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ABSTRACT
A class diagram of a software system enhances our ability to
understand software design. However, this diagram is often
unavailable. Developers usually reconstruct the diagram by
reverse engineering it from source code. Unfortunately, the
resultant diagram is often very cluttered; making it difficult
to learn anything valuable from it. Thus, it would be very
beneficial if we are able to condense the reverse- engineered
class diagram to contain only the important classes depict-
ing the overall design of a software system. Such diagram
would make program understanding much easier. A class
can be important, for example, if its removal would break
many connections between classes. In our work, we estimate
this kind of importance by using design (e.g., number of at-
tributes, number of dependencies, etc.) and network metrics
(e.g., betweenness centrality, closeness centrality, etc.). We
use these metrics as features and input their values to our
optimistic classifier that will predict if a class is important
or not. Different from standard classification, our newly
proposed optimistic classification technique deals with data
scarcity problem by optimistically assigning labels to some
of the unlabeled data and use them for training a better sta-
tistical model. We have evaluated our approach to condense
reverse-engineered diagrams of 9 software systems and com-
pared our approach with the state-of-the-art work of Osman
et al. Our experiments show that our approach can achieve
an average Area Under the Receiver Operating Characteris-
tic Curve (AUC) score of 0.825, which is a 9.1% improvement
compared to the state-of-the-art approach.

Categories and Subject Descriptors
D.2.7 [Software]: Software Engineering—Distribution, Main-
tenance, and Enhancement ; H.2.8 [Information Systems]:
Database Applications—Data Mining

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
How could we understand a software system? Referring

to software design is clearly an obvious choice. It informs us
about the internal working of the software and how its com-
ponents are connected to one another. Among design models
specified in the Unified Modeling Language (UML), one of
the most widely used model is class diagram. Class diagram
specifies relationships (e.g., aggregation, composition, gener-
alization, etc.) between classes in a software system. These
relationships provide the basic knowledge needed to under-
stand a software system. However, such class diagram doc-
umentation is often not kept up-to-date. It may be created
and maintained properly at the beginning of a project, but
is often abandoned somewhere in the middle of the project.
Thus, it is harder to understand a software if a developer
joins in the latter part of development due to the non exis-
tence of an up-to-date design documentation. The condition
is even worse for legacy systems where such documentation
is often no longer available.

When an up-to-date design is unavailable, a reverse engi-
neered design is often generated as a replacement. Reverse
engineering refers to the process of analyzing system com-
ponents and behaviours in order to construct an abstract
representation of high level design of a system. More specif-
ically, reverse engineering class diagram means analyzing the
implemented source code and creating a class diagram repre-
sentation abstracting the attributes and methods in a class
and the relationships between different classes. Many open
source and commercial tools have been developed to perform
this operation [1, 2, 3].

However, the reverse-engineered class diagram often con-
tains too much detail that grows as the size of a software
increases. When a reverse- engineered class diagram be-
comes too large, it provides little benefit towards program
understanding. Fernandez-Saez et al. find that many sub-
jects in their controlled experiment “did not consider RE
[Reverse-Engineered] diagrams helpful” [4]. It was found
that developers prefer forward design class diagram rather
than its reverse-engineered counterpart. They found that it
is much easier to find relevant information from forward de-
sign class diagrams and the sizes of these diagrams are often
smaller than the reverse- engineered ones. Given a reverse-
engineered class diagram, it is hard to identify which classes
are more important than others. Although some Computer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICPC’14, June 2–3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06...$15.00
http://dx.doi.org/10.1145/2597008.2597157

110



Aided Software Engineering (CASE) tools let users remove
properties from a class diagram, none is capable to identify
the importance of a class in a diagram.

The lack of useful class diagrams for program understand-
ing introduces a hurdle for a new software engineer that
joins a software development team. The new engineer would
have no good reference for understanding a software system.
Given a good class diagram, the engineer can learn the over-
all architecture of a software system, know what design pat-
terns are used in different parts of the system, or implement
new classes that are consistent with the overall design of the
system.

To address the problem described above, Osman et al.
proposed an approach that can condense a reverse-engineered
class diagram into another diagram that is close to a forward
design diagram [5]. A diagram that is closer to the design
documentation is likely to provide better program compre-
hension support. To do so, their proposed approach needs
to identify important classes. The final condensed diagram
can be constructed from the reverse-engineered diagram by
keeping the important classes and discarding unimportant
ones. Osman et al. computed values of various design fea-
tures from source code, which include values of size and
coupling metrics, and use these to predict if a class is im-
portant or not. They assume a partial knowledge about
class importance exists (i.e., some classes have been labeled
as important or not). They input the values of these features
to a classification algorithm which creates a model that can
predict if a class is important or not based on its features.
They have investigated a number of classification algorithms
and find that random forest performs the best.

In this work, we extend Osman et al.’s work with the
goal of improving the accuracy of their proposed approach.
We extend the set of features that Osman et al. used with
network features. To obtain the values of these network fea-
tures, we first create a network where the classes form the
nodes of the network and the relationships among classes
form the edges. These relationships include aggregation,
composition, generalization, realization, and dependency. In
this study, we do not differentiate these relationships. Thus,
our graph only has one type of edge. We then compute the
values of several standard network metrics to estimate the
importance of a class based on the generated network struc-
ture. We also propose several other customized network
metrics to better characterize the importance of a class.
We use both design and network metrics as features and
input the values of these features to our optimistic classi-
fication technique. Our newly proposed optimistic classifi-
cation technique builds upon standard classification to deal
with data scarcity problem by optimistically assigning labels
(i.e., important or unimportant) to some of the unlabeled
data points (i.e., classes whose importance are unknown)
and use them for training a final statistical model. Our
optimistic classification technique first learns a preliminary
model from a training data set (i.e., classes whose impor-
tance are known) using a standard classifier (e.g., random
forest) to assign probability scores to unknown data points.
It then selects a small subset of the unknown data points
which are likely to be important with high probability scores.
These small subset of data points are optimistically assigned
labels “important”, merged with the original training data,
and used to train a final statistical model.

