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Abstract Consider a set of servers and a set of users, where
each server has a coverage region (i.e., an area of service)
and a capacity (i.e., a maximum number of users it can serve).
Our task is to assign every user to one server subject to the
coverage and capacity constraints. To offer the highest qual-
ity of service, we wish to minimize the average distance be-
tween users and their assigned server. This is an instance of a
well-studied problem in operations research, termed optimal
assignment. Even though there exist several solutions for the
static case (where user locations are fixed), there is currently
no method for dynamic settings.

In this paper, we consider the continuous assignment prob-
lem (CAP), where an optimal assignment must be constantly
maintained between mobile users and a set of servers. The
fact that the users are mobile necessitates real-time reas-
signment so that the quality of service remains high (i.e.,
their distance from their assigned servers is minimized). The
large scale and the time-critical nature of targeted applica-
tions require fast CAP solutions. We propose an algorithm
that utilizes the geometric characteristics of the problem and
significantly accelerates the initial assignment computation
and its subsequent maintenance. Our method applies to dif-
ferent cost functions (e.g., average squared distance) and to
any Minkowski distance metric (e.g., Euclidean, L1 norm,
etc).

Leong Hou U
Department of Computer Science
University of Hong Kong
E-mail: hleongu@cs.hku.hk

Kyriakos Mouratidis
School of Information Systems
Singapore Management University
E-mail: kyriakos@smu.edu.sg

Nikos Mamoulis
Department of Computer Science
University of Hong Kong
E-mail: nikos@cs.hku.hk

1 Introduction

Consider a set of users U and a set of servers S. Each s ∈ S
has a coverage radius s.r and a capacity s.c, implying that s
can serve users within distance s.r from its location, whose
total number does not exceed s.c. Our objective is to con-
struct a valid assignment A ⊆ U ×S between users and
servers such that each user u in A is assigned to exactly
one server s and the maximum possible number of users are
served (i.e., the cardinality ofA is maximized). Furthermore,
among the assignments of maximal size, we want to find
the one that minimizes avg(u,s)∈Adist(u, s), i.e., the average
distance between the users and their assigned servers. This
optimization criterion is in accordance with the objectives of
access point placement problems in wireless networks (see
for example [20]). The primary maximality requirement de-
mands that no user is left unassigned, unless he/she is out-
side the coverage region of all servers or it is impossible to
assign him/her to a server without leaving some other user
unassigned. Minimizing the average distance of served users
is a secondary optimization criterion. In this paper, we con-
sider the continuous assignment problem (CAP), where an
optimal assignment, as defined above, must be constantly
reported as the users arbitrarily change locations and log
in/out.

Continuous assignment is essential to several applica-
tions, including examples in mobile communications, wire-
less networking, etc. For instance, set S could correspond to
the base stations of a telecommunications company, and U
to cell-phone users. The company wishes to serve as many
users as possible, and to provide them with the best qual-
ity of service (i.e., signal strength). The base stations have
coverage and capacity constraints and, thus, the dynamic as-
signment of mobile users to the stations is a CAP instance.

As another example, consider a Wi-Fi service that pro-
vides Internet connection via a set S of wireless access points
(WAPs). Clients registered with the service use their portable
devices (e.g., PDAs) to access the Internet. Every WAP s ∈
S can serve a limited number of users (s.c), who must addi-
tionally be within a certain radius (s.r) from it. Under these
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2 Leong Hou U et al.

constraints, the service assigns each user to a WAP. Primar-
ily, it wishes to serve as many users as possible. Moreover,
it needs to minimize the average distance between users and
their assigned WAP, in order to achieve high overall con-
nectivity. Taking into account that users may unpredictably
move and log in/out, this is a continuous assignment prob-
lem.

To illustrate CAP, consider two sets U = {u1, ..., u7}
and S = {s1, s2}, as shown in Figure 1(a). Let s1.c =
2, s2.c = 3 and their disks of coverage be as illustrated. The
dashed lines indicate the optimal assignment A between U
and S; i.e., users u1, u3 are served by s1 and users u4, u5, u6

by s2. User u7 is unassigned, as it is outside both coverage
disks. On the other hand, u2 is unassigned because s1 could
not possibly serve him/her without dropping another user.
Note that u4 is assigned to s2 even though s1 is closer; s1
cannot serve u4, because this requires dropping either u1 or
u3, and leads to a total of only 4 served users (instead of 5).

s1

u4

u1
u2

u3 u5

u6

u7

s 1
.r

s2

s 2
.r

(a) Initial assignment

s1

u4

u1
u2

u3 u5

u6

u7
s 1
.r

s2

s 2
.r

(b) Result maintenance

Fig. 1 Continuous optimal assignment

Figure 1(b) continues the previous example, assuming
that after the initial assignment, user u7 moves. His/her new
location is in the coverage region of s2, but the latter is full.
Since u7 is closer to s2 than u4, s2 drops u4 and admits
u7 to reduce the average distance in the system. In turn, for
the same reason, u4 is taken on by s1, which leaves u1 unas-
signed. The new optimal assignmentA′ (indicated by dashed
lines) shows that a location update may affect distant users
and servers.

The above scenario considers the strict CAP case, where
a stationary user may be completely dropped or handed over
by his/her current server when some other user’s movement
allows for a better assignment. Depending on the applica-
tion, this may or may not be desirable. In Figure 1(b), for
example, even though the new assignment minimizes the av-
erage distance in the system, users u1 and u4 experience a
disruption of service due to loss of access or server swap.
This might be unacceptable in applications like the assign-
ment between WAPs and PDAs, discussed earlier. We, thus,
distinguish another problem variant, termed connected CAP.
Connected CAP requires that currently assigned users who
remain within the coverage region of their server will not
be dropped by it, while the reported assignment is optimal
subject to this constraint.

Optimal assignment is an old and well-studied topic in
operations research. Existing methods, however, are explic-

itly designed for static environments. In this paper, we pro-
pose a CAP algorithm applicable to both the strict and the
connected variants, called continuous spatial assignment (CSA).
CSA exploits the geometric properties of the problem and
follows the incremental execution paradigm to reduce the
computation cost. The main idea behind our approach is to
identify, by local decisions, user-server pairs that certainly
belong to the optimal assignment and users or servers that
cannot participate in the solution. Subsequently, the result-
ing CAP (with U , S, and the capacities of servers reduced
accordingly) is split into smaller, independent problems, of
lower complexity. These problems are eventually solved by
an off-the-shelf optimal assignment algorithm. An additional
advantage of the problem decomposition is that these inde-
pendent tasks can be parallelized, leading to an even lower
computation cost. CSA applies to coverage regions of arbi-
trary shape and can be easily adapted to different cost func-
tions (provided that they are monotonically increasing with
distance) and to any Minkowski distance metric.

The rest of the paper is structured as follows. Section 2
reviews related work. Sections 3 and 4 present the first-time
assignment computation and its subsequent maintenance, re-
spectively. Section 5 describes data-structures and imple-
mentation techniques in CSA. Section 6 experimentally eval-
uates our approach, while Section 7 concludes the paper.

2 Related Work

In this section, we survey related work on optimal assign-
ment (Section 2.1), continuous query evaluation over mov-
ing objects (Section 2.2), and resource allocation methods
for large spatial datasets (Section 2.3).

2.1 Optimal Assignment

The optimal assignment problem (also known as linear as-
signment) is one of the oldest problems in operations re-
search [2,25]. Algorithms proposed for its processing ex-
ploit a reduction to the minimum cost flow problem (MCF).
In the MCF formulation, the flow network is a weighted,
directed graph G(V,E). The set of vertices V is U ∪ S ∪
{source, sink}, where source and sink are two fictitious
vertices.

E is the set of arcs in the flow network. Each arc has a
weight and a capacity (note that the arc capacity is a con-
cept different from the server capacity). For each user u, E
includes an arc from u to all servers s whose coverage re-
gion contains u; the weight of arc

→
us is dist(u, s)1 and its

capacity is one, implying that pair 〈u, s〉 can appear at most
once in the assignment. Also, there is an arc from source to
every u ∈ U , with weight zero and capacity one, imposing
the constraint that u can be assigned to at most one server.

1 In the general MCF formulation, the weight is defined as the cost
of assigning u to s, i.e., it could be dist2(u, s) or another value, de-
pending on the optimization function.
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E additionally contains an arc from every s ∈ S to sink,
with weight zero and capacity equal to s.c, which models
the constraint that s can serve at most s.c users.

Figure 2 shows the flow network for the example in Fig-
ure 1(a). The flow network for Figure 1(b) is identical, ex-
cept for the inclusion of one more arc from u7 to s2 (since
u7 is now inside the coverage disk of s2). Omitting the de-
tails, the MCF solution is the maximal subset A ⊆ E of
→
us arcs that have the minimum summed weight and respect
the server capacities; each

→
us∈ A indicates the assignment

of u to s. Note that although the solution to an MCF may
generally include real flows (which in our case would im-
ply that a user is partially assigned to multiple severs), this
is not the case when all arc capacities are integer, i.e., the
solution is guaranteed to include only integer flows [2,25]
(equivalently, to perform only complete assignments).

u1

so
u
rc
e

s1

s2

sink

u2

u3

u4
u5

u6

u7

Fig. 2 Flow network example

There are several algorithms to solve the MCF prob-
lem defined above, including adaptations of the primal sim-
plex (linear programming) method [14], signature [4] and
relaxation [5,6] techniques. The Hungarian2 [19,24] and the
successive shortest path (SSP) [9] algorithms are the most
popular and have the lowest worst-case time complexity of
O(n(m + n log n)), where n is the number of vertices in V
and m the number of arcs in E; lower worst-case bounds
are possible for special cases of the problem (not including
ours), using the cost-scaling technique [10,13].

