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ABSTRACT
Nowadays, software developers often discuss the usage of various
APIs in online forums. Automatically assigning pre-defined se-
mantic categorizes to API discussions in these forums could help
manage the data in online forums, and assist developers to search
for useful information. We refer to this process as content catego-
rization of API discussions. To solve this problem, Hou and Mo
proposed the usage of naive Bayes multinomial, which is an effec-
tive classification algorithm.

In this paper, we propose a Cache-bAsed compoSitE algorithm,
short formed as CASE, to automatically categorize API discussion-
s. Considering that the content of an API discussion contains both
textual description and source code, CASE has 3 components that
analyze an API discussion in 3 different ways: text, code, and o-
riginal. In the text component, CASE only considers the textual de-
scription; in the code component, CASE only considers the source
code; in the original component, CASE considers the original con-
tent of an API discussion which might include textual description
and source code. Next, for each component, since different terms
(i.e., words) have different affinities to different categories, CASE
caches a subset of terms which have the highest affinity scores to
each category, and builds a classifier based on the cached terms.
Finally, CASE combines all the 3 classifiers to achieve a better ac-
curacy score. We evaluate the performance of CASE on 3 datasets
which contain a total of 1,035 API discussions. The experiment
results show that CASE achieves accuracy scores of 0.69, 0.77, and
0.96 for the 3 datasets respectively, which outperforms the state-of-
the-art method proposed by Hou and Mo by 11%, 10%, and 2%,
respectively.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement
∗The work was done while the author was visiting Singapore Man-
agement University.
†Corresponding author.
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1. INTRODUCTION
Learning to use software frameworks and their corresponding

APIs (Application Programming Interfaces) can be a hard job for
software developers, which would impede their productivity [7,
18, 20, 24]. Nowadays, developers commonly use online forums
to discuss the usage of APIs, ask API usage questions, and seek
help. For example, Figure 1 shows an API discussion in a Java
Swing forum.1 A developer asked a question about the bad dis-
play of icons when using JLabel and JList. Another developer later
discovered the root cause of the problem and advised to wrap the
invocation of method ensureIndexIsVisible inside method
invokeLater of SwingUtilities when the auto scrolling
feature is selected.

Over the years, these online forums store massive amount of
valuable API usage knowledge, and most of the time, developers
just need to search over the forums to find their contents of interest.
To better manage the organization of contents in the forums, and
reduce the time that developers need to spend to search for their
contents of interest, we need an automated way to index these fo-
rum data according to their semantic similarity [14]. Hou and Mo
proposed the problem of content categorization of API discussions,
which is the task of automatically assigning pre-defined semantic
categorizes to API discussions in software forums [14].

Various text categorization and machine learning algorithms [10,
27] could be used to solve the content categorization problem, e.g.,
naive Bayes [10], kNN [10], SVM [10], etc. Hou and Mo inves-
tigated the performance of naive Bayes multinomial (NBM) [19],
and they concluded that NBM achieves a remarkable high accu-
racy [14]. However, NBM is a general algorithm which focuses
on the general text categorization problem and API discussions are
inherently different from general text. For example, in the API dis-
cussions, normally developers would attach source code (see Fig-
ure 1). The terms in the source code and the textual description are
often different, and thus we need to treat them differently.2

In this paper, we propose a Cache-bAsed compoSitE algorith-
m, short formed as CASE, to improve the accuracy of the content
1https://community.oracle.com/thread/2594342
2For more details, please refer to Section 2.
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categorization task. Considering that the content of API discus-
sions includes both textual description and source code, we first
extract and separate the textual description from the source code
in API discussions. Then, CASE analyzes API discussions using
3 components: text, code, and original. In the text component, it
categorizes the API discussions by only using textual description;
in the code component, it categorizes the API discussions by on-
ly using source code; in the original component, it categorizes the
API discussion by using both textual description and source code.
Next, for each component (i.e., text, code, and original), since d-
ifferent terms have different affinity scores to different categories,
we cache a subset of terms which have the highest affinity scores to
each category, and we build a classifier based on the cached terms.
Finally, we combine all the 3 classifiers to achieve better accuracy
scores.

To evaluate the performance of CASE, we reuse the 3 datasets
provide by Hou and Mo [14].3 The 3 datasets are taken from Ja-
va Swing forums and we refer to them as Data-1.0, Data-2.0, and
Data-3.0 respectively4. Data-1.0 and Data-2.0 are more challeng-
ing datasets as they include more semantic categories and there are
less API discussions per category. The total number of API dis-
cussions across the three datasets is 1,035. The experiment results
show that CASE achieves accuracy scores of 0.69, 0.77, and 0.96
for each of the 3 datasets respectively, which outperform the state-
of-the-art method proposed by Hou and Mo by 11%, 10%, and 2%,
respectively.