We have done an experiment to measure the effective-

ness of our approach to condense reverse-engineered class
diagrams from nine software systems. We generate the fea-
tures for each software system and split the data randomly
into evenly sized training and testing data following the ex-
perimental procedure of Osman et al. [5]. We evaluate our
approach on the testing data and repeat the process with
different training and testing data ten times. We compare
our approach with the state-of-the-art approach proposed
by Osman et al. We use Area Under the Receiver Operat-
ing Characteristic Curve (AUC), which is a standard metric
and was also used by Osman et al., as the evaluation met-
ric. Since our process repeats for ten times, we get ten AUC
scores, and we report the mean. Averaging across the 9 pro-
grams, our experiment shows that our approach can achieve
an average AUC of 0.825. This is a 9.1% improvement to
the result achieved by Osman et al.’s approach.

The contributions of our work are as follows:

1. We are the first to combine both design and network
metrics to condense a reverse-engineered class diagram
by predicting if a class is important or not.

2. We propose optimistic classification which optimisti-
cally assign labels to some unlabeled data and treat
them as part of the training data to build a final sta-
tistical model.

3. We have evaluated our approach to condense reverse-
engineered class diagrams from nine systems. These
systems are previously used by Osman et al. [5] to
evaluate their approach. The experiments show that
our approach can achieve a high average AUC score of
0.825 and it improves the average AUC score achieved
by Osman et al. by 9.1%.

The structure of the remainder of this paper is as follows.
In Section 2, we describe our proposed approach. We then
describe our experiments in Section 3. We present related
work in Section 4. We finally conclude and mention future
work in Section 5.

2. PROPOSED APPROACH
In this section, we first describe our overall framework.

We then zoom-in to two components of our framework: our
feature extractor component and our optimistic classifica-
tion component.

2.1 Overall Framework
Figure 1 depicts the overall framework of our approach.

It consists of two phases: training phase and deployment
phase. In training phase, the goal is to learn a statistical
model that can differentiate important reverse-engineered
classes from unimportant ones. In this phase, we accept
a set of training classes1 whose labels (i.e., important or
unimportant) are known. Based on these labeled data, we
construct the statistical model. In deployment phase, we use
the model that we construct in the training phase to predict
whether an unlabeled reverse- engineered class is important
or not.

In training phase, our framework first extracts the val-
ues of various features from the training reverse-engineered

1In this paper, we use the term class loosely to include con-
crete classes, abstract classes, and interfaces.
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Figure 1: Overall Framework

classes of a software system (Step 1). A feature corresponds
to a particular characteristics of a reverse-engineered class.
Given a reverse-engineered class, we compute a score for
each feature. The values of all these features form a feature
vector. Our framework creates a feature vector for each
training reverse-engineered class to form the set of Training
Feature Vectors (Step 2). Each class in the training data
has an importance label which is a binary value. Our Model
Learner component takes these vectors as input and con-
structs a statistical model (Model) that is able to predict
if a class is important or not from its feature vector (Steps
3-4).

In deployment phase, our framework first extracts features
from a set of reverse-engineered testing classes whose impor-
tance labels are to be determined (Step 5). Similar to the
training phase, our framework then creates a feature vector
for each reverse-engineered class to form the set of Testing
Feature Vectors (Step 6). The feature vectors are then input
to Optimistic Classifier component. This component also
takes two other inputs: Model and Training Feature Vectors
(Step 7). This component would eventually produce a set of
Importance Labels for the testing reverse-engineered classes
(Step 8).

In Section 2.2, we explain the feature extraction process,
which is performed by the Feature Extractor component.
Section 2.3 elaborates the optimistic classification process
that is performed by our Optimistic Classifier component.

2.2 Feature Extractor
The goal of the feature extractor component is to convert

reverse-engineered classes in the training and testing data
into Training Feature Vectors and Testing Feature Vectors
respectively. A feature vector corresponds to a vector of val-
ues where each value corresponds to a particular character-
istic of a reverse-engineered class. Training Feature Vectors
are used to construct a statistical model, while Testing Fea-
ture Vectors are used to predict labels of reverse-engineered
classes in the testing data.

We consider two kinds of features: design features and net-
work features. We present design features in Section 2.2.1.
Network features are then presented in Section 2.2.2.

2.2.1 Design Features
For design features, we use size and coupling metrics. Size

metrics measure the size of a class in various ways. Coupling
metrics measure the strengths of relationships that a class
has with other classes. These metrics were used by Osman

et al. to predict the importance of a class [5]. They ex-
perimented with three combinations of these metrics: size
metrics only, coupling metrics only, and both of these met-
rics. They found that using both size and coupling metrics
lead to the best performance. Thus in this work, we also use
both size and coupling metrics as design features.

For completeness sake, we include a brief description of
these metrics in Table 1. There are 5 size metrics and 6
coupling metrics.