The Hungarian algorithm uses aN×M matrix (whereN
and M are the numbers of users and servers, respectively),
each entry of which corresponds to the distance between a
user and a server. During execution, entries of the table are
marked and unmarked, and its rows and columns are covered
and uncovered. Upon termination, if a table entry is marked,
the corresponding user-server pair is included in the optimal
assignment A.

SSP iteratively finds shortest paths in the flow network
from source to sink. After every shortest path computa-
tion, the direction of some arcs is reversed and their weights
are updated before the next iteration. Upon termination, A
is formed by 〈u, s〉 pairs corresponding to all

→
su (i.e., re-

versed) arcs. SSP requires less space than the Hungarian al-
gorithm for general flow networks, since the latter’s table
hasO(MN) size regardless of the denseness of the network.

2 Also referred to as Munkres assignment algorithm.

Asymptotic performance aside, the most efficient algorithm
for sparse flow networks is QuickMatch [26]. QuickMatch is
basically SSP enhanced by several heuristics and optimiza-
tions, the most important being the elimination of source
and sink (along with their incident arcs) to accelerate short-
est path computations. In our implementation, we use the
QuickMatch enhancements, but generally refer to the algo-
rithm as SSP in the rest of the paper. We do not elaborate
more on SSP, since we use it as an off-the-shelf black box in
our method.

[3] proposes a computational geometric approach for a
special case of optimal assignment. It is based on power di-
agrams, a variation of the Voronoi diagram. This method
computes a weight s.w for every server such that the as-
signment of every user u to the server s with the small-
est pow(u, s) = dist2(u, s) − s.w minimizes the summed
squared distance (between users and their assigned server),
while it respects the server capacity constraints. This method
is particular to the summed squared distance and the Eu-
clidean space. Also, it requires that (i) the number of users
is equal to the sum of server capacities (i.e., N =

∑
s∈S s.c)

and (ii) users can be assigned to any server, regardless of
their distance (i.e., coverage region constraints cannot be
dealt with).

A recent study [30] presents techniques for the capacity-
constrained assignment problem in disk-resident datasets.
These methods are extensions of SSP that add user-server
arcs to the flow network incrementally and on-demand (in
order to keep it small), until the optimal assignment is fi-
nalized. This work focuses on static data, stored on the disk
and indexed by R-trees. On the other hand, in this paper,
we study the dynamic maintenance of the optimal assign-
ment and we consider data managed in main memory, since
we aim at time-critical applications where users are mobile
and updates are frequent. Also, [30] assumes that the servers
have infinite coverage (i.e., there are no s.r constraints); here
we consider a more realistic situation, where servers have a
bounded coverage region.

All aforementioned approaches consider static assign-
ment (i.e., they compute an one-time A over static users and
terminate). They could be applied to our continuous scenario
by recomputing A from scratch when the users move, but
this incurs excessive processing cost as we show experimen-
tally. Our method, CSA, updates A incrementally instead.
Note that when CSA runs for the first time, it computes an
initial “static” assignment A over the current snapshot of
user locations; our empirical study demonstrates that even
for this static computation, CSA outperforms existing ap-
proaches (in the considered spatial assignment setting) due
to its effective geometric pruning strategies.

To our knowledge, there is no previous work on the con-
tinuous assignment problem we study in this paper. Even
though there exist methods for “dynamic optimal assign-
ment” ([29] and references therein), the term refers to a prob-
lem completely different from ours that is related more to
vehicle routing and scheduling. As an example of this prob-
lem, consider a dispatch service managing a fleet of vehi-
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cles. The customers request from the service that a particular
load is moved (from and to a particular location), while vehi-
cles can transfer only one load at a time. The objective is to
minimize the distances traveled by the vehicles, as vehicles
become available and customer requests arrive dynamically.
This problem incorporates the expectation of future events
(thus termed “non-myopic”) and the assignment at a single
snapshot is typically not optimal, i.e., a vehicle with a large
capacity may be held for some future (larger) load, even if
an optimal assignment in the current time instance would
dispatch it right away.

Interestingly, the problem of maintaining an optimal user
assignment to access points with overlapping coverage re-
gions has not received attention by the network community.
Instead, most of the related work in this field (e.g., [15,20,
28]) has focused on planning problems; i.e., optimizing the
locations of the access points and/or the frequency channels
allocated to them. Based on the estimated user positions and
their expected traffic volume, these techniques place access
points at a subset of candidate locations so that their band-
width requirements are similar, and assign to them different
frequency channels. The problem we address in this paper
is essentially different. First, the servers are at given, pre-
determined locations. Second, we assign users, instead of
placing access points and allocating bandwidth. Third, we
monitor the optimal assignment in a dynamic setting, rather
than producing an one-time result.

2.2 Continuous Spatial Queries

There is a growing literature on continuous evaluation of
spatial queries over moving objects. Research in this field
usually assumes that the data objects, the queries, and their
results fit in main memory. The objects are indexed by a reg-
ular grid because this plain index facilitates faster updates
compared to more complicated spatial access methods [16].
Algorithms for continuous range processing incrementally
insert into/delete from the result those objects that cross the
query window boundaries [21,16]. Figure 3(a) exemplifies
range monitoring for query windowW (shown in gray). The
current result contains object o1. In the next time instance,
o2 and o3 move as shown, and report their new locations
to the monitoring server. The latter focuses only on objects
moving into/out of W ; i.e., it ignores o3 and appends o2 to
the result.

Continuous nearest neighbor (NN) queries are processed
in a similar way, the difference being that the monitoring re-
gion is no longer fixed, but shrinks/expands depending on
the distance of the current NN. Algorithms for continuous
NN processing [34,22,33] also use a grid index and avoid
unnecessary computations for objects far away from the query
point. Figure 3(b) illustrates NN monitoring at query point
q. The current NN is o1 and the monitoring region is the
disk around q with radius dist(q, o1). Processing is limited
to cells intersecting this disk. For instance, the movement of
o3 is ignored. On the other hand, o2 is examined and reported

o1

Wo2

o3

(a) Range monitoring

o1

o2

o3

q

(b) NN monitoring

Fig. 3 Continuous spatial queries

as the new NN. For subsequent processing, the monitoring
disk is updated (shrunk) to the disk with radius dist(q, o2)
(shown with a dashed boundary). Similar grid-based approa-
ches have also been proposed for reverse nearest neighbor
(RNN) queries [32,17]. A continuous RNN query at point q
reports all objects that have q as their NN.

In some applications the mobile objects may have com-
putational capabilities. Motivated by this fact, [27] first in-
troduced the concept of safe regions to reduce the number
of location updates. Specifically, each object is assigned a
spatial region, such that it needs to issue an update only if
it exits this region (because, otherwise, it does not influence
the result of any query). For instance, this approach could
avoid an update transmission from object o3 in Figures 3(a)
and 3(b). Safe regions have been applied to range [27,7,12]
and NN monitoring [23].

[18] does not consider continuous spatial queries per se,
but is related to our problem. It assumes a set of servers
located along a line (i.e., an one-dimensional space). The
users move on the same line, and each of them is assigned to
his/her closest server. The objective is to approximately an-
swer count and max distance queries with small space and
time requirements; i.e., for every server, the system reports
the number of its assigned users and the distance of the fur-
thest among them. [18] additionally includes an approximate
method for computing which K servers (K is an input pa-
rameter) among the available ones should be kept “active” so
that the count or maximum distance values are below a given
threshold. This work is intrinsically different from ours be-
cause its aim is not to produce an assignment, but to report
aggregate values or subsets of servers.

2.3 Resource Allocation in Spatial Databases

Some facility location/resource allocation problems have re-
cently been studied in the context of large spatial datasets.
[35] solves the min-dist optimal-location problem. Given a
static set of users and a set of existing servers, the problem is
to find a location where if a new server is placed, the average
distance between the users and their closest server will be
minimized. This is not an assignment problem, since users
are always taken on by their closest server. Also, user up-
dates and server capacities/coverage regions are not taken
into account.
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[31] solves a spatial matching problem for indexed data-
sets. Consider a set of static servers S and a set of static users
U . The objective is to compute an assignment A such that
there is no user-server pair 〈u, s〉 ∈ U × S where both u’s
assigned server s′ and s’s assigned user u′ are further than
dist(u, s) from them. Equivalently, A contains all server-
user pairs produced by an incremental closest-pair algorithm
that ignores previously reported servers and users. This is
an instance of the traditional stable marriage problem [11]
in the spatial domain. Besides solving a problem inherently
different from optimal assignment, [31] applies only to one-
time assignment over static datasets.

3 Initial Assignment in CSA

We assume two-dimensional user/server locations and use
Euclidean distance for realizing dist(), even though our tech-
niques also apply to higher dimensions and other metrics.
The cost of an assignment A is defined as the average dis-
tance dist(u, s) of the 〈u, s〉 pairs it contains. Nevertheless,
dist(u, s) may be replaced in the cost definition by any mono-
tonically increasing function of dist(u, s) (e.g., dist2(u, s),
or 3

√
dist(u, s) + 5), without affecting the effectiveness or

the correctness of CSA3.
The servers are stationary and their coverage regions may

have irregular shapes. For ease of presentation, however, we
assume that the coverage region of every server s is a circu-
lar disk (denoted by disk(s)) with center at s and radius s.r.
Different servers may have different capacities and radii. We
say that a user u is covered by s if u is located inside disk(s).
If two servers cover one or more common users, we say that
these servers are conflicting.

