells inside Ccan. In other words,
the local shortest paths from q located in the partial network
formed by grid cells in Ccan with distance bounded by d are the
real shortest path.

Proof. Let G0 denote the partial road network formed by
the grid cells of Ccan. Assume the lemma is not valid,
and there is at least one object o whose shortest path
P1ðq; oÞ located based on G0 is not the real one. In other
words, the real shortest path SP ðq; oÞ must pass at least
one grid cell Cj outside Ccan, i.e., 9v 2 Cj ^ Cj =2 Ccan

such that v 2 SP ðq; oÞ. As SP ðq; oÞ is the real shortest
path, and P1ðq; oÞ is the local shortest path, jSP ðq; oÞj <
jP1ðq; oÞj � d. As v is on the shortest path SP ðq; oÞ,
jSP ðq; vÞj < jSP ðq; oÞj < d. Given the fact that q 2 Cq and
v 2 Cj, we can derive aj;q � d based on the finding that
SP ðq; dÞ < d according to Lemma 1. As Ccan ¼ fCn jan;q �
dg; Cj 2 Ccan that contradicts with our assumption
Cj =2 Ccan. Consequently, our assumption is invalid, and
the proof completes. tu
We use an example to explain the query processing for a

range query. As shown in Fig. 7, there are four objects in the
road network (i.e., o1, o2, o3, o4) and a range query is issued at
q (i.e., located at node v5) with d ¼ 3. The client first tunes
into the channel and retrieves the header of NPI. Based on
the size of the service area and the width of the grid cell, the
client understands that it is located inside cell C3 according
to Equation (1). Then, it fetches the third row of the distance
bound matrix and knows the minimum distances from a

Fig. 7. Range query processing.

SUN ET AL.: AN AIR INDEX FOR SPATIAL QUERY PROCESSING IN ROAD NETWORKS 387

border node ofC3 to a border node of C1,C2,C3 andC4 are 5,
1, 0 and 3, respectively. As d ¼ 3, objects in cell C1 are defi-
nitely not qualified and hence C1 is filtered out. In other
words, cellsC2,C3 andC4 are the candidate cells whose adja-
cency lists shall be retrieved by the client in order to find out
the result objects. Accordingly, the client downloads the data
segments of C2, C3 and C4, and re-constructs the partial road
network locally, i.e., the shaded area in Fig. 7. Finally, the cli-
ent explores the partial road network from q based on
Dijkstra’s algorithm to find out the result objects o2 and o4.

4.2 kNN Queries

Given a query point q and a dataset S in a road network, a k
nearest neighbor (kNN) query retrieves the k objects in S
whose network distances to q are the k smallest, denoted as
kNNðq; k; SÞ ¼ fO ¼ S

i2½1;k�oi jO � S ^ 8o0 2 S �O; 8oi 2
O; jjq; o0jj � jjq; oijjg. Different from range queries, the search
area of an kNN query is not fixed as it depends on the loca-
tion of q and the value of k. In order to find out the candi-
date cells, we need to decide the upper bound distance dmax

between q and any of its result objects, i.e., 8oi 2 O, jjq; oijj �
dmax ^ 9o0 2 O, jjq; o0jj ¼ dmax. Once dmax is decided, an kNN
query can be converted into a range query, i.e., retrieving
the objects that are within network distance dmax to q. In the
following, we explain how to estimate dmax based on NPI.

Our estimation of dmax is based on the upper bound of the
network distance between any object in Cu and any object in
Cv, denoted as UB(Cu, Cv), i.e., 8u 2 Cu:obj; 8v 2 Cv:obj;
jju; vjj � UBðCu;CvÞ. Recall that NPI keeps the diameter
diaðCuÞ of each cell Cu and the maximum distance bu;v

between border nodes of two cells Cu and Cv. Then, we can
deriveUB(Cu,Cv), as stated in Lemma 3.

Lemma 3. Given two cells Cu and Cv, the network distance
between any object u in Cu and any object v in Cv is bounded
by ðdiaðCuÞ þ diaðCvÞ þ bu;vÞ, denoted as UBðCu; CvÞ �
diaðCuÞ þ diaðCvÞ þ bu;v.

Proof.Assume the above statement is not valid, and there is
at least one pair of objects (u, v) such that u is in Cu and v
is in Cv with jju; vjj > disðCuÞ þ diaðCvÞ þ bu;v. As u and v

are located in different cells, the shortest path between u
and vwill pass a border node b1 of Cu and a border node
b2 of Cv. In other words, SP ðu; vÞ starts from u, then
leaves Cu via b1, reaches Cv via b2, and finally reaches v,
i.e., jju; vjj ¼ jju; b1jj þ jjb1; b2jj þ jjb2; vjj. As jjb1; b2jj �
bu;v, jju; b1jj � diaðCuÞ and jjb2; vjj � diaðCvÞ, jju; vjj �
disðCuÞ þ diaðCvÞ þ bu;v. Consequently, our assumption

is not valid, and our proof completes. tu
With the help of Lemma 3, dmax can be estimated as fol-

lows. Given a query point q located in a cell Cq, we access the
cells Ci based on non-descending order of aq;i, i.e., Ci will be
visited earlier than Cj if aq;i < aq;j. If there is a tie (i.e., there
are two cells Ci and Cj with aq;i ¼ aq;jÞ, UBðCq;CiÞ and
UBðCq; CjÞ are used as the tie-breaker and the one with
smaller UB value will be visited first. Two parameters are
maintained during this process, one to count the total num-
ber of objects in all the cells visited so far, denoted as count,
and the other being UBðdmaxÞ, the upper-bound of dmax. For
each visited cellCi, we calculateUBðCq;CiÞ and set UBðdmaxÞ

to the maximum UBðCq;CiÞ found so far, andmeanwhile we
check jCij and update count. This process continues until
count reaches k. Lemma 4 proves the correctness of above
process to approximate dmax.