The main contributions of this paper are:

1. Considering the special structure of API discussions, we pro-
pose a composite algorithm which combines 3 components
which separately analyze the text, code, and overall content
of API discussions to achieve a better performance.

2. We also propose a cache-based algorithm which caches the
terms with high affinity scores for each API category, and
build classifiers by only using these cached terms.

3. We evaluate the performance of our algorithm using 3 pub-
licly available datasets which were also used in the previous
study by Hou and Mo [14]. We show CASE outperforms the
the method proposed by Hou and Mo by a substantial margin
– especially for Data-1.0 and Data-2.0.

The remainder of the paper is organized as follows. We describe
the motivation of this work in Section 2. We outline our overall
framework for content categorization of API discussions in Sec-
tion 3. We elaborate the cached-based algorithm to cache the terms
with high affinity scores to each category in Section 4. We present
how we combine the 3 components of CASE in Section 5. We re-
port the experiment results in Section 6. We describe related work
in Section 7. We present the threats to validity in Section 8. We
conclude and mention future work in Section 9.

2. MOTIVATION
In this section, we first describe an example to help readers bet-

ter understand the motivation for content categorization of API
discussions and our cache-based algorithm in Section 2.1. Next,
we present the motivation of building a composite model in Sec-
tion 2.2.

3http://www.clarkson.edu/ dhou/projects/swingForum2012.tar.gz
4These datasets are referred to as V1.0, V2.0, and V3.0 in [14].

Table 1: Accuracy Scores for Data-1.0, Data-2.0, and Data-3.0
Using Naive Bayes Multinomial.

Dataset Text Code Original
Data-1.0 0.5333 0.3778 0.6222
Data-2.0 0.6772 0.6519 0.6962
Data-3.0 0.9411 0.9291 0.9315

2.1 A Motivating Example
A typical life cycle of an API discussion is as follows: 1. A

user meets an API usage problem, and he posts the problem in a
forum, and also attaches the source code related to this problem to
his post. 2. Other developers who have the necessary expertise and
are willing to help, reply to the post. 3. The user judges whether
the problem is solved, and gives a reward (e.g., forum score) to the
developer who solves the problem, and closes the discussion.

Figure 1 shows a sample API discussion. In the example, a user
met a problem with the display of icons when he used JLabel and
JList, and attached his source code. Sometimes later, another de-
veloper solved the problem by recommending a modification of the
user’s code.
Observations and Implications. From the above example, we
have the following observations:

1. After we read the content of the API discussion, we find that
it is an “icon display” problem. Thus, we can assign the label
“icon display” to it. The next time another user meets an “i-
con display” problem, the user could perform a search under
the category “icon display”. By doing this, the user can po-
tentially find API discussions that contain relevant contents
to help him resolve his problem.

2. Some terms in the API discussion appear more number of
times than the others. For example, term “size” appears 4
times in the textual description and source code, “icon” ap-
pears 3 times, and “display” and “height” appear 2 times.
These terms are related to the “icon display” category, and
their term frequencies help us to differentiate them from many
other terms that are less related to the category.

The above observations tell us that automated categorization of
API discussions could help to improve search efficiency, and make
the content of discussions more explicit and informative [14]. Some
terms which appear many times in an API discussions could help
to identify its proper category. Thus, in this paper, we propose a
cache-based algorithm, which caches the terms which have high
term frequencies for each API discussion category, and we use
these terms as the input features to build classifiers.

2.2 Why Composite Model?
As described in the previous section, we can categorize an API

discussion in 3 ways: 1. use only the textual description in the API
discussion (text); 2. use only the source code in the API discussion
(code); 3. use both the textual description and source code in the
API discussion (original). In this section, we investigate which one
is the best to categorize API discussions using naive Bayes multi-
nomial which was used by Hou and Mo [14].

Table 1 presents the experiment results for Data-1.0, Data-2.0,
and Data-3.0 using naive Bayes multinomial. We notice for Data-
1.0 and Data-2.0, categorizing API discussions using both textu-
al description and source code achieves the best accuracy scores.
However, for Data-3.0, categorizing API discussions using only
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Figure 1: An API Discussion in Java Swing Forum.

textual description achieves the best accuracy score. Thus, for dif-
ferent datasets, the best performing approach could be different.