On the other hand, the users dynamically connect/dis-
connect to/from the system, and move arbitrarily; we make
no assumptions about their log in/out patterns, velocities,
trajectories, or movement frequencies. Connected users send
location updates to a central coordinator whenever they move.
We collectively refer to user updates and connect/disconnect
requests as events. The coordinator’s task is to process the
events and maintain an optimal assignment A. Processing
takes place at discrete timestamps; the reported assignment
A at each timestamp is optimal subject to the most current
user information available at the coordinator.

When the coordinator produces A for the first time, it
needs to compute it from scratch. In this section, we focus
on this initial assignment by CSA. However, the presented
concepts and geometric optimizations also form the founda-
tion of assignment maintenance in subsequent timestamps
(elaborated on in Section 4).

The initial assignment between U and S is computed
in three steps. The first one (Section 3.1) quickly produces
some assigned pairs with local geometric decisions and ex-
cludes users/servers from consideration in the next stages;
this is equivalent to deleting vertices and their incident arcs

3 The adaptation of CSA to such cases is discussed in Section 4.5.

from the flow network. The second step (Section 3.2) dis-
tinguishes different types of servers and breaks the problem
into smaller MCF instances. The third step (Section 3.3) cat-
egorizes these MCF instances into two classes; the first can
be solved purely geometrically (at a cost lower than an MCF
algorithm), while the second class is processed by some ex-
isting MCF method on a flow network whose size is reduced
by spatial optimizations.

Before presenting the above in detail, we define the con-
cept of conflict graph CG that is central to CSA. Note that
we refer to the vertices and arcs in CG as nodes and edges,
respectively, to distinguish them from those in a flow net-
work.

Definition 1 Conflict graph: An undirected graph where ev-
ery node corresponds to a server, and every edge s̄s′ to a pair
of conflicting severs s and s′ (i.e., servers that cover at least
one common user).

CSA initially constructs the completeCG. Figure 4 demon-
strates CG in an example used throughout this section. The
squares si model servers with capacities si.c = 2, the circles
(drawn with continuous line) are the boundaries of their cov-
erage disks, and the hollow points are users. CG includes
all servers as nodes, and connects with an edge every pair
of conflicting servers (as shown in the figure). Note that
even though the coverage disks of s3 and s4 overlap, there
is no edge between them because they are not conflicting
for any user. In the following, we show how CG is used
to efficiently compute the optimal assignment A shown on
the right, through a sequence of three steps. The process is
based on several lemmas (among the corresponding proofs
we provide only the most complicated ones for brevity).

s2
s5

s3

s6

s4

s1

s7

s8

u1

u3

u5

u6
u4

u8
u10

u9 u7
u2

u12

MUR(s1)

u11

MUR(s6)

MUR(s5)

‹u1,s1›
‹u3,s2›
‹u2,s4›
‹u4,s5›
‹u9,s5›
‹u5,s6›
‹u6,s6›
‹u7,s7›
‹u8,s7›
‹u10,s8›
‹u11,s8›

A

Fig. 4 Conflict graph CG and optimal assignment A

3.1 Step 1: Local Elimination

The local elimination step excludes from consideration some
servers and users. Every user that is not covered by any
server can be ignored. This is the case for user u12 in Figure
4, who is no longer taken into account. Servers that cover no
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users are also ignored. Furthermore, the elimination step di-
rectly makes some assignments (i.e., inserts user-server pairs
into A) based on minimum unshared regions.

Definition 2 Minimum unshared region: The minimum un-
shared regionMUR(s) of a server s is defined as the circular
disk with center at s and radius equal to the distance of the
closest user that s is conflicting for with another server. If s
is not conflicting with any server, thenMUR(s) is the entire
coverage region of s.

Figure 4 illustratesMUR(s1),MUR(s5), andMUR(s6)
with dashed boundaries. MUR(s4) is the entire disk(s4),
because s4 is not conflicting with any other server. The re-
maining MURs are omitted from the figure for clarity. Defi-
nition 2 implies that users strictly inside MUR(s) (i.e., ex-
cluding those on its boundary) (i) are only covered by s and
(ii) are closest to s than any user outsideMUR(s). Note that
the MURs of different servers may overlap (e.g., MUR(s5)
and MUR(s6)) but the above properties still hold, since
their overlapping area contains no users by definition. The
MUR characteristics lead to the following lemma.

Lemma 1 Let s.k be the number of users strictly in the inte-
rior of MUR(s) (i.e., excluding users on its boundary). The
min{s.c, s.k} users in MUR(s) that are closest to s form
pairs with s that appear in A.

Proof We prove that the lemma is correct (i.e., it identifies
user-server pairs that indeed belong to the optimal assign-
mentA) by contradiction. Let Us be the set of users assigned
to s by the lemma. Assume that u ∈ Us but 〈u, s〉 /∈ A. Since
u is only covered by s, this means that u is not assigned to
any server. Furthermore, due to the maximality ofA (i.e., the
requirement that the maximum possible number of users are
served), the hypothesis implies that s takes on some u′ /∈ Us

in place of u. As Us contains the closest users to s, it holds
that4 dist(u, s) < dist(u′, s). This is a contradiction; if one
of u and u′ had to be left unassigned, s would take on the
closest (i.e., u) in order to minimize the assignment cost.

According to Lemma 1, CSA computes the MUR of ev-
ery server s and directly assign to it min{s.c, s.k} users; i.e.,
we insert the corresponding user-server pairs into A and ig-
nore these users in later steps. Furthermore, if min{s.c, s.k} =
s.c, we delete s (and its incident edges) from CG and ignore
it in the following steps. Otherwise (s.k < s.c), we decrease
s.c by s.k. In Figure 4, for example, we include 〈u6, s6〉
in A and set s6.c = 1; if two or more users were inside
MUR(s6), s6 would be deleted. The case of s4 reveals an-
other situation where server elimination is possible. User u2

is strictly inside MUR(s4) and is thus assigned to s4. Even
though s4.c is now 1 (i.e., still greater than zero), s4 can be
eliminated since there are no users left inside disk(s4).

4 Note that dist(u, s) cannot be equal to dist(u′, s), because Us

excludes users on the boundary of MUR(s).

3.2 Step 2: Isolating Smaller MCF Instances

The rationale behind the second step of CSA is to break
the problem into independent, smaller ones. Starting at the
server granularity, we say that two servers affect each other
if altering one’s set of assigned users may result in different
user assignment to the other, and vice versa. At first sight, it
seems that only conflicting servers affect one another (equiv-
alently, only pairs of servers that are adjacent in CG). This,
however, is not true; two servers may affect each other via
a chain of intermediate conflicting servers. Consider Figure
5(a), where s1.c = 2, s2.c = 1, and s3.c = 3. We com-
pare the optimal assignment in the case where u8 does not
exist in the system versus the case where it does, i.e., we
juxtapose assignments A and A′ for U = {u1, ..., u7} and
U ′ = U ∪ u8, respectively. A is indicated by the dashed
lines, while the table next to the figure illustrates A′ and its
differences from A. Particularly, removed user-server pairs
are shown in strikethrough and added pairs in bold. Note that
even though there is no edge ¯s1s3 in CG, the presence of u8

in disk(s3) affects the assignments of s1 (which takes on u4

in place of u1).

s1
u4

u1
u2

u3 u6

u7s3

s2

u5 u8

‹u1,s1›
‹u3,s1›
‹u4,s2›
‹u5,s3›
‹u6,s3›
‹u7,s3›

A A'
‹u4,s1›
‹u3,s1›
‹u5,s2›
‹u8,s3›
‹u6,s3›
‹u7,s3›

(a) s2.c = 1 (packed s2)

‹u1,s1›
‹u3,s1›
‹u4,s2›
‹u5,s3›
‹u6,s3›
‹u7,s3›

A A'
‹u1,s1›
‹u3,s1›
‹u4,s2›
‹u5,s2›
‹u6,s3›
‹u7,s3›
‹u8,s3›

s1
u4

u1
u2

u3 u6

u7s3

s2

u5 u8

(b) s2.c = 2 (non-packed s2)

Fig. 5 Example of inter-server influence

On the other hand, not all connected servers affect each
other. Assume, for instance, that in the previous example s2
had capacity s2.c = 2 (instead of 1). Assignment A (in the
absence of u8) would be as indicated by the dashed lines in
Figure 5(b). The table next to the figure shows the assign-
ment A′ (in the presence of u8). As opposed to Figure 5(a),
the addition of u8 does not affect s1. Observe that any re-
moval/addition of users in disk(s3) (even if disk(s3) were
left empty, or flooded with numerous users) cannot affect
s1, because s2 “isolates” s3 from s1. The reason for this
behavior (versus the case where s2.c = 1) is that the in-
creased capacity of s2 is now enough to accommodate all
users inside disk(s2). This is a crucial observation in CSA
that allows performing assignments to some servers locally,
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without considering the entire S and U . To formalize it, we
distinguish two types of servers, packed and non-packed.

Definition 3 Packed/non-packed server: A server s is packed
if its coverage region contains more than s.c users. Other-
wise, s is non-packed.

Server s2 in Figure 5(a) is packed, because capacity s2.c =
1 is smaller than 2 (the number of users inside disk(s2)).
Conversely, in Figure 5(b) where s2.c = 2, s2 is non-packed.
Lemma 2 uses the classification in Definition 3 to constrain
inter-server influence.

Lemma 2 Consider a pair of non-conflicting servers s and
s′. If all paths between s and s′ in CG pass through some
non-packed server, then s and s′ do not affect each other
(i.e., the user assignments of s do not influence those of s′,
and vice versa).

