
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

11-2014 

BugLocalizer: Integrated Tool Support for Bug Localization BugLocalizer: Integrated Tool Support for Bug Localization 

Ferdian THUNG 
Singapore Management University, ferdiant.2013@smu.edu.sg 

Tien-Duy B. LE 
Singapore Management University, btdle.2012@smu.edu.sg 

Pavneet Singh KOCHHAR 
Singapore Management University, kochharps.2012@smu.edu.sg 

David LO 
Singapore Management University, davidlo@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
THUNG, Ferdian; LE, Tien-Duy B.; KOCHHAR, Pavneet Singh; and LO, David. BugLocalizer: Integrated Tool 
Support for Bug Localization. (2014). 22nd ACM SIGSOFT International Symposium on the Foundations 
of Software Engineering (FSE 2014): Proceedings: November 16-21, 2014, Hong Kong, China. 767-770. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2432 

This Edited Conference Proceeding is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


BugLocalizer: Integrated Tool Support for Bug Localization

Ferdian Thung, Tien-Duy B. Le, Pavneet Singh Kochhar, and David Lo
School of Information Systems

Singapore Management University
{ferdiant.2013,btdle.2012,kochharps.2012,davidlo}@smu.edu.sg

ABSTRACT
To manage bugs that appear in a software, developers of-
ten make use of a bug tracking system such as Bugzilla.
Users can report bugs that they encounter in such a system.
Whenever a user reports a new bug report, developers need
to read the summary and description of the bug report and
manually locate the buggy files based on this information.
This manual process is often time consuming and tedious.
Thus, a number of past studies have proposed bug localiza-
tion techniques to automatically recover potentially buggy
files from bug reports.

Unfortunately, none of these techniques are integrated to
bug tracking systems and thus it hinders their adoption by
practitioners. To help disseminate research in bug localiza-
tion to practitioners, we develop a tool named BugLocalizer,
which is implemented as a Bugzilla extension and builds
upon a recently proposed bug localization technique. Our
tool extracts texts from summary and description fields of a
bug report and source code files. It then computes similari-
ties of the bug report with source code files to find the buggy
files. Developers can use our tool online from a Bugzilla web
interface by providing a link to a git source code repository
and specifying the version of the repository to be analyzed.
We have released our tool publicly in GitHub, which is avail-
able at: https://github.com/smagsmu/buglocalizer. We
have also provided a demo video, which can be accessed at:
http://youtu.be/iWHaLNCUjBY.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement
Keywords: Bug localization, Bugzilla, git.

1. INTRODUCTION
Bug tracking systems like Bugzilla are used by a large

number of developers and organisations to manage bugs af-
fecting their projects. The number of bug reports can over-
whelm developers working on the project. A Mozilla devel-
oper reported that “Everyday, almost 300 bugs appear that
need triaging. This is far too much for only the Mozilla pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

grammers to handle” [1]. Furthermore, a software system
may contain thousands of source code files and often a bug
only affects one or a few files. Recently, Lucia et al. reported
that 84-93% of bugs only affect 1-2 source code files [4]. It
is not easy to identify these few files from the thousands of
source code files. These highlight that finding buggy files for
bug reports in a bug tracking system is an arduous task.

To overcome this issue, researchers have proposed auto-
mated bug localization techniques, which take as input bug
reports and use textual information from the summary and
description fields of these reports to find the buggy source
code files. These techniques extract words from a bug re-
port and words from identifiers present in source code files;
it then compare these words to find source code files that
are the most similar to the bug report using an informa-
tion retrieval (IR) approach. One of the recently proposed
techniques is BugLocator [14] which is invented by Zhou
et al.; It uses a revised Vector Space Model (rVSM) that
takes into account the fact that larger files tend to be more
buggy, and uses information gleaned from past fixed similar
bug reports based on the hypothesis that textually similar
bug reports are likely to share similar buggy files. Zhou et
al. have demonstrated the effectiveness of BugLocator and
its performance is better than many other bug localization
techniques based on VSM, LSI, SUM and LDA.