Lemma 4. Suppose a road network is partitioned intoN grid cells
Ci with i 2 ½1; N � and an kNN query is issued at point q
located at grid cell Cq. Assume a set C0 consists of a few cells
which satisfy following conditions: i) C0 � S

i2½1;N �Ci; ii)

8Ca 2 C0; 8Cb 2 ð
S

i2½1;N �Ci � C0Þ, aq;a � aq;b; and iii)P
Ca2C0 Caj j � k. Then, dmax �MAX8Ca2C0UBðCq; CaÞ.

Proof. Assume the above statement is not valid, and
there is at least one result object o 2 kNNðq; k; SÞ
with dmax � jjq; ojj > MAX8Ca2C0UBðCq; CaÞ. Based on
Lemma 3, we know object o must be located in some
cell Co such that Co =2 C0. On the other hand, asP

Ca2C0 Caj j � k and o 2 kNNðq; k; SÞ, there must be at

least one object o0 located in a cell Co0 (2 C0) such
that o0 =2 kNNðq; k; SÞ. Then jjq; o0jj � UBðCq; C

0
oÞ �

MAX8Ca2C0UBðCq; CaÞ < jjq; ojj that contradicts with
our assumption. Consequently, the assumption is
invalid and the proof completes. tu
After finding UBðdmaxÞ, the client can retrieve the kNN

candidates Canq via a range query with d ¼ UB(dmax).
With the help of the single source Dijkstra’s algorithm, the
client can explore the partial road network, and the first k
visited objects in Canq will be returned as the result set.
The pseudo-code of the kNN query algorithm is shown in
Algorithm 2.

Algorithm 2:NPI-Based kNNQuery Processing on Air

Input: a source point q, an integer k and a dataset S
Output: k objects in S closest to q
Procedure:
1: Q ;; count 0; UBðdmaxÞ 0;
2: TuneIntoChannel();
3: NPIHeader = retrieveIndexHeader();
4: locate the grid cell Cq containing q;
5: read the qth row Rq corresponding to Cq in the

matrix;
6: sort the cells Ci based on non-descending order of

aq;i and maintained in Q;
7: while Q is not empty do
8: Ci Q.pop();
9: count ¼ countþ Cij j;

10: UBðdmaxÞ ¼MAXðUBðdmaxÞ; UBðCq; CiÞÞ;
11: if count � k then break;
12: (subGraph, Canq) =rangeQueryðq; UBðdmaxÞ; SÞ;
13: return DijkstraExpansion(subGraph, Canq, q, k);

Recall the example in Fig. 7. Suppose a 2NN query is
issued at q. The client first needs to find out UBðdmaxÞ. It first
locates the cell C3 it lies in, and visits the cells Ci in the order
of (C3, C2, C4, C1), following the non-descending order of
a3;i. As jC3j ¼ 1 and jC2j ¼ 1 (i.e., jC3j þ jC2j ¼ k), UBðdmaxÞ
is set to MAXðUBðC3; C3Þ; UBðC3; C2ÞÞ ¼MAXðdiaðC3Þ;
diaðC3Þ þ diaðC2Þ þ b3;2Þ ¼ diaðC3Þ þ diaðC2Þ þ b3;2 ¼ 4.

Next, the client needs to retrieve all the cells Ci with

388 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2015

a3;i � UBðdmaxÞ, i.e., cells C2, C3 and C4, to construct the par-
tial road network locally. Finally, with Dijkstra’s algorithm,
the first two visited objects o2 and o4 are returned as the
result objects.

4.3 Continuous NN Queries

In real applications, mobile users might issue queries when
they are moving. For example, a taxi driver may keep asking
for the closest client while he/she is driving. This is known
as the continuous nearest neighbor (CNN) queries [18], [19].
Given a query path P ðv1; v2; . . . ; vLÞ in a road network, the
CNN query finds a set of kNN results corresponding to each
segment (namely valid interval) in P . The kNN results of all
query points lying on one valid interval are identical, and the
start/end points of all the valid intervals are called split
points. A naive solution to support CNN queries is to contin-
uously issue kNN queries along each moving point. How-
ever, it is not efficient as the answers to kNN queries issued
at nearby locations might be same. Consequently, a more
efficient search algorithm is needed to support CNN queries.

Recall that kNN search algorithm presented above uti-
lizes the parameter UBðdmaxÞ to find the answer objects.
Given two kNN queries issued at two different locations
within the same grid cell, they share the same UBðdmaxÞ. In
other words, the NPI-based kNN search algorithm only con-
siders the grid cell where the query is issued, but not the
exact location of the query point. That is to say the kNN can-
didates and the partial road network remain the same if the
client does not move out of the current grid cell. Conse-
quently, if the client issues kNN queries when moving,
she/he needs not tune into the channel to download new
candidates or new adjacency lists if she/he is still within
the current grid cell. We also find that even if the client
leaves the current grid cell but has not moved a long dis-
tance, the kNN candidates and partial road network will
still remain the same, as stated in Lemmas 5 and 6.