Proof Let snp be a non-packed server in a path between s
and s′. Assume that altering the user assignment to s neces-
sitates that it hands over/takes on some users to/from another
server, and that this process reaches and affects snp. There
are two cases. If some users are taken from snp, then snp

has more vacancies. This additional freedom of snp, how-
ever, cannot lead to a smaller distance or a larger number of
served users; in the previous assignment A (i.e., before al-
tering s’s assignment), snp also had the flexibility of taking
on any of its covered users (being non-packed), but that was
not beneficial. Thus, it does not lead to a better assignment
in the current state either, i.e., reassignment stops at snp. In
the second case, some additional users are assigned to snp.
Since snp covers no more than s.c users in total, it can di-
rectly accommodate the additional users without propagat-
ing the reassignment any further (i.e., towards s′). The situ-
ation where the assignments of s′ are altered is symmetric.
The above conclusion applies to all other paths connecting
s and s′, with some intermediate non-packed server playing
the role of snp. Hence, the lemma holds.

Based on Lemma 2, CSA decomposes CG into smaller
MCF problems as follows. We first conceptually delete from
CG all non-packed servers and their incident edges. LetCGpack

be the resulting graph. We partition CGpack into maximal
connected components (MCC); each MCC is a connected
subgraph ofCGpack where the inclusion of any packed server
would result in the subgraph being disconnected. From the
MCC definition it follows that if two packed servers s and
s′ are in different MCCs, then they may only be connected
through some non-packed server, i.e., they do not affect each
other. On the other hand, packed servers in an MCC do af-
fect their adjacent non-packed servers (in the original CG)
but none any further (according to Lemma 2). We, hence,
call these adjacent non-packed servers the boundary nodes
of the MCC.

Figure 6(a) continues the example of Figure 4 and shows
CG after the local elimination step discussed in Section 3.1
(i.e., with s4, u2, u6, u12 eliminated and s6.c = 1). In this

and in all the following illustrations of this section, non-
packed servers are represented as hollow squares, while packed
ones as solid. CGpack consists of s5, s7 and the edge be-
tween them. There is only one MCC (the entire CGpack)
and its boundary nodes are servers s2, s3, s6, s8, as each of
them is adjacent to s5 or s7.

Since boundary nodes “isolate” the MCCs, we form an
MCF instance (i.e., a subproblem) for every MCC as fol-
lows. The subproblem includes as servers the MCC ones
plus the boundary nodes, and as users the ones covered by
the MCC servers. We call the resulting MCF instance a packed
subproblem. The middle graph in Figure 6(b) represents the
packed subproblem that corresponds to the MCC of s5, s7.
Note that even though edge ¯s2s3 links two boundary nodes,
it is part of the subproblem because it corresponds to a user
(i.e., u3) that is also covered by an MCC server (s5).

 s6.c=1
s2

s5

s3

s6
s1

s7

s8

u1

u3

u5
u4

u8

u10

u9
u7

u11

(a) Current CG

 s6.c=1
s2

s5

s3

s6

u3

u5
u4

u8
u9

u7

s2
s1 u1

s7

s8
u10 s8

u11

(b) Extracted MCF subproblems

Fig. 6 Problem decomposition

After the packed servers, we need to extract MCF in-
stances for the non-packed ones too. We first formCGnon−pack

by removing fromCG all packed servers along with their in-
cident edges. For every MCC in CGnon−pack, we extract a
non-packed subproblem that is defined on the MCC servers
and their covered users (excluding the ones previously in-
cluded in a packed subproblem). In Figure 6(b),CGnon−pack

contains two MCCs (with servers {s1, s2} and {s8}, respec-
tively). Their corresponding non-packed subproblems are rep-
resented by the leftmost and rightmost connected graphs of
the figure. Note that server s3 belongs to CGnon−pack, and
is part of the left MCC since it is connected with s2. It is
removed from the non-packed MCC {s1, s2}, however, be-
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cause there are no remaining users inside disk(s3) (u3 was
previously included in the packed subproblem).

Users appear only in one MCF instance (be it packed
or non-packed). The same holds for the servers, with the ex-
ception of boundary nodes. Specifically, a non-packed server
may be a boundary node of (and, thus, belong to) multiple
packed subproblems, and may additionally appear in a non-
packed subproblem too, such as s2 and s8 in Figure 6(b).
The capacities of these multiple server instances are set to
the number of covered users in each subproblem; recall that
boundary nodes are non-packed servers and, thus, they could
potentially take on all users covered by them.

An important point concerns the partitioning of CGpack

and of CGnon−pack into MCCs. The MCCs of an undirected
graph can be found using depth-first or breadth-first sear-
ches, one for each MCC [8]. In particular, starting from a
random node, the graph is traversed until the search termi-
nates. The visited nodes form one MCC. The next MCC is
found similarly, initiating the traversal at some random un-
visited node. The procedure continues until all nodes are vis-
ited by some traversal (and, thus, inserted into some MCC).

3.3 Step 3: Processing MCF Instances

To complete the initial assignment, we need to solve the
MCF instances produced in the previous step. We could di-
rectly apply a standard MCF algorithm like SSP (described
in Section 2.1) to all subproblems and incorporate their indi-
vidual assignments into the reported A. This, however, can
be improved on. In particular, non-packed subproblems can
be solved by plain geometric computations, avoiding a costly
MCF algorithm. Also, packed instances (even though they
require invoking an MCF technique) can be optimized based
on spatial criteria. Processing of the former subproblem class
is based on Lemma 3.

Lemma 3 The optimal assignment in any non-packed sub-
problem is derived by assigning each user to its closest cov-
ering server.

Continuing the example in Figure 6(b), the non-packed
problem instance that corresponds to {s1, s2} is solved by
assigning u1 to the closest server (i.e., to s1). In the second
non-packed subproblem, there is only one server (s8), and
user u11 is assigned to it. On the other hand, packed sub-
problems (like the middle one in Figure 6(b)) are solved by
a standard MCF technique. To accelerate the latter, we can
geometrically reduce the size of its input (i.e., number of
flow network vertices/arcs) using Lemmas 4 and 5 below.

Lemma 4 In a packed subproblem, if the closest among the
servers that cover a user is non-packed, then the user can be
assigned to it directly.

In the packed subproblem of Figure 6(b), u3 is covered
by s2, s3, s5, among which s2 is the closest. Since s2 is non-
packed, it directly takes u3 on. Additionally, this leads to

 s6.c=1

s5

s6u5
u4

u8
u9

u7s7

s8u10

s8.c=1

(a) A = A∪ 〈u5, s6〉

s5

u4

u8
u9 u7s7

s8u10
s8.c=1

MUR(s5)

(b) A = A∪〈u9, s5〉

s5.c=1
s5

u4

u8
u7s7

s8u10
s8.c=1

(c) Final MCF

Fig. 7 Reducing the size of a packed subproblem

the elimination of s2, s3 from the subproblem, because (af-
ter the assignment of u3) they cover no users. The result-
ing subproblem is shown in Figure 7(a). The size of packed
MCF instances may be further reduced utilizing the concept
of strongly packed servers.

Definition 4 Strongly packed server: A server s is strongly
packed if it covers s.c or more users that are not covered by
any other server.

In Figure 7(a), server s5 uniquely5 covers users u4 and
u9. Since s5.c = 2, s5 is a strongly packed server. Note that
in the above definition s.c refers to the remaining capacity
of s (after possible assignments in previous stages of CSA).
Lemma 5 builds on the concept of strongly packed servers.

Lemma 5 Let s be a strongly packed server. If s is con-
flicting for a user u with some non-packed server, then pair
〈u, s〉 cannot be in the optimal assignment.

Proof Let snp be a non-packed server that also covers u.
We prove the lemma by contradiction, i.e., showing that if
u were assigned to s, the maximality requirement would be
violated. Let A′ be an assignment where s takes on u. As-
sume that Us and Usnp are the sets of users served in A′ by
s and snp, respectively. Since u occupies one of s’s vacan-
cies, at least one of its uniquely covered users (say uunique)
is left unassigned. Consider now the assignment A′′ that re-
sults fromA′ by (i) assigning u to snp

6 and (ii) having s take
on uunique instead of u. Assignment A′′ serves one more
user (i.e., uunique) compared to A′, because s and snp to-
gether serve Us ∪Usnp ∪uunique versus just Us ∪Usnp . This
means that A′ does not serve the maximum possible number
of users and, hence, cannot be the optimal assignment.

In Figure 7(a), Lemma 5 implies that u5 cannot be as-
signed to (the strongly packed) server s5, because it is also
covered by (the non-packed) s6. Furthermore, since s6 is the
only other server covering u5, pair 〈u5, s6〉 is inserted into
A, and s6 (who is no longer covering any users) is elimi-
nated from the subproblem. This leads to the MCF instance
shown in Figure 7(b). Note that Lemma 5 does not assign u5

5 Uniquely here means that s is the only covering server.
6 Note that snp is non-packed and, thus, it is feasible to take on u in

addition to users in Usnp .
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to some server per se; it simply disqualifies s5 from taking it
on. For instance, if u5 were also covered by s7, it could not
be assigned directly to any of s6, s7. Instead, we would ig-
nore edge ¯s5s6 and, accordingly, exclude arc

→
u5s5 from the

flow network of the packed subproblem.
To further reduce the size of the subproblem, we recom-

pute server MURs, taking into account only the remaining
users, and subsequently we reapply Lemma 1. In Figure 7(b),
for example, MUR(s5) is defined by dist(u8, s5), since u8

is the closest user that s5 is currently conflicting for. User
u9 is strictly inside MUR(s5) and, thus, we directly assign
u9 to s5. The derived MCF instance is shown in Figure 7(c),
having eliminated u9 and set s5.c = 1. Note that if the re-
sulting MCF instance contains a server that is not conflicting
with any other, we directly assign to it its closest covered
users (until its capacity is reached or all users are assigned).