Many bug localization techniques including BugLocator
have been evaluated on a large number of bug reports and
shown to be effective. However, at the moment, they are
not widely used by practitioners. One barrier towards the
adoption of these techniques is the fact that they are not
integrated to bug tracking systems like Bugzilla. Thus prac-
titioners are less likely to use them as they need to manu-
ally download bug reports from Bugzilla, read the manual of
these techniques (if their implementations are publicly avail-
able), configure them, and run them outside the practition-
ers’ existing bug management environment (i.e., Bugzilla).

To address the above issue and make it easier for develop-
ers to adopt automated bug localization techniques, we de-
velop a tool named BugLocalizer, which is implemented as
a Bugzilla extension. BugLocalizer is integrated to Bugzilla
and git version control system and makes use of BugLocator
bug localization technique.

The structure of the remainder of this paper is as follows.
In Section 2, we briefly introduce Bugzilla and BugLocator.
In Section 3, we describe our tool BugLocalizer. Related
work is presented in Section 4. Section 5 concludes and
describes future work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2661678

767



2. PRELIMINARIES
In this section, we first briefly describe Bugzilla, a bug

tracking system on which our tool is build upon. Next, we
describe information retrieval (IR) based bug localization.

2.1 Bugzilla
Bugzilla1 is a web-based bug tracker. Users can report

new bugs and developers can track the status of bugs that
are reported. It is used by well-known organisations such as
Mozilla and Apache and open-source projects such as Eclipse
and LibreOffice.

A bug report in Bugzilla contains a number of fields such
as bug id, product, component, assignee, summary and de-
scription. Each of them carries a piece of information. In
this work, we are interested in the following two textual
fields: (1) summary, (2) description. Summary is a short
synopsis of a bug, while description is a longer text that
elaborates the bug.

2.2 IR Based Bug Localization
IR based bug localization takes as input a textual bug

report and a set of program source code files. Its goal is
to output a ranked list of files sorted by their likelihood
to be buggy (i.e., contain the bug described in the report).
The ranked list is then returned to developers who can then
manually inspect files one-by-one from the beginning of the
list until the buggy files are found. The earlier the buggy
files appear in the ranked list, the more effective the bug
localization technique is.

The intuition behind IR-based bug localization is that tex-
tual bug reports and their corresponding buggy source code
files tend to share common words. Furthermore, if a file has
greater textual similarity to a bug report than other source
code files, the file is likely to be the buggy one. By utilizing
a suitable text retrieval model, an IR-based bug localization
technique calculates textual similarity scores between a bug
report and source code files. Later, files are sorted in de-
scending order of their textual similarity scores to create a
ranked list of files for developer inspection.

IR-based bug localization considers both input bug re-
ports and source code files as textual documents. It ex-
tracts textual contents from summary and description fields
of bug reports and it extracts identifiers and comments from
source code files. These documents go through text prepro-
cessing procedure before the computation of textual simi-
larity scores. The purpose of this procedure is to make the
similarity of a bug report and a source code file more ap-
parent. In the text preprocessing procedure, there are three
main steps. They are text normalization, stopword removal,
and stemming. The following is the description of the three
steps:

• Text Normalization. In this step, punctuation marks
and special symbols are deleted from documents (i.e.,
bug reports and source code files). Then, documents
are split into constituent words. For source code files,
identifiers are split into smaller words following the
Camel casing convention (e.g., “bugLocalization” is
split into “bug” and “localization”).

• Stopword Removal. In this step, English stopwords are
deleted from documents (i.e., bug reports and source

1http://www.bugzilla.org/

code files). These words frequently appear in many
documents. Thus, they are not too helpful to differen-
tiate a document from the other ones.

• Stemming. In this step, we transform English words
to their root form. For example, “connection”, “con-
necting”, and “connected” are all reduced by stemming
to “connect”. In our study, we apply Porter stemming
algorithm to perform this step [8].

After text preprocessing, the input bug report is compared
to source code files using a suitable text retrieval model. In
general, this model estimates a weight for each word in the
pre-processed documents. Next, weights of common words
that appear in both the bug report and a source code file
are used to compute their textual similarity score.

Recently, Zhou et al. propose a technique named BugLo-
cator [14] which is based on Vector Space Model (VSM). The
following paragraphs describe VSM and then BugLocator in
more detail.