Lemma 5. Given a query point q, let UB(dmax) be the upper
bound calculated using Lemma 3 and Lemma 4, Canq be the
set of kNN candidates returned by algorithm 2, and dk be the

distance from q to its kth NN. For a new query point q0, if
jjq; q0jj � ðUBðdmaxÞ � dkÞ=2, then Canq contains q0’s kNN,

i.e., jjq; q0jj � UBðdmaxÞ�dk
2) kNNðq0; k; SÞ � Canq.

Proof. Assume the above statement is invalid, and one of
q0’s k nearest neighbors o0 is not in Canq. Let {o1, o2 . . ., ok}
be the kNN result of q. Based on the triangle inequality,
we have (1 � i � k)

jjq0; oijj � jjq0; qjj þ jjq; oijj � jjq0; qjj þ dk:

For jjq0; qjj � UBðdmaxÞ�dk
2 , we have (1 � i � k)

jjq0; oijj � UBðdmaxÞ�dk
2 þ dk ¼ UBðdmaxÞþdk

2 :

That is to say, there are k objects (i.e., o1; o2; . . . ; ok)
whose distances to q0 are smaller than ðUBðdmaxÞ þ
dkÞ=2. For o0 is not in Canq, so o0 is in the grid cell
whose minimum distance to q is larger than UBðdmaxÞ,
that is, jjq; o0jj > UBðdmaxÞ. As jjq; o0jj � jjq; q0jj þ jjq0; o0jj,
we have jjq0; o0jj � jjq; o0jj � jjq; q0jj > UBðdmaxÞ � jjq0; qjj.

For jjq0; qjj � UBðdmaxÞ�dk
2 , we have jjq0; o0jj > UBðdmaxÞ �

UBðdmaxÞ�dk
2 ¼ UBðdmaxÞþdk

2 . Consequently, there are k

objects (i.e., o1; o2; . . . ; ok) whose distances to q0 are
smaller than jjq0; o0jj. This contradicts our assumption
and the proof completes. tu

Lemma 6. Assume q and q0 satisfy all the conditions specified in
Lemma 5, and let G0 be the partial road network downloaded
for kNN search at the query point q. The shortest path from q0

to its kNN won’t pass a node outside G0.

Proof. The proof is straightforward based on the proof of
Lemma 2 and Lemma 5, and hence it is ignored for space
saving. tu
Continue the example 2NN query depicted in Fig. 7 with

UBðdmaxÞ ¼ 4, the partial road network G0 formed by cells
C2, C3 and C4, Canq ¼ {o2, o3, o4}, and dk ¼ jjq; o4kj ¼ 1.2.
Suppose the client moves to a new location v4. Although v4
is located in a different grid cell, the moving distance
jjv4; v5jj ¼ 1 < ðUBðdmaxÞ � dkÞ=2. Consequently, the 2NN of
q0 is still within Canq and G0 remains valid. If the moving
distance of the client exceeds (UBðdmaxÞ � dk)/2, the client
needs to tune into the channel to get the new kNN candi-
dates and retrieve new partial road network. At the down-
loading step, if the new partial road network overlaps with
the former one, we can ignore the retrieval of the over-
lapped portion as it is locally available.

Accordingly, we propose to decompose a given CNN
query path P ðv1; v2; . . . ; vLÞ into disjoint space valid seg-
ments, denoted as SVS1; SVS2; . . . ; SVSl, and all the query
points lying on a space valid segment share the same kNN
candidates and partial road network. In other words, the
client only needs to issue an kNN query at the starting
point of a space valid segment to retrieve the kNN candi-
dates and partial road network. For the rest points along
the space valid segment, no downloading from the wireless
channel is necessary. The pseudo-code of the query path
decomposition is depicted in Algorithm 3. We want to
highlight that this step is the key of our CNN algorithm,
which helps to reduce the tuning time and shorten access
latency significantly.

Algorithm 3:NPI-Based Space Validation for CNN

Input: a query path P ðv1; v2; . . . ; vLÞ
Output: space valid segment ðSVS1; SVS2; . . . ; SVSlÞ
Procedure:
1: start 1; G00 ;; n ¼ 1
2: while start � L do
3: TuneIntoChannel();
4: Cq the grid cell that contains vstart; G

0 ;;
5: Compute UBðdmaxÞ of vstart using Algorithm 2;
6: for each grid cell Ci with ai;q � UBðdmaxÞ do
7: if Ci 2 G00 then copy Ci to G0;
8: else retrieve Ci and add it to G0 and G00;
9: Search the kNN of vstart based on G0;

10: Find the first node vi in P that jjvstart; vijj >
ðUBðdmaxÞ � dkÞ=2;

11: Output SVSn ðvstart; . . . ; vi�1Þ; nþþ
12: start ¼ i;

SUN ET AL.: AN AIR INDEX FOR SPATIAL QUERY PROCESSING IN ROAD NETWORKS 389

Suppose a given query path is decomposed into several
space valid segments, we now explain how to process
CNN locally for a given space valid segment. We adopt
the approach proposed in [18] to further decompose a
space valid segment into several valid intervals via split
points. Given the fact that the result set remains the same
for CNN queries issued at any point along a valid interval,
we only invoke an kNN query at the starting point of a
valid interval.