To conclude, the final subproblem derived can be solved
with some traditional MCF algorithm, such as SSP or Hun-
garian (in our implementation we use the former due to its
graceful performance, as discussed in Section 2.1). In Fig-
ure 7(c), the MCF algorithm assigns u4 to s5, {u7, u8} to s7,
and u10 to s8. Overall, the computed assignment is shown in
the table of Figure 4. Algorithm 1 is a pseudo-code for the
initial assignment computation by CSA.

Algorithm 1 Initial assignment in CSA
Initial Assignment(U , S)

1: Eliminate users covered by no servers
2: Eliminate servers covering no users
3: Compute MURs and perform assignments using Lemma 1
4: Decompose the problem into packed and non-packed subproblems
5: Solve non-packed subproblems using Lemma 3
6: for all packed subproblems do
7: Reduce the subproblem size using Lemmas 4 and 5
8: Compute MURs and perform assignments using Lemma 1
9: Find the optimal assignment of the subproblem using SSP

10: Return the union of pairs produced in steps 3, 5, 7, 8, 9 above

A nice feature of Algorithm 1 is that the subproblems
produced in step 4 (be them packed or non-packed) can be
processed in parallel, since they are completely independent.
Therefore, given multiple processors, we can greedily as-
sign/distribute the subproblems among them. In the best case
where the subproblems are no more than the processors, the
overall cost will be the time spent in steps 1 to 4, plus the
cost of the largest subproblem.

4 Assignment Maintenance in CSA

In this section, we show how CSA processes events (location
updates and connect/disconnect requests from the users) and
accordingly maintains an optimal assignment A. As men-
tioned in Section 1, we distinguish two variants of the prob-
lem, suiting different applications and system requirements.
The first variant is the strict CAP, where the reported A is

optimal at every timestamp, regardless of the previous as-
signment and connection status of the users. The second
variant is the connected CAP, where A is optimal subject to
an additional constraint; users who remain within the cover-
age region of their currently assigned server will keep being
served by the same server, unless they send a disconnect re-
quest. The first-time assignment is computed identically in
both cases (i.e., as presented in Section 3). In subsequent
timestamps, the corresponding version of CSA produces op-
timal assignments for either variant. We describe CSA main-
tenance in the strict case first, and present the connected one
later (Section 4.4).

We classify the events into insertions and deletions. An
insertion is a request for service from a new user, while a
deletion is a disconnect request from an existing one. A lo-
cation update is treated as a deletion (at the old user posi-
tion) and an insertion (at his/her new position). Sections 4.1
and 4.2 describe handling of single insertions and deletions,
individually. Since multiple events may arrive at the coordi-
nator in a timestamp, Section 4.3 integrates the above into
a maintenance algorithm (i.e., CSA) that processes multiple
insertions and deletions in a batch.

To facilitate presentation, we introduce some notation.
We denote by A the assignment reported at the previous
timestamp, and by A′ the updated assignment (to be pro-
duced) for the current timestamp. We represent the set of
users assigned to server s in A and A′ as Us and U ′s, re-
spectively. Also, we indicate by C(u) the set of servers that
cover user u, and denote by NN(u) the closest among them
(to u). Furthermore, we use the concept of full servers that
is central to event processing. We say that a server s is full
if it is serving exactly s.c users7. Note that this is different
from the definition of a packed server. For instance, in the
assignment produced in Figure 4, servers s5, s6, s7, and s8
are full, because each has reached its capacity (i.e., 2).

4.1 Processing a Single Insertion

Consider the insertion of a user u. The first step in CSA is
to add new edges into CG for pairs of servers that were pre-
viously not adjacent, but are now conflicting for u (i.e., be-
tween servers that belong to C(u)). Next, CSA attempts to
assign u with local decisions, restricting as much as possible
the scope of necessary reassignments (and, thus, reducing
the computation cost).

If u is not covered by any server (i.e., C(u) = ∅), no
assignment update is required, i.e., A′ = A. Fast process-
ing is also possible when C(u) 6= ∅ and NN(u) is not full,
according to Lemma 6.

7 The capacities are reset to their original values in the beginning
of each timestamp; recall that during the first-time A computation, for
example, we were decreasing the capacities whenever making an as-
signment. Such capacity changes are temporary, and limited within the
scope of one timestamp.
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Lemma 6 Let s be the closest covering server of inserted
user u (i.e., s = NN(u)). If s were not full inA, u is directly
assigned to it (i.e., A′ = A ∪ 〈u, s〉).

Assume that at timestamp t = 0 the user locations and
assignment A were as shown in Figure 4. Consider that at
t = 1 a user u connects to the system and requests ser-
vice. If u is covered by no servers, it is ignored (A′ = A).
Otherwise, if NN(u) is not among the full servers (e.g., if
NN(u) is s3), u is directly assigned to it. Optimizations for
fast event processing are also possible when NN(u) is full.
Specifically, Lemma 7 applies when u is uniquely covered
by a strongly packed server s.

Lemma 7 Assume that inserted user u is uniquely covered
by a server s which (i) was strongly packed in the previous
timestamp, and (ii) was assigned (in A) only uniquely cov-
ered users. If u is closer to s than the furthest user in Us, u
replaces this user in A′. Otherwise, u is left unassigned.

Proof The maximality ofA implies that any strongly packed
server is full; i.e., s cannot simply take u on. Let ucur be the
furthest user in Us (from s). If dist(u, s) ≥ dist(ucur, s), u
is left unassigned, because taking him/her on in place of any
user in Us would increase the assignment cost, while serving
the same number of users. On the other hand, if dist(u, s) <
dist(ucur, s), taking u in place of ucur leads to a smaller
assignment cost (which, additionally, is lower than replacing
any other user inUs with u). Also, no further reassignment is
necessary; if 〈ucur, s〉 was preferable over 〈u′, s〉 for some
u′ /∈ Us (in A), then 〈u, s〉 is also preferable to 〈u′, s〉 (in
A′).

Figure 8 illustrates the handling of inserted user u by
Lemma 7, assuming that the state of the system in the pre-
vious timestamp was as in Figure 4. Irrelevant servers are
omitted, while dashed lines indicate the previous assignment
A. User u is uniquely covered by strongly packed server
s5, which was assigned only uniquely covered users in A.
The furthest of them (from s5) is u4. Since dist(u, s5) <
dist(u4, s5), u is assigned to s5 in place of u4. If u were fur-
ther than dist(u4, s5), then no reassignment would be made.

s2

s5

s3

s6

s7

u3

u5

u6

u4

u8
u9

u7
u

Fig. 8 Example of Lemma 7 (u replaces u4)

If none of the above lemmas eliminates/assigns the in-
serted user u, we need to identify and solve the MCF in-
stance u belongs to. Observe that for Lemma 6 to fail, s =
NN(u) must be full in A (i.e., s covered at least s.c users

in the previous timestamp). It follows that after the inser-
tion of u into disk(s), server s is packed (in the current
timestamp). Therefore, the subproblem of u is the packed
MCF instance that includes s.8 We identify the MCC of s
in the updated CG and solve the corresponding MCF in-
stance according to Section 3.3 (steps 7, 8, 9 of Algorithm
1). Note that computing s’s MCC is performed by one depth-
first or breadth-first search in CG, initiated at s and ignoring
edges between packed and non-packed servers, i.e., it does
not require explicit computation of CGpack or identifying
all packed MCCs.

4.2 Processing a Single Deletion

Consider now the deletion of a user u. We first updateCG; if
two servers inC(u) were conflicting only for u (and no other
user), we remove the edge between them. If C(u) = ∅ or u
were unassigned in A, we simply remove u and report A′ =
A. Otherwise, let su be the server assigned to the deleted
user u (in A). According to Lemma 8 below, fast processing
is possible if su were not full in A.

Lemma 8 If su were not full in A, we simply delete u, i.e.,
report A′ = A− 〈u, su〉.

Proof Since su was not full in A, the extra vacancy created
by the deletion of u cannot lead to a better assignment; su

had available slots in the previous timestamp, and if a better
use of them were possible, they would have already been
exploited in A.

In Figure 4, the deletion of u12 would not cause any
change (A′ = A) because C(u12) = ∅. Also, the dele-
tion of u1, u2, or u3 would be treated by simply removing
their corresponding pair from A, since their assigned serv-
ers (s1, s4, and s2, respectively) were not full in the previous
timestamp. Local decisions are also possible for a full su,
based on Lemma 9.

Lemma 9 If su were serving all its covered users in the
previous timestamp, we simply delete u, i.e., report A′ =
A− 〈u, su〉.

In Figure 4, servers s6 and s8 serve all their covered
users. Thus, the deletion of u5, u6, u10 or u11 would be sim-
ply dealt with by removing the corresponding pair from A.

If all above criteria/lemmas fail, we treat su as packed
and isolate/solve the corresponding subproblem in the way
explained at the end of Section 4.1. Note that su is not nec-
essarily packed in the current timestamp, but we treat it as
packed in order to identify all the servers it affects (accord-
ing to Lemma 2).

8 Note that all servers inC(u) are conflicting with s for u and, thus,
belong to the same MCF instance.
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4.3 Processing Multiple Insertions/Deletions

In the general case, multiple events arrive at the coordinator
in a timestamp. If the events were treated individually one
after another, some subproblems would be solved multiple
times, since different events may affect the same server or
subproblem. We avoid waste of computations by first scan-
ning all events, marking the affected servers, and then solv-
ing their MCF instances in the updated CG.