2.2.2 Network Features
Network features include standard network metrics and

our customized metrics. The standard metrics characterize
the importance of a class in a network in which the nodes
are classes and the edges are various relationships between
pairs of classes. The customized metrics characterize the
likelihood of a node to be important considering its neigh-
bors in the network based on homophily principle [9]. The
relationships in the network are derived considering object-
oriented architecture in which classes are associated with
other classes by means of aggregation, composition, gener-
alization, realization, and dependency. Below are short def-
initions of the kinds of relationships that we consider in this
work:

1. Aggregation

Aggregation is a structural relationship between two
classes in a system where one class owns another class.
The owner class is often called container class while the
owned class is called contained class. In this relation-
ship, the destruction of a container class instance does
not imply the destruction of contained class instance.

2. Composition

Composition is a structural relationship similar with
aggregation. However, it is a stronger relationship
since the destruction of a container class instance would
also imply the destruction of a contained class instance.

3. Generalization

Generalization represents an inheritance relationship
between two classes in a system where one class is a
parent (i.e., super-class) and the other is the child (i.e.,
sub-class of the parent class). The child inherits at-
tributes and methods from the parent.
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Table 1: Size and Coupling Metrics

Metrics Category Description

NumAttr Size The number of attributes in a class.

NumOps Size The number of methods in a class. Also known as WMC in [6] and NM in [7].

NumPubOps Size The number of public methods in a class. Also known as NPM in [7].

Setters Size The number of methods whose names start with ’set’.

Getters Size The number of methods whose names start with ’get’, ’is’, or ’has’.

DepOut Coupling The number of dependencies where a class uses other classes.

DepIn Coupling The number of dependencies where a class is used by other classes.

ECAttr Coupling The number of times a class is externally used as an attribute type. This is a version of
OAEC +AAEC in [8].

ICAttr Coupling The number of attributes in a class having another class or interface as their types. This
is a version of OAIC+AAIC in [8].

ECPar Coupling The number of times a class is externally used as a parameter type. This is a version of
OMEC+AMEC in [8].

ICPar Coupling The number of parameters in a method of a class having another class or interface as their
types. This is a version of OMIC+AMIC in [8].

4. Realization

Realization represents an implementation of an inter-
face. Interface is a contract specifying the methods
that a class must implement.

5. Dependency

Dependency represents a relationship where a class de-
pends on another class for its implementation. This
includes a class that is used as a type of a parameter
in a method that another class has.

Based on the above relationships, we want to construct
a customized directed network linking all the classes. An
edge in the network connecting two nodes, corresponding to
two classes, means that the two classes are associated by
one of the above mentioned relationship types. The edge is
a directed one and its direction is determined based on the
relationship type. Consider a class C, we define 3 types of
edges incident to it: (1) If C is a child of parent P, then there
exists a link from P to C; (2) If C implements interface I,
then there exists a link from I to C; (3) If C has any of the
remaining relationships with class K, then there exists a link
from C to K. These links are illustrated in Figure 2.

C P I 

K 

Realization Generalization 

Aggregation 

Dependency 

Composition 

Figure 2: Possible Edges Incident to Class C

Using the class network that we have constructed, we then
compute some standard and customized network metrics.
The following is a list of standard network metrics that we
consider as features in our approach. The standard metrics
are used to measure the importance of a node (i.e., a class)
in a network.

1. Barycenter Centrality

Barycenter centrality is defined based on the sum of
shortest distances of node v to all other nodes in a
network. The barycenter centrality of node v is com-
puted using the following formula:

baryC(v) =
1∑

u6=v sdist(v, u)

In the equation, sdist(v , u) refers to the shortest dis-
tance from node v to node u.

2. Betweenness Centrality

Betweenness centrality is defined based on the number
of shortest paths between all possible pairs of other
nodes that pass through node v. The betweenness cen-
trality of node v is formulated as follows:

betweenC(v) =
∑

a6=b 6=v

spath(a, b, v)

spath(a, b)

In the equation, spath(a, b, v) refers to the number of
shortest paths between node a and node b that pass
through node v . spath(a, b) refers to the number of
shortest paths between node a and node b.

3. Closeness Centrality

Closeness centrality is defined based on the mean short-
est distance of node v to all the other nodes in a net-
work. The closeness centrality of node v is computed
using the following formula:

closeC(v) =
n− 1∑

u6=v sdist(v, u)
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In the equation, sdist(v , u) refers to the shortest dis-
tance from node v to node u. n refers to the number
of nodes in the graph.

4. Eigenvector Centrality

Eigenvector centrality measures the importance of node
v based on the importance of its neighboring nodes.
The eigenvector centrality EigenC for a network is
measured using the following formula:

EigenC(α, β) = α(I − βR)−1R1

In the equation, α is a scaling vector for normalizing
the score, I is the identity matrix, R is the adjacency
matrix representing the network, β is the weighting
factor for the adjacency matrix, and 1 is a matrix
where the contents of all its cells are ones. Since the
value of this metric is often very small, in this work,
we compute the reciprocal of this metric.

5. Hyperlink-Induced Topic Search (HITS)

HITS is an algorithm for ranking nodes using two dif-
ferent scores: hub and authority score. A node with
a high hub score represents a node that links to many
other nodes and a node with a high authority score rep-
resents a node that is linked by many different nodes.
These scores are computed by the following formulas:

hub(v) =

n∑
i=1

auth(v)

auth(v) =

n∑
i=1

hub(v)

In the equation, n refers to the number of node in a
network, hub(v) refers to the hub score for node v ,
and auth(v) refers to the authority score for node v .
Notice that the definition is a recursive one. To ac-
tually arrive with the hub and authority scores for all
nodes, one must first assign an initial value of 1 as hub
and authority scores to each of the nodes in the net-
work. The scores would then be updated iteratively
until they converge (i.e., there is no further change in
any node’s hub and authority scores in the entire net-
work). Both hub and authority values are then nor-
malized. Since the values of this metric may be very
small, in this work, we compute the reciprocal of this
metric.