Vector Space Model. Vector Space Model (VSM) repre-
sents a document as a vector of weights, where each weight
corresponds to a word in the document. Weights of words
are usually estimated based on the standard term frequency-
inverse document frequency (tf-idf) weighting scheme [6].
The tf-idf weight of word w in document d given a set of
documents D (denoted as tf-idf(w, d,D)) is calculated as:

tf-idf(w, d,D) = log(f(w, d)+1)×log
| D |

| {di|w ∈ di ∧ di ∈ D} |

where f(w, d) is the frequency of occurrences of word w in
document d, and w ∈ di represents that word w appears in
document di. The textual similarity between two documents
q and d is obtained by calculating the cosine similarity of
the two vectors representing q and d [6]. We denote the
textual similarity score between two documents q and d as
computed by VSM as V SM(q, d)

BugLocator. BugLocator proposes revised Vector Space
Model (rVSM) which is an extension of the standard Vec-
tor Space Model (VSM). The intuition behind rVSM is that
larger files are more likely to have bugs [14]. Therefore,
using rVSM, files with larger amount of source code are
ranked higher than using standard VSM. The following is
the formula to compute the textual similarity between bug
report q and source code file d using rVSM (denoted as
rV SMScore(q, d))

rV SMScore(q, d) = g(#word(d))× V SM(q, d)

where g(#word(d)) is a function that takes as input the
number of words that d has (i.e., #word(d)), and V SM(q, d)
is the VSM textual similarity of q and d. According to Zhou
et al., g(x) = 1

1+e−x achieves the best performance [14].
BugLocator also utilizes information gathered from simi-

lar past fixed bug reports to improve bug localization per-
formance based on the rationale that textually similar bug
reports tend to have similar buggy files. BugLocator con-
structs a three-layer heterogeneous graph, which captures
past fixed reports that are similar to an input bug report q
and their buggy files, to calculate another similarity score
SimiScore(q, d), for each source code file d [14]. Then, the
final textual similarity score between bug report q and source

768



code file d (denoted as FinalScore(q, d)) is calculated as:

FinalScore(q, d) = (1− α)× rV SMScore(q, d)

+ α× SimiScore(q, d)

where 0 ≤ α ≤ 1.

3. BUGLOCALIZER
In this section, we describe the architecture of BugLocal-

izer, the bug localization algorithm that we use to return
potential buggy files, some implementation details, and us-
age scenarios on how BugLocalizer can be used.

System Architecture. BugLocalizer architecture consists
of a client-side component and a server-side component. The
client-side takes an input query from user (i.e., developer)
and communicates with the server-side component to re-
trieve potential buggy files given a query. A user query is
a combination of the summary and description of a bug re-
port, a URL to a source code repository, and a version of
the repository to be searched to find buggy files. The client-
side component is added to the bug report view page (i.e.,
the page where a user sees and edits existing bug reports) of
Bugzilla. The server-side component takes as input a user
query and, based on summary and description information,
localizes the described bug to files in the requested version
of the source code repository.

Algorithm. Algorithm 1 shows the pseudocode of the pro-
cedure that we use to localize bug; it is implemented in the
server-side component. This algorithm is based on Zhou et
al.’s work [14]. It accepts as input a bug report (Br), a
source code repository (Repo), a version of the repository
where the buggy files are to be found (TargetV ersion), a
set of historical fixed bug reports (FixedReports), a simi-
larity weighting factor (α), and a number of potential buggy
files to return (k). The algorithm returns a ranked list of k
files in Repo that are most likely to contain the root cause
of the bug described in Br. At line 1, it retrieves Files from
TargetV ersion of the Repo. It then constructs a three-layer
heterogeneous bug-file graph BFG from Br, FixedReports,
and files that were changed to fix them (line 2). At line 3, it
performs text preprocessing on the textual contents in the
bug report. Next, it iterates through every file in Files (line
4). For each file, at line 5, it preprocesses its content. It then
computes the rV SMScore and SimiScore for each file and
Br (lines 6-7). Next, for each file File, it computes the final
score File.F inalScore by linearly combining the two simi-
larity scores according to parameter α. At line 10, it then
sorts Files based on their final similarity scores. Finally, at
line 11, top-k files with the highest scores are returned. By
default, we set k and α to 10 and 0.2, respectively.