In particular, we first decompose the events (that arrived
in the current timestamp) into a set of insertions Eins and
deletions Edel. Recall that a location update from a user is
treated as a deletion at his/her old position and an insertion at
the new one. If multiple updates arrive in the current times-
tamp from a user u, then we aggregate them. For example,
if a user moves from location u to u′ and then to u′′, the co-
ordinator processes these two events as a deletion at u and
an insertion at u′′. If the user additionally sent a disconnect
request, a single deletion at u is processed.

Next, we updateCG taking into account all events. Based
on the observation that processing is faster for servers that
are not full, we consider Edel before Eins. For every dele-
tion in Edel, we attempt to locally remove the correspond-
ing user u (according to the criteria and lemmas in Section
4.2). If we fail, we mark su as affected but do not process its
MCF instance yet. Note that if su were previously marked
as affected by another deletion, we skip local processing at-
tempts. We continue with the next deletions in Edel until all
of them pass this first processing phase.

Then, we scan the insertions in Eins. For each of them,
we first check whether any server in C(u) (where u is the
inserted user) is already affected. If so, we proceed with
the next insertion in Eins (as u is contained in the affected
server’s subproblem and will be handled in the last phase).
Otherwise, we attempt to make local reassignments using
the criteria and lemmas in Section 4.1. If these criteria fail,
we mark NN(u) as affected. We stop when the complete
Eins is scanned.

In the last phase, we identify the MCF of each affected
server s in the way described at the end of Section 4.1, while
treating all the encountered affected servers as packed. Each
of the identified subproblems is processed by steps 7, 8, 9
of Algorithm 1. Note that multiple affected servers may be-
long to (and thus be handled simultaneously in) the same
subproblem.

Algorithm 2 summarizes the complete assignment main-
tenance procedure. Observe that step 21 can be parallelized
in the way described at the end of Section 3.3. The correct-
ness of CSA on the whole is proven below.

Theorem 1 CSA assignment is optimal at every timestamp.

Proof The initial assignment is correct, according to the lem-
mas presented in Section 3. Thus, CSA is correct if its event
processing in every subsequent timestamp is correct. The
CSA maintenance module, essentially, processes first the ev-
ents that can be handled locally (be them insertions or dele-

tions), and then solves (optimally) isolated MCF subprob-
lems. Correctness for each locally processed event is guar-
anteed by the corresponding lemmas in Sections 4.1 and 4.2.
This means that assignment optimality is retained from event
to event in the first phase. Each of the remaining events re-
quires solution of an MCF instance in the last phase. These
subproblems are unambiguously defined by the current (i.e.,
updated) CG and can be processed individually (according
to Lemma 2), yielding the CSA maintenance procedure cor-
rect overall. It follows that CSA reports an optimal assign-
ment at every timestamp.

Algorithm 2 Assignment maintenance in CSA
Maintenance(A, Eins, Edel)

1: A′ = A
2: for all events u in Edel (i.e., deleted users) do
3: for all pairs of servers s, s′ in C(u) that conflict only for u do
4: Remove edge s̄s′ from CG . CG maintenance
5: if uwere assigned to server su inA and su is not affected then
6: if su were not full or su served all covered users inA then
7: A′ = A′ − 〈u, su〉
8: else
9: Mark su as affected

10: Remove u from the system
11: for all events u in Eins (i.e., inserted users) do
12: for all pairs of servers s, s′ inC(u) where edge s̄s′ /∈ CG do
13: Add edge s̄s′ to CG . CG maintenance
14: if no server in C(u) is affected then
15: if server s = NN(u) were not full in A then
16: A′ = A′ ∪ 〈u, s〉
17: else if server s = NN(u) satisfies Lemma 7 then
18: A′ = A′ ∪ 〈u, s〉 − 〈u′, s〉 (u′ selected by Lemma 7)
19: else
20: Mark NN(u) as affected
21: Solve the MCF subproblems of affected servers, and update A′

22: Return A′

So far we assumed that there are no updates in S. How-
ever, there may be cases where some servers go off-line or
some new ones are installed. This type of events are gener-
ally infrequent, and recomputing A from scratch when they
occur is an acceptable solution. On the other hand, if some
time-critical applications cannot tolerate the incurred pro-
cessing cost, we can improve performance based on con-
cepts similar to the above. Specifically, assume that a server
s goes off-line (i.e., is deleted from S). We treat s as a packed
server with zero capacity, and isolate/solve its subproblem.
Processing is similar in the case where s is a new server in-
serted into S, the difference being that we now consider the
actual s.c.

4.4 Event Processing in Connected CAP

In the connected variant of CAP, assignment maintenance
is performed in two stages. Let E be the set of all events
received in the current timestamp. In the first stage, we pre-
serve the no-disruption-of-service property of connected CAP.
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In particular, we consider all users u that (i) were assigned
to a server in the previous timestamp, and (ii) do not request
disconnection in the current timestamp. Let s be the assigned
server of such a user u (i.e., 〈u, s〉 ∈ A). If u remained static
or moved to another location within disk(s), we insert 〈u, s〉
into A′ and reduce s.c by one. In the latter case, we also
delete u’s location update from E.

In the second stage, we process all remaining events in
E as described in Section 4.3. In this setting, however, we
ignore users dealt with in the first stage (to avoid their reas-
signment) and consider the modified server capacities when
applying the corresponding lemmas/assignment decisions.
The correctness of Algorithm 2 (proven by Theorem 1) guar-
antees that modified CSA maintains an optimal assignment,
with respect to maximality, assignment cost, and the addi-
tional feasibility constraint imposed by the connected CAP.

4.5 Discussion on CSA Generality

So far we assumed the Euclidean distance. It is important to
stress, however, that CSA can be extended to other Minkowski
metrics too. Consider, for instance, Definition 2 and Lemma
1. If we define MUR(s) to be the locus of points p in space
where dist(p, s) is smaller than the distance between s and
its closest conflicting user, the lemma and its proof hold
without changes. If the L1 metric were used, for example,
the MURs would be squares with sides oriented at a 45◦ an-
gle to the coordinate axes (instead of disks), but the lemma
would apply directly. The situation is even simpler in our
other definitions and assignment criteria, since (i) CG can
be formed by primitive operations on sets of covered users,
and (ii) our optimizations/lemmas require plain comparisons
among user-server distances.

Furthermore, it is easy to see that CSA applies to dif-
ferent cost functions, as long as they are monotonically in-
creasing with distance. The only necessary modification is
in step 9 of Algorithm 1 and step 21 of Algorithm 2, where
arcs

→
us in the flow network of SSP have weights defined ac-

cording to the specified cost function (instead of dist(u, s)),
as mentioned in Section 2.1.

CSA is designed for central processing, i.e., there is a
central coordinator which receives all the location updates
and maintains the assignment. However, Lemma 2 allows
for distributed processing at the servers themselves as fol-
lows. Initially, each server s identifies all others s′ whose
coverage regions overlap with its own (these are candidate
conflicting servers), and exchanges its packed/non-packed
status with them. Then, the implicit CG is decomposed into
MCCs/MCFs, starting from random “seed” servers, who re-
lay messages to their neighboring ones (practically execut-
ing concurrent breadth-first traversals). After this step, the
servers within each MCF choose a coordinator among them
for the specific subproblem, and send to it the locations of
users they cover (boundary nodes are responsible for deter-
mining which of their covered users belong to which MCF).
The local coordinator solves the subproblem and performs

the initial assignment therein. When a user is deleted (or
moves), his/her currently assigned server processes the dele-
tion locally (according to Lemmas 8 and 9), and if this fails,
it determines its MCF and acts as a coordinator to update
the assignment. When a user is inserted (or moves to a new
position), he/she informs its closest covering server, which
in turn either processes the insertion locally, or determines
its MCF and solves it. All servers in the system should be
synchronized to process updates at the same timestamps, in
order to avoid solving the same subproblem multiple times
and, more importantly, to achieve consistency.

5 CSA Implementation

In this section, we describe data-structures and techniques
used in the implementation of CSA. Each server s (user
u) has a unique identifier s.id (u.id). Information for every
s.id is kept in a table that contains s.r, s.c, and the num-
ber of covered users; the latter is used to quickly determine
whether s is packed. CG is stored in the form of adjacency
lists (one list for every s.id). Similar to most spatial monitor-
ing systems (overviewed in Section 2.2), we index the users
by a regular, main memory grid, due to its graceful perfor-
mance in highly dynamic settings.

Every grid cell c stores the set of users that fall inside
its spatial extent (as a hash table on user id), and for each
of these users it records his/her coordinates and the id of
his/her currently assigned server (or NULL if unassigned).
Additionally, each cell c is associated with an overlap list
c.list that includes the s.id of every server whose coverage
region overlaps with the cell’s spatial extent. In Figure 9,
for example, the overlap lists of the light gray cells contain
either s1 or s2, while those of the dark gray cells contain both
s1 and s2 (e.g., c1.list = {s1}, c4.list = {s2}, c2.list =
{s1, s2}, c3.list = ∅).

s1

u1

u2 u3

u4

s 1
.r

s2

s 2
.r

c1

c2

c3

c4

y

x(0,0)
Fig. 9 Grid index and overlap lists

Overlap lists are used to implicitly maintain the set of
users covered by each server, and to efficiently identify pairs
of conflicting servers. In our example, the entrance of u4 into
disk(s2) (the movement of u1 out of disk(s1)) is detected



Continuous Spatial Assignment of Moving Users 13

due to the presence of s2 in c4.list (of s1 in c1.list). Note
that overlap lists are used as fast filters, but exact distance
comparisons with server coverage radii are necessary for re-
finement (e.g., a part of c1 is outside disk(s1)). Overlap lists
are also used to efficiently maintain CG. Initially, there is no
edge in CG between s1 and s2 as the dark gray cells contain
no users. After the movement of u2, however, their conflict
is captured by the fact that c2.list contains them both and,
thus, edge ¯s1s2 is inserted into CG.