6. PageRank

PageRank is an algorithm for measuring node impor-
tance proposed by Brin and Page [10]. It suggests that
nodes with more incoming links are more important
than nodes with less incoming links. It computes the
probability that a random walker visits a node from an
arbitrary node. Initially, all nodes are assigned with
the same initial probability. The scores are then it-
eratively updated. The PageRank score of node v at
iteration i can be computed following the formula:

PR(v, i) =
1− r
T

+ r
∑

u∈K(v)

PR(q, i− 1)

|L(u)|

In the equation, r is the probability that a random
walker continues to visit other nodes (a.k.a. the damp-
ing factor), T is the number of nodes in the network,
K (v) is the set of nodes that link to v , and L(u) is
the set of nodes that u links to. The iteration con-
tinues until all the scores converge. Since the value of
these two metrics are often very small, in this work,
we compute the reciprocals of these metrics.

Besides the standard network metrics, we also create some
customized network metrics specialized for our classification
problem. Following the setting of Osman et al., we assume
that a partial knowledge about class importance exists; this
would mean that for some of the classes in the network, we
know whether they are important or not [5]. Based on this
partial knowledge, we want to compute some customized
metrics which try to characterize whether a node is an im-
portant one or not based on homophily principle. In this
way, the customized metrics are supervised ones (i.e., cre-
ated based on knowledge of class labels in the training data)
while the standard metrics are unsupervised ones. These
supervised metrics are particularly useful for our optimistic
classification technique (see Section 2.3). Below is a list of
our customized supervised network metrics that are used as
features in our approach:

1. Important Neighbor Proportion

This metric measures the proportion of known impor-
tant classes among the neighbors of a class in the net-
work.

2. Unknown Neighbor Proportion

This metric measures the proportion of classes whose
importance are unknown among neighbors of a class.

3. Shortest Distance to Known Important Classes

This metric measures the shortest distance to any one
of the known important classes.

4. Neighbor Existence

This is a boolean metric which describes whether a
class in the network has a neighbor or not.

We summarize the above network features in Table 2.

2.3 Optimistic Classification
In the training data, the number of reverse-engineered

classes labeled as important is often small. Thus, it is often
hard to generate a good statistical model which distinguishes
between important and unimportant classes. Our optimistic
classification technique addresses this data scarcity issue by
optimistically assigning labels to some testing data points
whose labels are unknown.

The technique takes as input a preliminary model learned
from the training data. It then applies the model to each
testing data point (i.e., each reverse-engineered class whose
importance is unknown) to assign to each data point a prob-
ability for it to be important. It then tries to refine the
preliminary model using some of the testing data that have
the highest probabilities to be important. Our classification
technique optimistically assumes that the reverse-engineered
test classes with the highest probabilities are indeed impor-
tant. Thus, we add these reverse-engineered classes to the
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Table 2: Standard and Customized Network Metrics

Metrics Description

Barycenter The barycenter centrality score of a class in the network.
Betweenness The betweenness centrality score of a class in the network.
Closeness The closeness centrality score of a class in the network.
Eigenvector The eigenvector centrality score of a class in the network.
Hub The hub score of a class in the network.
Authority The authority score of a class in the network.
PageRank The page rank score of a class in the network.
PropImportant The proportion of a class neighbors that are known to be important.
PropUnknown The proportion of a class neighbors whose importance are unknown.
SDistToDesign The shortest distance to a known important neighbor.
HasNeighbor A boolean value indicating whether a class has a neighbor(s) or not.

1: Input:
2: TrainingFeatureVectors = feature vectors of training

reverse-engineered classes
3: TestingFeatureVectors = feature vectors of testing

reverse-engineered classes
4: Model = a learned model in the training phase
5: k = parameter for picking top-k scores
6: Output:
7: Importance labels for TestingFeatureVectors
8: Method:
9: Labels = {}

10: Scores = {}
11: for all fv ∈ TestingFeatureVectors do
12: Add prob(Model , fv) to Scores
13: end for
14: TopScores = Pick top-k Scores
15: for all fv ∈ TestingFeatureVectors do
16: Let score = prob(Model , fv)
17: if score ∈ TopScores then
18: fv .Label =“Important′′

19: Add fv to TrainingFeatureVectors
20: end if
21: end for
22: Update TrainingFeatureV ectors
23: Update TestingFeatureV ectors
24: Model ′ = Learn a model from TrainingFeatureV ectors
25: for all fv ∈ TestingFeatureVectors do
26: label = classify(Model′, fv)
27: Labels = Labels ∪ {label}
28: end for
29: return Labels

Figure 3: Optimistic Classification Algorithm

training data and retrain a new model from the combined
data. As we are likely to have more important reverse-
engineered classes than before in the updated training data,
it is expected that a better model could be learned and a
better classification accuracy can be achieved.