5 GRID GRANULARITY SELECTION

Notice that all the algorithms we develop are based on the
pre-computed distance bound information. The more pre-
cise the distance bound is, the more powerful the pruning
is, the less the information retrieval is and hence the more
efficient the query processing is. Obviously, the grid size
directly affects the precision of the distance bounds. In an
extreme case where each grid contains at most one point,
the distance bound reflects the real network distance
between any two points. In order to facilitate the selection
of a proper grid size, we develop an analytical model to ana-
lyze the impact of grid size on the system performance.

Intuitively, a fine granularity achieves tighter bound of
the search space but leads to larger index size. Both the size
of the index and the size of grid cells affect the tuning time
and access latency, so there is a tradeoff between different
grid partitions. Recall that we always partition the entire
road network into 2i � 2i uniform grids, in purpose of utiliz-
ing the Hilbert curve. Let PSi be a uniform partitioning

strategy that partitions the service area into 2i � 2i uniform
grids. For simplicity, we assume that both the nodes and
the objects of the road network are uniformly distributed in
each grid cell. Let DS be the data size (in Bytes) of the entire
road network, including the adjacency lists and the object
information. Then the data size of each grid GSi of PSi is
DS

2i�2i ¼ DS
4i
. For the index size, as depicted in Fig. 5, assume

that both the number of objects (i.e., jCij) and the distance
between two points (i.e., diaðCiÞ, aa;b, and ba;b) occupy 4

Bytes, then the size of the NPI index ISi is 12NGi þ 8NG2
i

¼ 4iþ1ð3þ 2� 4iÞ. As we employ the (1, m) index scheme,
the cycle length of PSi is

Cyclei ¼ DS þm� ISi:

Let r be the average query scope of all range queries (notice
that an kNN query is also answered via a range query), and
Readi be the number of grids of PSi that downloaded by a
range query with radius of r. As the approximation of Readi
for r in road networks is affected by many factors, which
make the analysis very complicated. In this paper, we sim-
plify the analysis by using the euclidean space and assume
that r � wi

2 . Assume that the road network in embedded in a

L� L euclidean space, then for a partition strategy PSi, the

width of a grid wi ¼ L
2i
. For a range query with radius r,

Equation (2) states the expected number of grids retrieved
and its proof is presented in Appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2014.2330836.

Readi ¼ 1þ 4r

wi
þ pr2

wi
2
: (2)

Let TTi and ATi be the tuning time and access latency of a
range query with radius of r respectively, we have

TTi ¼ ISi þReadi �GSi, and ATi ¼ CycleiþReadi�GSi
2 . Assume

we use the Equation (3) to evaluate the performance of a a
wireless data broadcast system, where a 2 ð0; 1Þ is a param-
eter to balance tuning time and access latency.

Systemi ¼ a� TTi þ ð1� aÞATi; (3)

Let t ¼ 2i, based on the above analysis we have

Systemi ¼ 4ð2aþm�maÞt4 þ 6ð2aþm�maÞt2

þ 2r 	DS 	 ð3� aÞ
L 	 t þDS 	 ð3� aÞ

2t2

þ L2 	DS 	 ð1� aÞ þ pr2 	DS 	 ð3� aÞ
2L2

:

(4)

From Equation (4), we estimate the formulation of
Systemi, a function of i. By computing the minimum objec-
tive function value of Equation (4) and gaining the value of i
accordingly, we can select the optimal grid granularity. The
derivative of Systemi is a polynomial with power higher
than 5. According to the Abel-Ruffini theorem [20], there is
no general algebraic solution to polynomial equations of
degree 5 or higher. So there is no a formula of the optimal i,
andwe present the optimal selecting result in Section 6.

6 EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of NPI for supporting range queries, kNN
queries, and CNN queries in road networks. Some state-of-
the-art road-network query processing techniques are imple-
mented as the competitors, including RNE and INE
algorithms [3], NVD algorithm [2], and NGE algorithm [1].
All the algorithmswere implemented in C++, and the perfor-
mance evaluation is simulated on a Genuine Intel(R) 1.80
GHz PC with 3.00G RAM, running Microsoft Windows 7
Ultimate. We first briefly describe the experimental settings,
and then present the experimental results.

6.1 Experimental Setup

Two real road network datasets are used in our simulation.
They are the City of Oldenburg (OL) Road Network and the
California (CAL) Road Network from [21]. The OL road net-
work contains 6,105 nodes and 7,035 edges, while CAL con-
sists of 21,048 nodes and 21,693 edges. For each road
network, a set of objects are randomly generated and uni-
formly distributed over the network. Even though our
framework can handle objects of different sizes, for the sake
of simplicity, we fix the size of an object at 128 bytes.

The evaluation is run on a simulator which consists of a
server, a client and a broadcast channel. The server pre-
computes the distance bound matrix and the diameter of
each cell. The pre-computation information along with the
road network data is broadcast on the channel repeatedly.
We run only one client in our simulation for simplicity,
because the number of the clients will not affect the

390 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2015

performance of a broadcast system. For each set of experi-
ments, 400 randomly issued queries are evaluated and the
average performance is reported. As mentioned before, we
assume the query issuing points are always at the network
nodes although our algorithms can be easily extended to
support cases where queries are issued along the edges. We
adopt both the access latency and tuning time as the main
performance metrics. For simplicity, we assume the band-
width is fixed and measure AT and TT in terms of number
of bytes of the data transferred in the wireless channel
instead of actual clock time in the client side.