6 Experimental Evaluation

In this section, we evaluate CSA. We first focus on strict
CAP (Section 6.1), assuming a single or multiple available
processors. Next, we consider connected CAP (Section 6.2).
Finally, we compare CSA with non-optimal, heuristic algo-
rithms (Section 6.3).

In our experiments we generate sets of users U with
various cardinalities N that move in a road network (main
roads in North America [1], with 175,813 nodes and 179,179
edges), whose node coordinates are normalized to a [0, 1000]2
space. In our default setting, the initial locations of the users
(at timestamp 0) are generated by a Gaussian distribution
with mean at the center of the network and standard devia-
tion σ equal to 0.2 times the length of the shortest path from
the center to the furthest node. This distribution models the
situation where many users gather in the center of a city dur-
ing the working hours of a weekday. In each of the following
timestamps, a percentage f of the users send an event to the
coordinator. Each event is either a location update or a dis-
connect request, at a ratio α (e.g., α = 0.8 means that 80%
of the events are location updates and 20% disconnect re-
quests). Every disconnect request is followed by a connect
request from a newly generated user. Each location update
corresponds to a moving user; in the given timestamp, the
user covers a distance v in the road network. We generate
sets of (stationary) servers S with various cardinalities M ,
following a uniform distribution in the same road network9.
The servers have equal capacity c and coverage radius r. Ta-
ble 1 presents the parameters under investigation, and their
various examined values, where the ones in bold are the de-
faults. In each experiment we vary one parameter, and set
the remaining ones to their default values. Our simulations
include 50 timestamps, and the reported measurements are
the average observed values per timestamp. All experiments
were executed on an Intel Core 2 Duo E7200 machine with
2 GB of memory.

Our evaluation considers three methods, CSA, R-CSA,
and SSP. SSP and R-CSA recompute the assignment from
scratch in every timestamp, using SSP and Algorithm 1, re-
spectively. We include the QuickMatch [26] optimizations in
all three methods. For fairness, we enhance SSP and R-CSA
with a grid index with overlap lists (as described in Section
5) to efficiently update their flow network and conflict graph,

9 Note that we also examine non-uniform servers, as well as various
user/server distribution combinations.

Parameter Examined values
Number of users (N ) 25, 50, 100, 200, 400 (K)
Standard deviation (σ) 0.05, 0.1, 0.2, 0.5, 1
Event rate (f ) 5%, 10%, 20%, 50%, 100%
User velocity (v) 0.1, 0.25, 0.5, 1, 2 (edges/timestamp)
Number of servers (M ) 100, 500, 1000, 1500, 2000
Server capacity (c) 16, 32, 64, 128, 256, 512
Coverage radius (r) 2.5, 5, 10, 15, 20, 25

Table 1 System parameters and their examined values

respectively. The grid granularity (i.e., cell size) for all algo-
rithms is set according to the analysis in [34].

We focus on the performance improvement of CSA over
SSP, as it illustrates the significance of our contribution to-
wards the continuous assignment problem, i.e., the main topic
of this paper. On the other hand, the comparison between R-
CSA and SSP demonstrates the superiority of Algorithm 1
over the traditional approach for static problem instances.

6.1 Strict CAP

We first consider strict CAP and assume that a single pro-
cessor is available. Table 2 presents average measurements
and statistics in our default setting, such as the assignment
cost and size (i.e., the average distance and the number of
served users, respectively). The table also includes other im-
portant characteristics of the problem. The number of MCCs
is the number of (either packed or non-packed) subprob-
lems solved on the average in the last step of CSA/R-CSA.
Due to its incremental nature, CSA processes almost 7 times
fewer MCCs than R-CSA. The next row contains the number
of SSP calls per timestamp, i.e., the number of MCCs that
could not be processed purely geometrically. Both CSA and
R-CSA avoid a considerable number of SSP calls, demon-
strating the effectiveness of our local assignment criteria.
The average (node) degree in CG indicates the number of
conflicts a server has. The average overlap degree is the num-
ber of coverage disks each server’s disk overlaps with.

Measurement SSP R-CSA CSA
Assignment cost 4.40
Assignment size 46616.18
CPU time 1.77s 0.98s 0.81s
No. of MCCs – 394.28 58.04
No. of SSP executions 1 47.86 30.64
No. of packed servers – 473.72
No. of full servers – 258.60
Average degree in CG – 2.30
Average overlap degree – 4.13

Table 2 Measurements and statistics in the default setting

In Figure 10(a), we vary the number of users N and plot
the CPU time per timestamp (in seconds). The processing
cost increases with N for all methods, because the flow net-
work of SSP has more edges, while in CSA/R-CSA there
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are more conflicts among the servers. CSA is always better
that SSP, and their difference grows with N (with CSA be-
ing over 3.2 times faster for N ≥ 200K), because a small
M/N ratio implies that most of the assignments in CSA
are made locally/inexpensively by the MURs in conjunction
with Lemma 1. CSA is around 20% to 35% faster than R-
CSA, as a result of the incremental evaluation techniques in
Section 4. On the other hand, the processing time of R-CSA
is up to 2.8 times shorter than SSP, indicating the efficiency
of our methods for static assignments too.
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Fig. 10 CPU time vs. user and server cardinality

Figure 10(b) measures the effect of the server cardinal-
ity M on the performance of the algorithms. Again, CSA
and R-CSA are significantly faster than SSP (the largest dif-
ference being a 4.5 and 2.8 times improvement, respectively,
for M = 100). The improvements of CSA and R-CSA over
SSP are larger for smallM , because their problem decompo-
sition is more effective (i.e., leads to smaller subproblems).
The running times of all algorithms initially increase and
then decrease. For small M (e.g., M = 100) the processing
cost is lower because (i) the problem size is smaller, and (ii)
the servers are far from each other, thus conflicting for fewer
users. On the other hand, when M is very large, the servers
are under-utilized (or, non-packed/not full, in CSA terminol-
ogy), and the problem becomes easier because many users
are taken on by their closest server. Again, CSA/R-CSA ben-
efit more from this fact (compared to SSP), because non-
packed/not full servers allow for more local decisions (i.e.,
using Lemmas 3, 4, 6, 8). We mention for completeness that
for M = 100 the average size of the assignment is 5,906,
while for M = 2000 it is 72,807; in the latter case, even
though there are enough servers for all users, some users are
not served because U follows a different distribution from
S. In summary, Figure 10 shows that CSA and R-CSA scale
well with N and M .

Figure 11(a) investigates the effect of the server capac-
ity c. The running time of the algorithms initially increases
and then decreases. There is a correspondence between this
trend and that in Figure 10(b); when the capacity is too large
(small), the situation is similar to having a large (small) num-
ber of servers M . Figure 11(b) shows the computation time
(in logarithmic scale) as a function of the coverage radius
r. The problem becomes harder when r increases, because
the search space grows (i.e., there are more potential assign-

ments to consider); it is worth mentioning that for r = 25 the
average degree in CG is 13.2 and the average overlap degree
is 23.8. In all cases CSA is faster than SSP by a wide margin
(taking less than half the time in all cases). The difference
between CSA and R-CSA diminishes with r, because as r
increases the CG contains fewer and larger MCCs. In turn,
the growing MCC sizes imply costlier MCF computations
per affected server (in CSA).
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Fig. 11 CPU time vs. server capacity and coverage radius

Figure 12(a) examines the effect of the event rate f . SSP
and R-CSA compute the assignment from scratch in every
timestamp, so they are not affected significantly by f ; there
are fluctuations because different f leads to different sys-
tem states (i.e., user positions) per timestamp. The running
time of CSA increases slightly with f due to its incremen-
tal nature. However, even for f = 100% it outperforms SSP
by 1.9 times and R-CSA by 1.2 times; note that f = 100%
means that all users send an event in every timestamp (80%
of them move, and the remaining 20% disconnect and are
replaced by new connecting users). Figure 12(b) shows the
processing time as a function of the user velocity v, varying
from 0.1 to 2 times the average edge length (around 4 dis-
tance units in our [0, 1000]2 space) per timestamp. Velocity
v does not affect the algorithms significantly, and the fluc-
tuations are due to the different system states generated for
different v.
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In Figure 13(a) we vary the standard deviation σ of U ’s
Gaussian distribution. The running time of all algorithms
initially increases and then decreases. When σ is small, U
is very skewed (concentrated around the center of the datas-
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pace), which leaves most servers highly under-utilized (non-
packed/not full in CSA terms), and thus easy to handle. As
σ grows, more servers become packed/full, which increases
the complexity. There is some σ, however, after which the
servers around the center of the network are no longer over-
loaded; larger σ values bring S closer to being uniform, lead-
ing to more under-utilized servers and a lower running time.
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Figure 13(b) investigates different distribution combina-
tions for U and S, keeping the other parameters to their de-
faults. Some running times are too small, so we additionally
include experiments for r = 20 where measurements are
more obvious. To avoid cluttering, we exclude R-CSA from
the chart; its relative performance to CSA and SSP is similar
to our default distributions. In the labels, “Gau.” stands for
Gaussian and “Uni.” for uniform, e.g., label “Uni./Gau.” cor-
responds to uniform users and Gaussian servers. In “Uni./Uni.”,
most of the servers are under-utilized (recall that the summed
capacity of the servers is 128K, i.e., greater than N ) and
the problem is faster to compute. The situation is similar for
“Uni./Gau.”, where the centrally located servers are under-
utilized, while further from the center (of the dataspace) the
servers are sparse and have very few conflicts. In “Gau./Gau.”,
the running times are larger than “Uni./Uni.” and “Uni./Gau.”,
because the search space grows; i.e., in SSP there are many
edges in the flow network, while in CSA there are many con-
flicts among servers. In all distribution combinations, and for
both r = 10 and r = 20, CSA is faster than SSP, verifying
its general superiority.