Figure 3 shows the pseudocode of our proposed technique.
It takes as input TrainingFeatureVectors, TestingFeatureVec-
tors, and a Model learned from the TrainingFeatureVectors.
Using the Model, it first computes a probability score, for
each reverse-engineered class, whose feature vector appears
in TestingFeatureVectors (lines 11-13). It then picks the top-
k probability scores (line 14). Next, it iterates the classes
that have corresponding entries in TestingFeatureVectors again,

and the classes having one of the top-k probability scores
are labeled as “important” and added to the TrainingFea-
tureVectors (lines 15-21). In this way, we optimistically as-
sume that these classes are indeed important. In lines 22-
23, we update the feature vectors in TrainingFeatureVectors
and TestingFeatureVectors based on the additional impor-
tant classes. In particular, the values of the features cor-
responding to the customized network metrics, which are
described in Section 2.2.2, might need to be updated. The
algorithm then learns a new model based on the updated
TrainingFeatureVectors (line 24). Finally, it performs classi-
fication using the new model on TestingFeatureVectors (lines
25-28). The resultant importance labels are then output (line
29).

3. EXPERIMENTS & ANALYSIS
In this section, we describe our dataset, evaluation mea-

sure, and experimental settings. We then list our research
questions followed by our experiment results which answer
these questions. We finish by discussing some interesting
points and threats to validity.

3.1 Dataset
We use the same dataset that was used in Osman et al.

work [5]. The dataset consists of 9 projects that are chosen
based on these criteria: the project should be open source to
ensure replicability of the findings, the project should con-
tain more than 50 classes, the forward design class diagram
should exist. The chosen projects and their characteristics
are shown in Table 3.

For each project, we generate a reverse-engineered class
diagram using Magic Draw version 1.0 (academic evaluation
license).2 Our goal is to compress this diagram by iden-
tifying important classes. To get the ground truth labels
(i.e., important or unimportant), we use the same proce-
dure employed by Osman et al. [5]. The reverse-engineered
and forward design class diagrams are compared. A class
that exists both in the reverse- engineered and forward de-
sign class diagrams is labeled as an important class. A class
that exists in the reverse-engineered class diagram, but not
in the forward design class diagram is labeled as unimpor-
tant class.

Based on Table 3, we can see that the proportion of im-
portant classes in a reverse-engineered class diagram range
from 3.45% to 47.45%. xUML and Maze have relatively bal-

2http://www.nomagic.com/products/magicdraw.html
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Table 3: Our Dataset

ID Project Description

Total Classes
in Reversed
Engineered
Diagram (S)

Total Classes
in Forward

Design
Diagram (D)

D:S
ratio as

%

1. ArgoUML3 UML diagramming application. 903 44 4.87

2. JGAP4 A framework for performing genetic algorithms and
genetic programming.

171 18 10.52

3. JPMC5 A collection of automated intelligent agents in
financial sector.

121 24 19.83

4. JavaClient6 A framework for developing robotics applications. 214 57 26.64

5. Mars7
An application for creating simulation of possible
human settlement in planet Mars.

840 29 3.45

6. Maze8 An application for solving maze puzzles. 59 28 47.45

7. Neuroph9 A framework for developing neural network
architectures.

161 24 14.90

8. Wro4J10 An application for optimizing web resources. 87 11 12.64

9. xUML11
A software for producing executable and testable
system from a specified data model and associated
state machines.

84 37 44.05

anced distributions of important and unimportant classes.
The other projects, however, have very unbalanced distribu-
tions of important and unimportant classes, with important
classes being the minority. Thus, in 7 out of the 9 projects,
we have a data scarcity problem for classes labeled as im-
portant.

3.2 Evaluation Measure
We use Area Under the Receiver Operating Characteristic

Curve (AUC) to evaluate our prediction performance. The
same measure was used by Osman et al. to evaluate their
approach [5]. AUC measures the ability of a classification
algorithm to correctly rank classes as important or unim-
portant. Receiver Operating Characteristic Curve (ROC) is
a two-dimensional measure of classification performance. It
is a plot of the true positive rate versus false positive rate.
The larger an ROC area is, the better a classification algo-
rithm is in term of its ability to classify classes correctly as
important or unimportant. The AUC score range from 0 to
1, with 1 representing perfect prediction performance.

The AUC score is used because this measure is suitable
for highly imbalanced data [11]. In 7 out of the 9 projects,
we have imbalanced data (i.e., there are substantially more
unimportant than important classes). AUC is able to ad-
dress the issue of favoring models that trivially predict the
majority outcome label (i.e., “unimportant”) for all data

3http://argouml.tigris.org
4http://sourceforge.net/projects/jgap
5http://jpmc.sourceforge.net
6http://java-player.sourceforge.net
7http://mars-sim.sourceforge.net
8http://code.google.com/p/maze-solver
9http://neuroph.sourceforge.net

10http://code.google.com/p/wro4j
11http://code.google.com/p/xuml-compiler

points. Many past software engineering works also use AUC
as an evaluation metric, e.g., [12, 13, 14] and an AUC score
above 0.7 is considered reasonable [13, 14].

3.3 Experimental Settings
For the Model Learner component, which converts Train-

ing Feature Vectors to a preliminary Model, we use the ran-
dom forest classification algorithm. Random forest basically
constructs a number of decision trees based on different sub-
set of features and perform classification based on each deci-
sion tree. The classification from each tree are counted and
the majority is chosen as the classification output of random
forest. We use the implementation of random forest avail-
able in Weka [15]. In Osman et al.’s work, random forest has
been shown to be the best performing algorithm [5]. In our
experiments, we want to investigate whether adding network
features and employing optimistic classification help.