Implementation Details. Both client-side and server-side
components of BugLocalizer are implemented by extending
templates and codes of Bugzilla. It follows a system of hooks
that is provided by Bugzilla for supporting extensions2. For
the bug localization algorithm, we make use of the original
implementation of BugLocator by Zhou et al. [14]. The cur-
rent version of BugLocalizer supports git repository. Git is
chosen due to performance consideration. Its decentralized
design allows for faster query and retrieval of source code
files as compared to centralized version control system, e.g.,

2http://www.bugzilla.org/docs/tip/en/html/api/
Bugzilla/Extension.html

Algorithm 1 LocalizeBug

Input: Br: bug report
Repo: source code repository
TargetV ersion: target source code version
FixedReports: historical fixed bug reports
α: similarity weighting factor
k: number of potential buggy files to return

Output: top-k potential buggy files

1 Files← Repo.GetSourceCodeF iles(TargetV ersion)
2 BFG← ConstructBugF ileGraph(Br, F ixedReports, F iles)
3 Br.Words← Preprocess(Br.Summary,Br.Desc)
4 foreach File ∈ Files do
5 File.Words← Preprocess(File.Content)
6 File.rV SMScore← rV SM(Br, F ile)
7 File.SimiScore← BFG.Simi(Br, F ile)
8 File.F inalScore ← (1 − α) × File.rV SMScore + α ×

File.SimiScore
9 end

10 Sort Files by File.F inalScore
11 return top-k potential buggy files

Subversion. Installation-wise, assuming Bugzilla and Git are
installed, it only requires a few operations to set up BugLo-
calizer, e.g., copying files and setting up permission. De-
tailed installation instruction is provided in BugLocalizer’s
GitHub page. We have also performed a preliminary perfor-
mance test by running BugLocalizer 10 times using various
textual queries (to represent bug reports) on a sample soft-
ware corpus and recording the average server response time,
which is 11.3 seconds. Note that the current implementation
is not optimized yet.

Figure 1: BugLocalizer Main User Interface

Figure 2: Recording Fixed Files Information

Usage Scenario. Figure 1 shows the interface of the bug
report view page of Bugzilla when BugLocalizer is enabled
and used. We show the interface when a bug report has been
processed resulting in a list of top-k files that are deemed to
be most likely to be buggy among files in the latest commit
of the project’s git repository. As shown in the figure, a user
can pick a source code version whose files will be searched
to identify buggy ones (by selecting a version from “Git Tag
Version” drop down list). After choosing the version, the
user can click “Localize” button to request for bug local-
ization to be performed on the chosen source code version
based on the summary and description fields of a bug report
(these fields are not shown in the figure). A background
script will then asynchronously send a request to the server
(i.e., server-side component), inform the user that the re-
quest is currently being processed, and wait for the server

769



response. The server accepts the request and runs Algo-
rithm 1 to find top-k potentially buggy files. Right after the
algorithm’s completion, the server will send a list of top-k
potential buggy files as the response to the client request.
The background script in the client will then receive the
server response and display a table containing the top-k po-
tential buggy files as shown in Figure 1. The table lists the
ranks and names of the potentially buggy files. A higher
rank indicates that the corresponding file is more likely to
be buggy. The user can then inspect the files starting from
the top to the bottom of the list.

Aside from the above main usage scenario, BugLocalizer
has two other usage scenarios that support the main one.
The first usage scenario is a support for recording a list
of buggy files for a fixed bug report. This is essential for
computing SimiScore which is calculated based on buggy
files of past similar fixed bug reports. Figure 2 shows the
interface for recording these buggy files. This interface will
only appear in the bug report view page when a user changes
the bug resolution status to “FIXED”. It requires the user
to choose in which git revision the files were fixed. The
user can then type the name of the fixed files in the given
input area. Note that not all files that are changed in a
bug fixing commit are buggy ones; some non-buggy files are
changed since developers mix bug fixing with refactoring
(c.f., [2, 11]). A list of matched file names that exist in the
chosen git revision will be recommended to the user while
the user types a file name. The fixed files information will
be submitted to the server. The server will record it and use
it when localizing future bugs.