Due to this reason, if we only use text or code or original, then
the categorization performance would be poorer on some datasets.
To address this problem, in this work, we propose an algorithm that
combines text, code, and original to achieve a better performance.

3. OVERALL FRAMEWORK
Figure 2 shows the overall framework of CASE. The whole frame-

work includes two phases: model building phase and prediction
phase. In the model building phase, our goal is to build a model
from the historical API discussions which have known categories.
In the prediction phase, this model would be used to predict the
category of new API discussions.

Our framework first extracts and separates the textual content
from the source code in API discussions. It then represents each
API discussion as three documents containing only textual con-
tent (text), only code (code), and both textual content and code
(original) – Steps 1, 2, and 3. Then, CASE parses the content of
each document into tokens, removes tokens corresponding to stop
words (e.g., I, you, the, and, etc.), stems the remaining tokens (i.e.,
reduce the tokens to their root forms, e.g., ”reading” and “reads”
are reduced to “read”), and represents each document as a “bag of
words” [2]. Each processed token (aka. term) becomes a feature.
Features are various quantifiable characteristics of API discussions
that could potentially distinguish different categories of API dis-
cussions. After that, in each component, we use our term cache

algorithm to select the features (i.e., terms) which have the highest
affinity scores to each category – Steps 4, 5, and 6.5

Next, each of the three sets of processed documents (text, code
and original), is inputted to the respective component of CASE.
Each of this component constructs a classifier based on the cached
terms (which are treated as features) – Steps 7, 8, and 9. A classi-
fier is a machine learning model which assigns labels (in our case:
categories of API discussions) to a data point (in our case: a piece
of API discussion) based on its cached terms. By default, we use
naive Bayes multinomial as the underlying classifier following the
previous study by Hou and Mo [14]. We then blend or combine the
3 classifiers (i.e., text classifier, code classifier, and original classi-
fier) together to construct an APIComposer classifier (Step 10).6

In the prediction phase, the APIComposer classifier is then used
to predict the categories of new API discussions. For each API dis-
cussion, we first extract different parts of the API discussion to for-
m the 3 documents (code, text, and original) as we do in the model
building phase, and investigate the occurrences of the cached terms
to form the text, code, and original features – Steps 11, 12, and
13. Next, we input these three sets of features to the APIComposer
classifier which would input the respective feature set to each of the
3 classifiers built in the model building phase – Step 14. This step
would eventually output a prediction result which is the predicted
category for a new API discussion (Step 15).

5For more details of our term cache algorithm, please refer to Sec-
tion 4.
6For more detail of APIComposer, please refer to Section 5.
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Figure 2: Overall Framework of CASE.

4. TERM CACHE ALGORITHM
In CASE, all of its 3 components process bags-of-words. Each

processed term in the bags-of-words is a feature. Thus, we have
a large number of features. In machine learning literature, a fea-
ture can be viewed as a dimension, and a data point (i.e., an API
discussion) can then be viewed as a point in this high-dimensional
space. An overly high number of dimensions can cause the curse-
of-dimensionality problem [10].

Aside from this, we observe for each category, often some terms
appear more often than others, and these terms are important to
infer the category of an API discussion. For example, in Data-
3.0, terms like “inputborder”, “boardertext”, “shuffle” appear more
often in discussions belonging to category “BoarderandMargin”
which corresponds to Swing GUI boarder and margin problem. Al-
so, terms like “drawpanel”, “fiddle”, “bush” appear more often in
discussions belonging to category “drawing” which corresponds to
problems in using Swing API to draw customized GUI. To leverage
this observation and avoid the curse-of-dimensionality problem, we
propose our term cache algorithm.

We denote the category of the ith API discussion as ci, and
following vector space modeling [2], we represent the text in the
ith API discussion as a vector of weights denoted by APIi =
〈wi,t1 , wi,t2 , ···, wi,tv 〉, wherewi,j represents the number of times
the term tj appears in the ith API discussion divided by the total
number of terms that appear in the ith API discussion, and v repre-
sents the total number of unique terms across the whole API discus-
sion collection. Based on these notations, we define category-term
affinity score as follows:

DEFINITION 1. (Category-term Affinity Score.) Consider an
API discussion collection A, and a set of categories C. For each
category c ∈ C, and term tj ∈ API , the category-term affinity
score of c and tj , denoted as Aff(c, tj), is computed as follows:

Aff (c, tj) =

∑
i∈{i|ci=c} wi,j∑

i wi,j
(1)

Table 2 presents an example of dataset with 4 terms and 2 cate-
gories (A and B). Considering API discussions 1 and 3 both belong
to category A, the affinity score for term 1 and category A is:

Table 2: An Example of Dataset with 4 Terms and 2 Categories
(A and B). The Data in the Cells are the Weights.