To compute the values of the design features which corre-
spond to size and coupling metrics, we use SDMetrics version
2.2 (academic license).12 To compute the values of the net-
work features, we need to first create a network of classes. To
create this network, we make use of SDMetrics Open Core
API 13 to parse a UML class diagram and extract classes
(which would correspond to nodes in the network) and re-
lationships of interest (which would correspond to edges in
the network). To compute the standard network measures,
we make use of Java Universal Network/Graph Framework
(JUNG).14

We set the parameter k of our optimistic classification
algorithm (shown in Figure 3) to 5% of the total number
of data points in the testing data. It means that we only

12http://www.sdmetrics.com
13http://www.sdmetrics.com/OpenCore.html
14http://jung.sourceforge.net
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optimistically consider top 5% classes in the testing data to
be important classes and use them to retrain the model.

To evaluate our proposed approach, we need to divide our
dataset (i.e., reverse-engineered classes) into training and
testing data. We follow the same procedure used by Osman
et al. to create these training and test data and to evalu-
ate our approach. For each project, 50% randomly selected
reverse-engineered classes are used as training data and the
rest are used as testing data. We use the test data to eval-
uate the performance of our approach and Osman et al.’s
approach. For reliability, we repeat this process 10 times
using different training and test data that are randomly con-
structed, and report the average performance across the 10
repetitions.

3.4 Research Questions
To demonstrate the effectiveness of our approach over the

state-of-the-art work, we investigate the following research
questions:

Research Question 1. How effective is our proposed ap-
proach in recovering important classes in a reverse- engi-
neered class diagram?

The bottom line of a classification-based technique is its
accuracy. A better technique should achieve a higher accu-
racy on various data. To answer this question, we measure
the effectiveness of our approach in predicting important
classes in terms of AUC for each of the 9 programs. We also
compare and contrast the AUC scores that are achieved by
our approach with those that are achieved by Osman et al.’s
approach.

Research Question 2. Individually, are the network met-
rics and optimistic classification techniques helpful to im-
prove the effectiveness of our approach?

Our work extends Osman et al.’s approach, by introduc-
ing two additional things. First, we introduce the network
metrics. We also introduce a new classification approach,
namely optimistic classification. In this research question,
we are interested to evaluate whether each of these two ad-
ditions is helpful to boost effectiveness of our proposed ap-
proach. To answer this question, we create an instance of
our approach that use network metrics but not optimistic
classification. We then compare this instance with Osman
et al.’s approach and our full approach.

Research Question 3. What are the most discriminative
features in classifying the important classes?

Not all features are equally important in the classification
process. Some features may have an edge over the others in
discriminating between important and unimportant classes.
We are interested to find out the best features that can dis-
criminate between different classes. To answer this research
question and identify discriminative features, we measure
information gain score of each feature. Information gain
has often been used before to measure the importance of a
feature [16, 17, 18]. Information gain is also used by the
random forest algorithm to build each decision tree [18].

3.5 RQ1: Effectiveness of Our Approach
We show the AUC scores of Osman et al.’s approach (base-

line) and our approach (ours) in Table 4. For Osman et al.’s
approach, we show the results for the random forest algo-
rithm which is the best performing algorithm. From the

table, the AUC scores of our approach range from 0.757-
0.915. We achieve the lowest AUC score for ArgoUML and
the best AUC score for Neuroph. Averaging across the 9
programs, our average AUC is 0.825.

From the results, it is clear that our approach can im-
prove Osman et al.’s approach for all of the 9 programs.
The AUC improvements range from 2.1% (JavaClient) to
17.5% (JPMC). Averaging across the 9 programs, our ap-
proach improves the AUC score of Osman et al.’s approach
by 9.1%. For 5 out of the 9 programs, the AUC score im-
provement is close to or larger than 10%. These results show
that our approach is more effective than the state-of-the-art
approach.

Table 4: Effectiveness of Our Approach

ID Project AUC(baseline) AUC(ours) Improv.

1. ArgoUML 0.655 0.757 15.6%
2. JGAP 0.748 0.797 6.6%
3. JPMC 0.692 0.813 17.5%
4. JavaClient 0.844 0.862 2.1%
5. Mars 0.766 0.845 10.3%
6. Maze 0.674 0.767 13.8%
7. Neuroph 0.835 0.915 9.6%
8. WroJ 0.742 0.763 2.8%
9. xUML 0.847 0.905 6.9%

Average 0.756 0.825 9.1%

3.6 RQ2: Benefits of Network Metrics and Op-
timistic Classification

Our approach is build on top of Osman et al’s approach
by the addition of two new steps: the use of network met-
rics as features and the use of optimistic classification. Ta-
ble 5 shows the improvement made when we include network
metrics in the set of features and do not employ optimistic
classification. From the table, we can see that on average,
the AUC increases from 0.756 (Osman et al.’s approach) to
0.810 (our approach without optimistic classification). Thus
there is an improvement of 7.1%. The AUC improvements
range from 2.6% (JavaClient) to 13.7% (JPMC). These re-
sults show that our network metrics are effective to improve
classification performance.

Table 5: Improvement by Using Network Metrics

No Project AUC(before) AUC(after) Improv.