In our experimental studies, we mainly consider the
impacts caused by four parameters. They are the number of
results k asked by kNN queries, the distance d of range
queries, the object density, and the number of grid cells N .
Table 1 lists their values with the underlined values stand-
ing for the default settings. Notice that DN refers to the
diameter of the road network, jSj refers to the number of
object set S, and jV j refers to the number of nodes in the
road network. Without loss of generality, we vary the value
of one parameter in each set of experiments while the other
three parameters are set at their defaults.

6.2 Cycle Length

First, we report the broadcast cycle length of different
indexes. We use OL dataset with the object density set to
0:1. Here, a broadcast cycle consists of the index and the
data with data referring to the structure of the road network
and the object information. Both RNE and INE are based on
Dijkstra’s algorithm, so they do not maintain any special
index and employ the adjacency lists of all nodes to repre-
sent the road network. NGE carries the distance vector of
each node in its index, and the number of reference nodes is
set to 10 that is the default setting used by [1]. NVD main-
tains the Voronoi cells of all the objects in the road network
as its index. NPI broadcast grid partition information and
some pre-computed distance information in its index. As its
size is determined by the number of grid cells, we test the

performance of NPI with 42, 43, 44 grid cells, denoted as
NPI-16, NPI-64, and NPI-256 respectively. Notice that we

set the number of grid cells as 4i is to simplify the Hilbert-
Curve based ordering. Except RNE and INE, we adopt (1,
m) scheme to generate the broadcast program with the
value ofm set to its optimal value [10].

The experimental result is listed in Table 2. It is observed
that RNE and INE have the smallest cycle, because they do
not maintain any index. Among other schemes, NPI-16 has
a pretty small index and its broadcast cycle length is very
close to that of RNE and INE. Both NGE and NVD have rela-
tively long broadcast cycle which is mainly caused by the
large size of the index. The cycle length has a direct impact
on the access latency. Our following experimental studies
will further verify this.

6.3 Evaluating Different Grid Granularities

In the following, we evaluate the performance of NPI with
different grid granularities. The road network is partitioned
into 2i � 2i uniform grids, where i varies from 0 to 4, i.e., the
number of grids ranges from 1, to 4, to 16, to 64, and to 256.
The partition strategy with i ¼ 0 is the same as the RNE
algorithm, of which each broadcast cycle contains only the
adjacency lists and the objects information of the road net-
work. The average query scope of range queries is set as
0.1DN , where DN is the diameter of the road network. Fig. 8
plots the system performance of NPI estimated by the
model developed in Section 5. The x-axis corresponds to the
number of grids, and the y-axis corresponds to the system
performance Systemi ¼ a� TTi þ ð1� aÞATi. For different
broadcast systems may have different preferences to tuning

time and access latency, we vary the parameter a from 1
3, to

1
2, and to 2

3. From Fig. 8 we can see that partition strategies

with 16 or 64 grids gain the best performance for different
a. The correctness of the model will be further demon-
strated in the following experiments where we can get the
real performance of NPI with different grid partition
granularities.

6.4 Range Query

Next, we conduct experiments to evaluate the performance
of NPI-16, NPI-64, RNE, and NGE in answering range
queries. Since each range query has to explore the sub-road-
network that is within d distance to the query issuing point,
the number of objects would not significantly affect the per-
formance and hence we ignore the impact of object density
but fix that at 0.1. The radius of range query is varied from
0.01DN , to 0.05DN , to 0.1DN , and to 0.2DN .

The performance of different methods is plotted in Fig. 9.
It can be observed from Figs. 9a and 9c that both NPI-16
and NPI-64 are superior to other methods in terms of tuning
time, especially for range queries with small radius. For

TABLE 1
Parameter Settings

Parameter Setting

k 1, 5, 10, 15
Query scope ðd=DNÞ 0.01, 0.05, 0.1, 0.2
Object density (Sj j= Vj j) 0.01, 0.05, 0.1, 0.2
Number of cells(N) 16, 64, 256

Fig. 8. Evaluation on grid granularity selection.

TABLE 2
Broadcast Cycle Length

Method Index size (byte) Data size (byte) Cycle length (byte)

RNE/INE 0 367764 367764
NGE-10 244200 367764 611964
NVD 1152045 76800 1076800
NPI-16 2196 367764 389724
NPI-64 33300 367764 700764
NPI-256 526356 367764 5631324

SUN ET AL.: AN AIR INDEX FOR SPATIAL QUERY PROCESSING IN ROAD NETWORKS 391

example, to answer range queries with d ¼ 0:01DN , NPI-64
requires only 15 percent of the tuning time of RNE for both
OL and CAL road networks. Even for range queries with
large radius, the advantage of our NPI is still significant.

As for the access latency as depicted in Figs. 9b and 9d,
all the methods can finish the query processing within one
broadcast cycle. Even though RNE has the shortest cycle,
NPI-16 actually incurs a shorter access latency than RNE
consistently, and NPI-64 also has a smaller access latency
than RNE in some cases. This is because NPI only down-
loads a subset of the broadcast data, which is organized
based on the Hilbert curve value and will not stretch the
entire cycle.