Discuss. ID Term 1 Term 2 Term 3 Term 4 Category

1 0.5 0 0.25 0.25 A
2 0 0.5 0 0.5 B
3 0.4 0.1 0.4 0.1 A
4 0.1 0.3 0.2 0.4 B

Aff (term 1, A) =
0.5 + 0.4

0.5 + 0 + 0.4 + 0.1
= 0.9

Similarly, the affinity score for term 2 and category B is:

Aff (term 2, B) =
0.5 + 0.3

0 + 0.5 + 0.1 + 0.3
= 0.88

For each category, we compute its affinity score to each term,
and we rank the terms based on their affinity scores. The higher
the affinity score of a term is, the more important the term is to
identify the category. Thus, for each category, we cache the terms
whose affinity scores appear in the top m% highest affinity scores.
Suppose there are l categories, there would be at most l×m%× v
terms that are cached. These terms are used as input features to
build a classifier. In this paper, by default, we set m% = 5%, i.e.,
for each category, we cache 5% of the terms.

5. APICOMPOSER: A COMPOSITE ALGO-
RITHM

In CASE, we have 3 components: text, code, and original. For
each component, we build a classifier based on the cached terms;
in total, we have 3 independent classifiers. By default, we use
naive Baye multinomial to build the classifiers for the 3 compo-
nents. Each classifier would output a set of scores for a new API
discussion. CASE then composes the three sets of scores together.
In this section, first we define the three sets of scores outputted by
the three classifiers in Section 5.1. Next, we describe how we com-

98



bine these scores together to construct the APIComposer classifier
in Section 5.2.

5.1 Component Scores
As illustrated in Figure 2, our proposed framework has 3 differ-

ent components which correspond to classifiers built based on the
cached terms. Let us refer to them as Clat, Clac, and Clao, re-
spectively. Given an unknown API discussion, Clat, Clac, and
Clao output the following text score, code score, and original s-
core, respectively:

DEFINITION 2. (Text Scores.) Consider a training API discus-
sion collectionAPI , and its corresponding text component TEXT ,
and suppose there are L categories. We build a classifier Clat
trained on TEXT . For a new API discussion api, for each cate-
gory l ∈ L, we use Clat to get the likelihood that api will belong
to the category l. We refer to these likelihood scores as text scores,
and denote each of them as Text(api, l), for each l ∈ L.

DEFINITION 3. (Code Scores.) Consider a training API dis-
cussion collection API , and its corresponding code component
CODE, and suppose there are L categories. We build a classi-
fier Clac trained on CODE. For a new API discussion api, for
each category l ∈ L, we useClac to get the likelihood that api will
belong to the category l. We refer to these likelihood scores as code
scores, and denote each of them as Code(api, l), for each l ∈ L.

DEFINITION 4. (Original Scores.) Consider a training API
discussion collection API , and its corresponding original com-
ponent ORIG, and suppose there are L categories. We build a
classifier Clao trained on ORIG. For a new API discussion api,
for each category l ∈ L, we use Clao to get the likelihood that api
will belong to the category l. We refer to these likelihood scores as
original scores, and denote each of them as Orig(api, l), for each
l ∈ L.

5.2 APIComposer
As shown in Section 5.1, we can get text scores, code scores, and

original scores for each new API discussion api. In this section, we
propose APIComposer, a composite method which uses all of these
3 scores. A linear combination of text scores, code scores, and
original scores is used to compute the final APIComposer scores.

DEFINITION 5. (APIComposer Scores.) Consider a training
API discussion collection BR and L categories, and the corre-
sponding classifiers for text, code, and original components (Clat,
Clac, and Clao), respectively. For a new API discussion api, for
each category l ∈ L, we compute its corresponding text, code,
and original scores, and then its APIComposer scores, denoted as
Comp(api,l), which are linear combinations of 3 scores, defined
as follows:

Comp(api, l) = α× Text(api, l) + β × Code(api, l)
+γ ×Orig(api, l) (2)

In the above equation, α ∈ [0, 1], β ∈ [0, 1], and γ ∈ [0, 1].