1. ArgoUML 0.655 0.737 12.5%
2. JGAP 0.748 0.778 4.0%
3. JPMC 0.692 0.787 13.7%
4. JavaClient 0.844 0.866 2.6%
5. Mars 0.766 0.797 4.1%
6. Maze 0.674 0.727 7.9%
7. Neuroph 0.835 0.918 9.9%
8. Wro4J 0.742 0.780 5.1%
9. xUML 0.847 0.900 6.3%

Average 0.756 0.810 7.1%

Table 6 compares the results of our approach (with design
and network metrics) with and without optimistic classifi-
cation. On average, AUC is increased from 0.810 (random
forest) to 0.825 (optimistic classification). Thus there is a
1.9% improvement in terms of AUC. The AUC improve-
ments range from -2.2% (Wro4j) to 6.0% (Mars). We notice
that there are several projects where our optimistic classi-
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fication approach achieves negative improvements (the per-
formance without optimistic classification is better). How-
ever, we only see this for 3 projects: JavaClient, Neuroph,
and Wro4j. It means that for 67% of the projects, opti-
mistic classification can improve performance. Thus overall,
the results show that our optimistic classification is effec-
tive. Admittedly, the improvement gained by using opti-
mistic classification is less than the improvement gained by
using network metrics.

Table 6: Improvement by Optimistic Classification

No Project AUC(before) AUC(after) Improv.

1. ArgoUML 0.737 0.757 2.7%
2. JGAP 0.778 0.797 2.4%
3. JPMC 0.787 0.813 3.3%
4. JavaClient 0.866 0.862 -0.5%
5. Mars 0.797 0.845 6.0%
6. Maze 0.727 0.767 5.5%
7. Neuroph 0.918 0.915 -0.3%
8. Wro4J 0.780 0.763 -2.2%
9. xUML 0.900 0.905 0.6%

Average 0.810 0.825 1.9%

3.7 RQ3: Most Discriminative Features
To find the most discriminative features across the projects,

for each training and test data pair, we compute the infor-
mation gain score for each feature. For each project, we com-
pute the average information gain score per feature across
the 10 training and test data pairs. We then pick the top-5
features with the highest average information gain scores for
each project. We exclude features having zero information
gain score. We then compute the number of times each fea-
ture appears in the top-5 lists (#Appearance). We show the
list of the top-10 features based on their number of appear-
ances in Table 7.

From the table, our network features dominate the list
(7 out of 10 most discriminative features) and appear in
the top-5 most discriminative features. It shows that the
network features can discriminate important classes better
than design features. This fact partly explains the improve-
ment made by using network features. For design features,
Dep In, EC Par , and EC Attr discriminate better than the
other design features.

Table 7: Top-10 Most Discriminative Features

ID Feature Category #Appearance

1. Authority Network 5 (55.6%)
2. Barycenter Network 4 (44.5%)
3. Betweenness Network 4 (44.5%)
4. Eigenvector Network 3 (33.4%)
5. PropImportant Network 3 (33.4%)
6. Dep In Design 3 (33.4%)
7. EC Par Design 3 (33.4%)
8. PageRank Network 3 (33.4%)
9. Hub Network 3 (33.4%)
10. EC Attr Design 3 (33.4%)

3.8 Discussion
Various network metrics are computed as features in our

proposed approach. The computation of a network metric
generally has a high complexity. For example, to compute
closeness centrality, the shortest distance between each pair

of nodes must be computed. This translates to a complexity
of O(n3). However, the adjacency matrix corresponding to
the network representing a class diagram is typically very
sparse and the number of classes in most software system
is not astronomical – compared with social network having
millions to billions of nodes. Thus, running time is typi-
cally not a problem. In our experiment, we can compute all
network metrics for the entire dataset in under ten seconds.

In our optimistic classification step, we pick the top 5%
test instances to optimistically retrain the classification model.
As an alternative, we can also set a fixed absolute threshold
(e.g., 0.99) and pick only test instances whose probability
scores are higher than this threshold. We have tried this
alternative and it performs worse than picking top 5% test
instances. This may be due to the different characteristics
of each software system and different discriminative power
of network or design features when applied in different soft-
ware systems which causes the optimal absolute threshold
to vary for different software systems.

3.9 Threats to Validity
Threats to Internal Validity. Threats to internal va-
lidity relates to errors and biases. We have rechecked our
implementation. Still, there could be errors that we do not
notice. Also, since we reuse Osman et al.’s dataset, our
study suffers from the same possibility of errors in the collec-
tion of the dataset. For example, the documentation might
be outdated or may not contain the most relevant classes.
To reduce experimenter bias, we choose to reuse the same
dataset, evaluation measure, and experiment settings that
was used to evaluate Osman et al.’s work.

Threats to External Validity. Threats to external valid-
ity relates to the generalizability of our findings. We have
tried to reduce these threats to external validity by evalu-
ating our approach on 9 different programs. In the future,
we plan to reduce these threats further by considering ad-
ditional programs of various sizes written in multiple pro-
gramming languages.

Threats to Construct Validity. Threats to construct
validity relates to the suitability of our evaluation metric.
We have made use of AUC, which is a standard metric in
data mining [18] and it is designed to evaluate imbalanced
data [11]. Many studies in software engineering also use
AUC as evaluation metric, e.g., [12, 13, 14]. AUC was also
used by Osman et al. to evaluate their proposed approach.
Thus, we believe there is little threat to construct validity.

4. RELATED WORK
The most related work to ours is the recent study by Os-

man et al. [5]. Aside from this work, there are a number of
works that also assign importance to classes in various ways.
We highlight these works in Section 4.1. We also highlight
some software engineering works that employ classification
techniques in Section 4.2

4.1 Assigning Importance to Classes
Zaidman and Demeyer [19] proposed the use of HITS web

mining techniques to identify key classes in a system. Dy-
namic analysis of the source code was used in their study
as the input of the proposed method. The validation of
this study was done manually by comparing the result of
the approach with the classes specified in the software doc-
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umentation. Our approach extends Zaidman and Demeyer
approach, by using not only HITS metric, but also other
network metrics (standard and customized) and the design
metrics to classify important classes.