Besides, this set of experiments gives a comparison
between the performance of NPI-16 and NPI-64. NPI-16 has
smaller index size, so the cycle is shorter, resulting in smaller
access latency; while NPI-64 has finer grid cells, which pro-
vide a tighter upper bound and hence smaller search space
for range query, resulting in shorter tuning time. In other
words, when access latency is more important (e.g., a ¼ 1

3),
NPI-16 is expected to perform better than NPI-64; on the con-

trary, when tuning time is more important (e.g., a ¼ 2
3), NPI-

64 is expected to produce a better system performance than
NPI-16. We want to highlight these findings are consistent
with the observations obtained from our analytic model pre-
sented and evaluated in Sections 5 and 6.3, respectively.

6.5 kNN Query

Then, we compare the performance of NPI for support-
ing kNN queries with existing INE (based on Dijkstra’s
algorithm), NGE with 10 reference nodes (denoted as
NGE-10), and NVD. We vary the number of NN (i.e., k),
the number of grid cells, and the object density in the
following experiments.

First, we evaluate the performance of different algo-
rithms under various k values, as reported in Fig. 10. The
objects density is fixed at 0.1, while k ranges from 1, to 5, to
10, and to 15. We consider only small k in our experiments
because it’s unpractical to display a large number of NNs
on the small screen of mobile devices.

Take a look at the tuning time performance that is pre-
sented in Figs. 10a and 10c. We find that NPIs with different

grid partitions outperform other method consistently, and
NPI-256 performs best. This is because the pre-computation
information carried by NPI enables the clients to prune the
search space effectively. In contrast, clients under other
schemes have to listen to the entire cycle. Notice that NVD
for 1NN queries needs only listen to the first Voronoi dia-
gram that contains the query point. However, for the kNN
queries with k > 1, the clients have to listen to the adjacent
diagrams so that the entire cycle needs to be downloaded.
We also observe that the tuning time of NPIs increases as k
becomes larger. This is because the upper bound of the dis-
tance between the query point and the kth NN is enlarged
by k, so the clients would process range query with larger
radius (see the details of kNN search algorithms in the client
side in Section 4.2). However, even under a relatively large
k, the tuning time of NPIs is still smaller than that of other
methods. For example, for k = 15, the tuning time of NPI-64
is about 40 percent of that under INE.

As for the access latency that is depicted in Figs. 10b and
10d, NPI-16 and INE perform the best because of the small
index size. NPI-64 also demonstrates a good performance,
compared with NGE-10 and NVD. NPI-256, though very
energy efficient, has a large access latency because of the
large index size.

Similar as previous experimental study, this set of experi-
ments also demonstrates the the strength and weakness of
NPI under different grid partitioning. NPI-256 has finer
grid cells so that the diameter of each cell is smaller, which
can provide a tighter upper bound of the kth NN’s distance.
It offers a good tuning time performance, but may force the
clients to wait for a long time to retrieve all the necessary
network data as the index duplicated in each cycle is very
large. It is expected to provide a good system performance
when tuning time is more important (e.g., large a), and the
decrease of a causes its performance downgrades that is
consistent with the analytic model (e.g. Fig. 8). On the other
hand, both NPI-16 and NPI-64 have relatively small index
size so that the access latency is smaller than that under
NPI-256. However, with large grid cell, the diameter of
each cell is large so that the pruning power is not that pow-
erful which explains why their corresponding tuning time
performance is relatively longer.

Fig. 9. Performance of range query vs. radius.

Fig. 10. Performance of kNN queries vs. k.

392 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2015

Second, we evaluate the performance of different indexes
under various object density, as reported in Fig. 11. To sim-
plify the comparison, we assume the number of grid cells is
fixed at 64 for NPI. In addition, NVD is not as competitive as
others for both tuning time and access latency, and hence it
is ignored in this set of experiments. It is observed that the
tuning time and access latency of both INE and NGE
increase as the objects become denser in the road network.
This is because INE and NGE always listen to the entire
cycle to process kNN queries, and the cycle becomes longer
as the number of objects increases. In contrast, NPI-64 per-
forms much more stable to the variation of the object den-
sity. This is because NPI enables the clients to check the
number of objects in each grid cell to calculate the upper
bound of the distance of the kth NN. When the objects den-
sity becomes denser, the upper bound decreases which
prunes away more unnecessary grid cells.

6.6 CNN Query

We also conduct experiments to evaluate the CNN query
performance of different approaches. The parameter
QueryPathLengthRation (QPLR) represents the ratio of the
query path length to the diameter of the road network. The
query path is generated by the shortest path between two
randomly selected nodes in the road network.

Two approaches for CNN queries in road networks are
selected as the competitors: CNVD (NVD-based CNN
algorithm) [19], and the UNICONS [18], denoted as
CNVD and UNICONS. CNVD is similar to NVD; while
UNICONS pre-computes the 10NN of all intersection points
(the nodes with degree larger than 2) and broadcasts the
NN lists, along with the adjacency lists and the object
information to the clients.

First, we evaluate the performance of different
approaches under different settings of QPLR. The object
density is fixed at 0.1 and QPLR ranges from 0.02 to 0.2.
Fig. 12 shows the performance for the OL and CAL data-
sets for answering CNN queries with k ¼ 10. For CNVD
and UNICONS, both the tuning time and access latency
equal to the cycle length. On the other hand, NPI-64 ena-
bles space pruning, and its performance varies as QPLR
changes. On average, NPI-64 only requires 55 percent of
tuning time of UNICONS and 24 percent of tuning time of
CNVD under OL dataset, and it requires 50 percent of tun-
ing time of UNICONS and 20 percent of tuning time of
CNVD under CAL dataset. However, we also observe
that NPI-64 suffers from a longer access latency than
UNICONS. This is because the CNN search algorithm
under NPI index allows the clients to tune into the channel
to update the partial road network and kNN candidates
only when they arrive at the first point of a new SVS. For
each SVS, the access latency is guaranteed not exceeding
one cycle. Before they move out of the current SVS, no
additional access latency occurs. Considering the time cost
by the clients for moving out of the current SVS, the total
access latency is relatively small and will not affect the
user experience.