The second usage scenario is to support git repository in-
tegration. Figure 3 shows the interface for linking BugLocal-
izer to a git repository. A user can input the repository URL
for each product (i.e., a major sub-part of a software) and
specify whether the repository is a public or private one. If
it is not publicly accessible, the user needs to further specify
a valid username and password for accessing the repository.
After all the necessary information are input, the user can
submit the git repository setting to the server.

Figure 3: Configuring Git Setting for Bug Localiza-
tion

4. RELATED WORK
Rao and Kak employed several popular IR techniques for

bug localization and evaluated their performance [9]. Lukins
et al. applied Latent Dirichlet Allocation (LDA) for bug lo-
calization [5]. Marcus and Maletic utilized Latent Seman-
tic Indexing (LSI) for recovering document to source code
traceability links [7]. Zhou et al. proposed BugLocator, a
bug localization tool that considers source code file size and
historical fixed reports to rank potentially buggy files [14].

Saha et al. utilized the structure of source code files and
bug reports to build a structured retrieval model for bug
localization [10]. Le et al. applied Latent Dirichlet Alloca-
tion (LDA) technique multiple times to create a hierarchy
of different topic models to localize bugs [3]. Wang et al.
use information in version history, similar report, and bug
report structure to improve bug localization [12]; they also
use genetic algorithm to compose a number of Vector Space
Model (VSM) variants for improved bug localization [13].

In this work, we integrate one of the state-of-the-art bug
localization techniques (i.e., BugLocator) to a popular bug
tracking system (i.e., Bugzilla) and a popular version control
system (i.e., git).

5. CONCLUSION AND FUTURE WORK
Bug localization is one of the active research areas in soft-

ware engineering. Different kinds of bug localization tech-
niques have been proposed in the last few years. However,
they usually end up only as research prototypes; unreachable
and inaccessible to practitioners. In an effort to bring re-
cent advances in bug localization closer to the hand of prac-
titioners, we have developed BugLocalizer that integrates
a recently proposed bug localization technique, named Bu-
gLocator, to Bugzilla and git. In the future, we plan to
incorporate other bug localization techniques to BugLocal-
izer. We also plan to perform a user study to understand
how practitioners use BugLocalizer, and get better insight
on its strengths and weaknesses, and how to improve it.

6. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an

open bug repository. In ETX, 2005.
[2] D. Kawrykow and M. P. Robillard. Non-essential

changes in version histories. In ICSE, pages 351–360,
2011.

[3] T.-D. B. Le, S. Wang, and D. Lo. Multi-abstraction
concern localization. In ICSM, 2013.

[4] Lucia, F. Thung, D. Lo, and L. Jiang. Are faults
localizable? In MSR, pages 74–77, 2012.

[5] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug
localization using latent dirichlet allocation.
Information and Software Technology, 52(9):972–990,
2010.

[6] C. Manning, P. Raghavan, and H. Schutze.
Introduction to Information Retrieval. Cambridge,
2008.

[7] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using
latent semantic indexing. In ICSE, 2003.

[8] M. Porter. An algorithm for suffix stripping. Program,
1980.

[9] S. Rao and A. Kak. Retrieval from software libraries
for bug localization: a comparative study of generic
and composite text models. In MSR, 2011.

[10] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry.
Improving bug localization using structured
information retrieval. In ASE, pages 345–355, 2013.

[11] F. Thung, D. Lo, and L. Jiang. Automatic recovery of
root causes from bug-fixing changes. In WCRE, 2013.

[12] S. Wang and D. Lo. Version history, similar report,
and structure: Putting them together for improved
bug localization. In ICPC, 2014.

[13] S. Wang, D. Lo, and J. Lawall. Compositional vector
space models for improved bug localization. In
ICSME, 2014.

[14] J. Zhou, H. Zhang, and D. Lo. Where should the bugs
be fixed? - more accurate information retrieval-based
bug localization based on bug reports. In ICSE, 2012.

770


	BugLocalizer: Integrated Tool Support for Bug Localization
	Citation

	/var/tmp/StampPDF/uCgVR6DABP/tmp.1420424084.pdf.11tda