Perin et al. [20] proposed the use of PageRank algorithm
to rank software artifacts. Two case studies were used:
Pharo Smalltalk system and Moose reengineering environ-
ment. They considered important classes to be classes men-
tioned in the documentation. Our approach extends Perin et
al.’s approach, by using not only PageRank metric, but also
other network and design metrics. We integrate all these
metrics together by using an optimistic classification tech-
nique.

Steidl et al. [21] investigated the usage of a number of net-
work metrics including PageRank, HITS, and several others
to identify important classes of a system. They would like
to analyze which metrics and settings are better to iden-
tify important classes. Our approach extends Steidl et al.’s
approach in several ways: we use a classification-based ap-
proach to combine all the network metrics together to pre-
dict if a class is important or not, we propose a number of
new network metrics that characterize the importance of a
class based on homophily principle, and we combine the net-
work metrics with design metrics to improve performance.

Hammad et al. proposed an approach that assigns im-
portance scores to classes and sets of collaborating classes
based on the number of times these classes were changed in
a version control system [22]. To assign importance scores
to classes, they identified commits made to a version control
system that impacted design. They then counted, for each
class, the number of such commits that include changes to
the class. To assign importance scores to a set of collabo-
rating classes, they used frequent itemset mining algorithm.
Different from Hammad et al.’s work, we consider a differ-
ent criteria to judge the importance of a class. Our goal is
to reduce a reverse-engineered class diagram such that it is
closer to a forward design diagram. Our work is motivated
by the recent study of Fernandez-Saez et al. which finds
that forward design class diagram is more useful than its
reverse-engineered counterpart [4].

Bieman et al. [23] proposed a method to identify and
visualize classes that are frequently changed. They pre-
sented measurements for class change-proneness, i.e., local
change-proneness, pair change coupling and sum of pair cou-
pling. They identified change clusters based on the mea-
sures. These clusters often reside around key components.
They then construct a change-prone class diagram and change
architecture diagram for visualization. Different from Bie-
man et al.’s work we do not capture change-prone classes,
rather our goal is to reduce a reverse-engineered class dia-
gram such that it is closer to a forward design diagram.

4.2 Other Related Works
There are many software engineering studies that also em-

ployed classification techniques to predict various informa-
tion [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. We
highlight some of them below. The survey here is by no
means complete.

Giger et al. used a decision tree based algorithm to cat-
egorize bug reports based on their resolution time into two
classes: “slow” and “fast” [24]. Menzies and Marcus used a
classification algorithm named Ripper to predict the severity
of bug reports from NASA [25]. Lamkanfi et al. investigated

the effectiveness of a number of classification algorithms in
predicting the severity of bug reports [26]. Tian et al. used
a classification engine named GRAY which extends linear
regression to predict the priority of bug reports [27]. Thung
et al. used SVM to categorize bug reports into three fami-
lies [28].

Maiga et al. used support vector machine (SVM) as a
classification algorithm to detect anti-patterns which are in-
stances of poor design that causes problems for program
comprehension [31]. Hou and Mo used Naive Bayes to as-
sign semantic labels to discussions in various software fo-
rums [32]. Swapna et al. used a special variant of sup-
port vector machine (SVM) that uses Hidden Markov Model
(HMM) to categorize posts in software forums [33]. Le and
Lo used an extended Support Vector Machine (SVM) to pre-
dict if a fault localization instance is effective or not [34].
Prasetyo et al. used an SVM to categorize if a microblog is
relevant to engineering software system or not [35].

5. CONCLUSION AND FUTURE WORK
Recently, Osman et al. have proposed an approach for

condensing a reverse-engineered class diagram by using de-
sign metrics as input to a standard classification technique.
In this work, we want to improve the effectiveness of this
state-of-the-art approach. To achieve our goal, we intro-
duce additional features which include standard and cus-
tomized network metrics which characterize the importance
of a class and its likelihood to be important based on the
homophily principle. We also propose a new classification
technique which we refer to as optimistic classification. Dif-
ferent from standard classification, optimistic classification
optimistically assigns labels to some unlabeled data, and
use these newly labeled data to generate a better statisti-
cal model. To investigate the effectiveness of our proposed
approach, we have conducted an experiment on reverse-
engineered classes of 9 programs, which were also used to
evaluate Osman et al.’s approach. Our approach achieves
an average AUC score of 0.825 which improves the average
AUC score achieved by Osman et al.’s approach by 9.1%.
Each of the steps in our approach also performs well. By
adding network metrics to Osman et al.’s approach we can
achieve an AUC of 0.810 which is a 7.1% improvement. Our
optimistic classification technique further improves perfor-
mance by another 1.9%. We have also measured the dis-
criminativeness of each feature using information gain and
created a list of top-10 most discriminative features. We
find that our network metrics are on the top of the list. It
explains the improvement that we achieve by adding the net-
work metrics. We also found several design features that can
discriminate better compared to other features in the same
category. These feature are Dep In, EC Par, and EC Attr.

As future work, we plan to improve the effectiveness of our
approach further. To achieve that goal, we would like to in-
vestigate and propose additional metrics that could be used
to differentiate between important and unimportant classes
better. We also plan to reduce some threats to validity.
One way is by evaluating our approach on more reverse-
engineered class diagrams from additional programs of vari-
ous sizes and written in a variety of programming languages.

Dataset. We make our dataset publicly available and it
can be downloaded from: http://sites.google.com/site/
classdiag/dataset.zip.
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