Next, we evaluate the performance of the three
approaches for supporting CNN queries for different k.
We fix QPLR at 0.1, and vary k from 1 to 15. The object
density is also fixed at 0.1 for both OL and CAL datasets.
The result is plotted in Fig. 13. NPI is more energy-efficient
than CNVD and UNICONS for different k. This is because;
1) the pre-computation by NPI helps clients prune the
needless regions; 2) the statements in Lemma 5 and
Lemma 6 avoid the clients keeping tuning into the channel
repeatedly as the clients move to a new position. On

Fig. 13. The performance of CNN queries versus k.

Fig. 12. The performance of CNN queries versusQPLR.

Fig. 11. The performance of 10NN queries versus object density.

SUN ET AL.: AN AIR INDEX FOR SPATIAL QUERY PROCESSING IN ROAD NETWORKS 393

average, for the OL dataset, NPI consumes only 57 percent
of UNICONS’s tuning time, and 25 percent of CNVD’s.
However, NPI requires longer access latency than UNI-
CONS in most cases.

6.7 Comparison of Different Partition Strategies

As mentioned in Section 3.1, there are different strategies
to partition the road network into smaller cells. Although
we adopt the grid partition as the default strategy, NPI is
actually independent on the underlying network partition-
ing algorithms. In last set of experiments, we demonstrate
that NPI is flexible to accommodate different partitioning
strategies.

We implement kd-Tree as a representative network
partitioning that generates non-uniform grid cells. Due to
the space limitation, we combine the access latency and
tuning time, and present in Table 3 the system perfor-
mance derived based on Equation (3) with the number of
cells being 64. Here, OL-R (OL-k) represents the perfor-
mance of range query (kNN) under OL dataset with the
radius of the range queries set to 0.05, 0.1, and 0.2, and
CAL-R (CAL-k) represents the performance of range
query (kNN) under CAL dataset with k set to 1, 5, and
15. For easy reference, bold numbers refer to the per-
formances of the winner partition. There are two major
observations. First, both partition strategies have their
own advantages and neither of them outperforms the
other absolutely. Second, the index size of grid partition
is smaller than that of kd-tree partition and consequently
grid partition performs better when the access latency is
much more important (e.g., a ¼ 0:1). On the other hand,
kd-tree partition favors the tuning time performance.
When the tuning time plays a more important role in sys-
tem performance (e.g., a ¼ 0:9), kd-tree performs better.

7 CONCLUSIONS

With the rapid development of wireless communication
technologies and the popularity of mobile devices, the loca-
tion-based services are emerging. This paper proposes an
air index, namely NPI, to support various spatial queries in
road networks in wireless broadcast environment. Algo-
rithms for different spatial queries with NPI at client side
are presented. The performance of NPI is evaluated using

real road networks. The experimental result shows that our
scheme is energy-efficient and access-time-friendly. This
work represents our first step in developing a systematic
framework to support various road network based spatial
queries via wireless broadcast systems. There are a few
important issues we are not able to address in this work
and hopefully we can address them in our future work.
First, we would like to enrich the nature of spatial queries
via exploring the textual description of the objects. Ulti-
mately, the clients can issue queries to locate objects that are
physically close to the clients and semantically similar to
the queries. Second, we assume the underlying wireless
broadcast channel is reliable in this work and do not con-
sider the cases where the information is lost because of net-
work link errors. In the near future, we would like to
address the issue of network link errors and to make sure
our framework is efficient and meanwhile error-resilient.

REFERENCES

[1] H. Kriegel, P. Kr€oger, P. Kunath, M. Renz, and T. Schmidt,
“Proximity queries in large traffic networks,” in Proc. 15th Annu.
ACM Int. Symp. Adv. Geographic Inf. Syst., 2007, pp. 21–28.

[2] M. Kolahdouzan and C. Shahabi, “Voronoi-based k nearest neigh-
bor search for spatial network databases,” in Proc. 30th Int. Conf.
Very Large Data Bases, 2004, pp. 840–851.

[3] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query process-
ing in spatial network databases,” in Proc. 29th Int. Conf. Very
Large Data Bases, 2003, pp. 802–813.

[4] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable network
distance browsing in spatial databases,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2008, pp. 43–54.

[5] J. Xu, B. Zheng, W. Lee, and D. Lee, “Energy efficient index for
querying location-dependent data in mobile broadcast environ-
ments,” in Proc. 19th Int. Conf. Data Eng., 2003, pp. 239–250.

[6] B. Zheng, W. Lee, K. Lee, D. Lee, and M. Shao, “A distributed spa-
tial index for error-prone wireless data broadcast,” Int. J. Very
Large Data Bases, vol. 18, no. 4, pp. 959–986, 2009.

[7] K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitor-
ing of spatial queries in wireless broadcast environments,” IEEE
Trans. Mobile Comput., vol. 8, no. 10, pp. 1297–1311, Oct. 2009.