In Figure 14, we investigate performance when multiple
processors are available. Scheduling is performed by assign-
ing the subproblem with the most servers to the first unoccu-
pied processor. In Figure 14(a), we vary the number of pro-
cessors, while setting all other parameters to their defaults.
CSA and R-CSA exploit parallelism, and their running time
drops when more processors are available. However, there is
no improvement when moving from 3 processors to 4, be-
cause the bottleneck is one large subproblem that occupies
a processor and leaves the others idle. Recall that S follows
a Gaussian distribution, and there is always a large MCC at
the center of the dataspace.

In Figure 14(b), we investigate the effect of M . In the
legends, the number after “CSA-” indicates the number of
available processors (e.g., 2 for CSA-2). For clarity in the
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chart, we exclude measurements for R-CSA, which follows
the trends of CSA. CSA-4 is 7.5 times faster than SSP for
M = 100, as in this case there are few conflicts and CG is
decomposed into multiple subproblems. CSA-2 and CSA-3
are not much slower than CSA-4, due to the existence of a
large MCC, as explained in Figure 14(a). For M = 2000 the
size of this MCC is the largest, leading to almost identical
performance for CSA-2, CSA-3, and CSA-4.

All above experiments use synthetic data, because the
available real datasets are small and do not provide control
over most of the parameters under investigation. For gener-
ality, however, in Figure 15 we include two experiments on
strict CAP (with a single processor) using real data. Specif-
ically, we model U as the locations of 14,698 taxis in Sin-
gapore, recorded on 5 July 2008 from 20:00 to 20:10. On
the average, around 151 location updates are reported per
second. The servers follow the taxi distribution; their posi-
tions (which are fixed) are drawn at random among the taxi
locations at exactly 20:10. By default, there are M = 150
servers, with capacity c = 128 and coverage radius r = 230
meters; M and r are set in proportion to the default problem
size and coverage area in the synthetic experiments. We use
timestamps of 1 second, and report the average processing
time of CSA, R-CSA, and SSP per timestamp.

In Figures 15(a) and 15(b) we measure the effect of c and
r, respectively. The observed trends and the reasons behind
them are similar to Figures 11(a) and 11(b). A difference is
that the peak of the CPU time is at capacity c = 32 (in Figure
15(a)) versus 128 (in Figure 11(a)). Another difference is
that CSA achieves greater gains compared to R-CSA and
SSP (running 12 and 20 times faster in the default setting);
the event rate is lower than in the synthetic experiments, thus
further benefiting the incremental evaluation in CSA.
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6.2 Connected CAP

In this section, we evaluate CSA, R-CSA, and SSP on the
connected CAP. Figure 16(a) plots their running time ver-
sus the event rate f , setting all other parameters to their
defaults (shown in Table 1). CSA consistently outperforms
SSP and R-CSA (being up to 2.2 and 1.7 times faster). The
CPU time of all algorithms is smaller than in strict CAP, be-
cause the no-disruption-of-service constraint reduces drasti-
cally the problem size (many users retain their assignment).
Figure 16(b) keeps the default f = 20%, but varies the
movement/disconnect ratio α; for α = 0 all events are con-
nect/disconnect requests, while for α = 1 all events are loca-
tion updates. A small α implies that many users disconnect,
thus releasing their assigned slot and increasing the problem
complexity.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  20  40  60  80  100

tim
e 

(s
)

event rate f (%)

SSP
R-CSA

CSA

(a) Effect of f

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

tim
e 

(s
)

movement/disconnected ratio α

SSP
R-CSA

CSA

(b) Effect of α

Fig. 16 CPU time for connected CAP

6.3 Comparison with Approximate Methods

In our final experiment, we investigate the applicability of
approximate CAP algorithms. If non-maximal/sub-optimal
solutions are acceptable, a way to reduce the complexity of
an MCF is to eliminate some of the arcs in its flow network.
Specifically, each server s could be allowed a maximum of
kmax incoming arcs

→
us (where kmax ≥ s.c), i.e., only the

kmax nearest users covered by s are considered for assign-
ment to it (ignoring all remaining users in disk(s)). By defi-
nition, this technique achieves a lower assignment cost than
the exact MCF solution (because only the nearest users are
considered), but it sacrifices maximality, i.e., it may serve
fewer than the maximum possible number of users. This ap-
proach can be directly applied to SSP (to reduce the com-
plexity of the entire MCF over U and S), but also to CSA (to
accelerate the processing of packed subproblems). We call
the resulting methods A-SSP and A-CSA, where “A” stands
for approximate. Table 3 investigates the effect of parame-
ter kmax on A-SSP and A-CSA for strict CAP in the default
setting. For reference, recall that the running time of CSA is
0.81s and the exact solution has assignment size 46,616.18
(i.e., 46,616.18 users are served) and assignment cost 4.40.
A-CSA is clearly faster than A-SSP, while both methods pro-
duce assignments of very similar sizes and costs. Note also

that he performance of A-CSA converges to that of CSA for
large values of kmax. In the following, we ignore A-SSP.
Also, we use kmax = 192 for A-CSA, as it leads to the best
tradeoffs.

A-SSP A-CSA
kmax Time Size Cost Time Size Cost
128 0.15s 37492.96 3.756 0.13s 37817.7 3.799
192 0.38s 41960.46 4.071 0.21s 41942.1 4.069
256 0.65s 43976 4.273 0.46s 43945.92 4.269
384 1.32s 44853.96 4.397 0.62s 44823 4.393
640 1.85s 45193.7 4.468 0.72s 45161.22 4.464

Table 3 Effect of approximation parameter kmax

Another intuitive approximation approach is to use some
greedy heuristic strategy, based on local geometric decisions,
and specifically on NN queries. We considered several al-
ternatives, the best one being the continuous heuristic as-
signment (CHA), which works as follows. At each times-
tamp, CHA applies an iterative process. Initially, it com-
putes for every server s its nearest covered user (NN). The
NN-server pair with the smallest distance is appended to
A, the server’s capacity is decreased by one, and the next
neighboring (unassigned) user inside its coverage disk is re-
trieved. The new closest NN-server pair is placed inside A
and the process continues until all servers have capacity zero
or cover no more (unassigned) users. For the incremental
NN searches, we use the algorithm of [22]. Note that CHA
respects the server capacities, but it does not guarantee max-
imality.

Figure 17 considers strict CAP in the default setting and
compares the running time of CSA, A-CSA, and CHA for
four different combinations of user/server distributions. Ta-
ble 4 presents the average assignment size and average as-
signment cost in the same experiment. The approximate meth-
ods are faster than CSA for “Gau./Uni.” and “Gau./Gau.”,
but CSA is slightly better in the other two settings10. The
most important observation, however, is that A-CSA and
CHA fail to find a maximal assignment, unnecessarily leav-
ing without service a significant percentage of users (up to
about 4.5% and 10%, respectively). Interestingly, this per-
centage is higher in these settings where the approximate al-
gorithms run faster than CSA. The reason is that users who
are left unassigned by A-CSA/CHA (due to their failure to
achieve maximality) are usually assigned to remote servers
in the optimal solution. A byproduct of this fact is that A-
CSA/CHA produce assignments with lower average costs.
In summary, if we value the maximality of served users, then
CSA should be preferred over approximate approaches even
in those settings where the latter are faster.

10 Note that the reason for A-CSA being slightly slower than CSA is
that it uses kmax-NN searches (versus the faster s.r-range searches)
in order to construct the flow networks of packed MCFs.
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Fig. 17 Comparison with A-CSA and CHA (CPU time)

CSA A-CSA CHA
distributions Size Cost Size Cost Size Cost

Uni./Uni. 64585 4.989 63163.9 4.887 63591.7 4.898
Gau./Uni. 45193.72 4.468 41942.1 4.069 43490.4 4.180
Uni./Gau. 38643.24 4.323 38480.16 4.301 38393.16 4.280
Gau./Gau. 86483.56 4.151 77743.58 3.610 82548.46 3.824

Table 4 Comparison with A-CSA and CHA (assignment size and cost)

7 Conclusions

In this paper, we study the problem of continuously main-
taining the optimal assignment of mobile users to a set of
servers. Each server has a limited capacity and a bounded
coverage region. The objective is primarily to maximize the
number of served users, and secondarily to minimize the av-
erage distance between servers and users in the assignment.
The continuous assignment problem arises in many applica-
tions, including examples in telecommunications and wire-
less networking.

We propose a comprehensive method for this problem,
termed continuous spatial assignment (CSA). We exploit
several geometric observations to accelerate the initial as-
signment computation and its subsequent maintenance (in
the presence of location updates and connect/disconnect re-
quests from the users). Based on a sequence of local and
inexpensive geometric decisions, we exclude certain user-
server pairs from consideration and assign others directly.
Next, we reduce the problem to a set of smaller ones, and
solve them using an off-the-shelf assignment algorithm (i.e.,
SSP).

We experimentally evaluate CSA and demonstrate its ef-
ficiency compared to the direct use of SSP (the most efficient
optimal assignment method) at each timestamp; CSA is typ-
ically more than two times faster than SSP. Furthermore, we
show that the decomposition of the problem into smaller, in-
dependent ones allows for even higher performance gains if
these tasks are parallelized. In the future, we plan to develop
fast, approximate CAP techniques that ensure maximality
and provide assignment cost guarantees.
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