[8] G. Kellaris, and K. Mouratidis, “Shortest path computation on air
indexes,” Proc. VLDB Endowment, vol. 3, nos. 1/2, pp. 747–757,
2010.

[9] Y. Jing, C. Chen, W. Sun, B. Zheng, L. Liu, and C. Tu, “Energy-effi-
cient shortest path query processing on air,” in Proc. 19th ACM
SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst., 2011, pp. 393–396.

[10] T. Imielinski, S. Viswanathan, and B. Badrinath, “Data on air:
Organization and access,” IEEE Trans. Knowl. Data Eng., vol. 9,
no. 3, pp. 353–372, May/Jun. 1997.

[11] E. Jung and N. Vaidya, “An energy efficient MAC protocol for
wireless lans,” in Proc. IEEE Conf. Comput. Commun., 2002,
pp. 1756–1764.

[12] S. Hambrusch, C. Liu, W. Aref, and S. Prabhakar, “Query process-
ing in broadcasted spatial index trees,” in Proc. Int. Symp. Adv.
Spatial Temporal Databases, pp. 502–521, 2001.

[13] B. Zheng, J. Xu, W. Lee, and L. Lee, “Grid-partition index: a
hybrid method for nearest-neighbor queries in wireless location-
based services,” Int. J. Very Large Data Bases, vol. 15, no. 1, pp. 21–
39, 2006.

[14] B. Zheng, W. Lee, and D. Lee, “Spatial queries in wireless broad-
cast systems,”Wireless Netw., vol. 10, no. 6, pp. 723–736, 2004.

[15] H. Hu, D. Lee, and V. Lee, “Distance indexing on road networks,”
in Proc. 32nd Int. Conf. Very Large Data Bases, 2006, pp. 894–905.

[16] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[17] R. M€ohring, H. Schilling, B. Sch€utz, D. Wagner, and T. Willhalm,
“Partitioning graphs to speed up dijkstras algorithm,” J. Exp.
Algorithms, vol. 11, pp. 273–283, 2005.

[18] H. Cho and C. Chung, “An efficient and scalable approach to
CNN queries in a road network,” in Proc. 31st Int. Conf. Very Large
Data Bases, 2005, pp. 865–876.

TABLE 3
System Performances Comparison (64 Cells)

a ¼ 0:1 a ¼ 0:5 a ¼ 0:9

NPI kd NPI kd NPI kd

O
L
-R 0.05 91.9 122.4 268.6 289.2 445.2 455.9

0.1 130.9 126.9 319.3 292.6 507.6 458.1
0.2 212.5 218.0 394.3 384.4 576.2 550.7

O
L
-k 1 229.2 247.8 404.6 405.2 579.9 562.6

5 257.3 253.2 425.1 409.6 592.8 566.0
15 330.1 267.5 485.7 421.4 641.3 575.3

C
A
L
-R 0.05 260.7 359.2 639.4 686.7 1018.1 1014.2

0.1 378.3 418.3 761.1 737.7 1144.0 1057.1
0.2 619.8 670.7 957.1 957.0 1294.4 1243.4

C
A
L
-k 1 526.9 668.1 872.2 946.5 1217.5 1225.0

5 536.9 671.7 882.2 950.0 1227.5 1228.2
15 556.9 674.3 902.2 952.3 1247.5 1230.3

394 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2015

[19] M. Kolahdouzan and C. Shahabi, “Continuous k-nearest neighbor
queries in spatial network databases,” in Proc. Spatio-Temporal
Databases Manage., 2004, pp. 33–40.

[20] N. Jacobson, Basic Algebra I. New York, NY, USA: Dover, 2012.
[21] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S. Teng, “On

trip planning queries in spatial databases,” in Proc. 9th Int. Conf.
Adv. Spatial Temporal Databases, 2005, pp. 923–923.

Weiwei Sun received the bachelor’s degree in
computer science and technology in 1992, and
the master’s and PhD degrees in computer soft-
ware and theory from Fudan University, China, in
1998 and 2002, respectively. He is currently an
associate professor in the School of Computer
Science and the director of Mobile Data Manage-
ment Laboratory, Fudan University. His interests
include spatial database, wireless data broad-
cast, and geo-social.

Chunan Chen received the bachelor’s degree in
information security in 2010 and the master’s
degree in computer software and theory in 2013
from Fudan University. His research interests
include wireless data broadcast and spatial data
management.

Baihua Zheng received the bachelor’s degree in
computer science from Zhejiang University,
China, in 1999, and the PhD degree in computer
science from the Hong Kong University of Sci-
ence and Technology, Hong Kong, in 2003. She
is currently an associate professor in the School
of Information Systems, Singapore Management
University, Singapore. Her research interests
include mobile and pervasive computing and spa-
tial databases. She is a member of the IEEE and
the ACM.

Chong Chne received the bachelor’s degree
in computer science and technology from
Fudan University in 2012, where he is currently
working toward the master’s degree in computer
software and theory. His interest includes spatial
database.

Peng Liu received the bachelor’s degree in com-
puter science and technology in 2008 and the
master’s degree in computer software and theory
in 2013 from Fudan University. His research
interests include wireless and xml data broad-
cast.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SUN ET AL.: AN AIR INDEX FOR SPATIAL QUERY PROCESSING IN ROAD NETWORKS 395

	An air index for spatial query processing in road networks
	Citation

	An Air Index for Spatial Query Processing in Road Networks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