Since there are a total of L categories, for a new API discussion
api, after we compute the APIComposer scores for each category
l ∈ L, the final category for api would be the category which has
the highest APIComposer scores, i.e.,

Category(api) = argmaxl∈L Comp(api, l) (3)

Table 3: Statistics of Collected Datasets.
Data # Doc. # Categ. Componet. # Terms

Data-1.0 45 10
Text 488
Code 266

Original 659

Data-2.0 158 17
Text 1,085
Code 716

Original 1,430

Data-3.0 832 8
Text 2,384
Code 831

Original 3,481

To automatically produce good α, β, and γ values for APICom-
poser, we propose a greedy algorithm. Algorithm 3 presents the
detailed steps to estimate good α, β, and γ values. We initialize α,
β, and γ values to 0 at Line 9. Then, we build the classifiers (i.e.,
Clat, Clac, and Clao) for text, code, and original component us-
ing API , and compute their corresponding text, code, and original
component scores of API discussions in API at Lines 10, 11 and
12, respectively. Next, we incrementally increase α, β, and γ val-
ues (Lines 13 to 15). We increase α, β, and γ values from 0 to 1, in
0.1 increments. We use a rather coarse granularity step (i.e., 0.1) to
tune α, β, and γ values to reduce the computational cost in the tun-
ing process. For each configuration of α, β, and γ values, we build
a composite model and compute the resultant accuracy using API
discussions in API (Lines 16 to 23). Finally, Algorithm 3 returns
α, β, and γ values resulting in the best accuracy using the training
data (Line 24).

6. EXPERIMENTS AND RESULTS
In this section, we evaluate the effectiveness of CASE. The ex-

perimental environment is an Intel(R) Core(TM) i5 3.20 GHz CPU,
4GB RAM desktop running Windows 7 (32-bit). We first present
our experiment setup, and 5 research questions in Sections 6.1 and 6.2,
respectively. We then present our experiment results that answer
the 5 research questions (Sections 6.3, 6.4, 6.5, 6.6, and 6.7).

6.1 Experiment Setup
We evaluate CASE on the 3 datasets provided by Hou and Mo [14]

containing a total of 1,035 API discussions. Table 3 presents the s-
tatistics of the collected datasets. The columns correspond to the
number of API discussion documents (# Doc.), the number of cat-
egories (# Categ.), and the number of unique terms in each com-
ponent (# Terms). Notice that our datasets are slightly different
from the original datasets since we remove one API discussion in
Data-1.0 and another API discussion in Data-3.0, since these 2 API
discussions do not contain text or code.

We use WVTool [37] to extract terms from these 3 datasets. WV-
Tool is a Java library for statistical language modeling, which is
used to create word vector representations of text documents. We
use WVTool to tokenize the textual description of API discussion,
remove stop words, and do stemming. We remove the terms which
appear less than 2 times, since these terms can not be used to iden-
tify the categories of API discussions. We implement CASE on top
of Weka7 [9].

Stratified ten-fold cross validation [10] is used to evaluate the
performance of CASE. We randomly divide the dataset into 10 fold-

7http://www.cs.waikato.ac.nz/ml/weka/
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1: Estimatevalue(API , TEXT , CODE, ORIG)
2: Input:
3: API: Training API Discussion Collection
4: TEXT : Text Component of API
5: CODE: Code Component of API
6: ORIG: Original Component of API
7: Output: α, β, and γ
8: Method:
9: α=0, β = 0, andγ = 0

10: Build Clat from TEXT , and compute text scores for each API discussion in API;
11: Build Clac from CODE, and compute code scores for each API discussion in API;
12: Build Clao from ORIG, and compute original scores for each API discussion in

API;
13: for all α from 0 to 1, every time increase α by 0.1 do
14: for all β from 0 to 1,every time increase β by 0.1 do
15: for all γ from 0 to 1,every time increase γ by 0.1 do
16: for all API Discussion api in API do
17: Compute APIComposer score according to Definition 5;
18: Predict the category of api by using Equation 3;
19: end for
20: Evaluate the performance by computing accuracy;
21: end for
22: end for
23: end for
24: Return α, β, and γ which give the best accuracy

Figure 3: Estimation of Good α, β, and γ Values in APIComposer

s. Of these 10 folds, 9 folds are use to train a classifier, while the
last one fold (i.e, test fold) is used to evaluate the performance.
In the test fold, for an API discussion, if the category we predic-
t is the same as its actual category, we consider it as a prediction
hit. We iterate the whole process 10 times, and record the aver-
age performance across the 10 iterations. The distribution of labels
in the training and test folds are the same as the original dataset
to simulate the actual usage of CASE. Stratified cross validation
is a standard evaluation setting, which is widely used in software
engineering studies, c.f., [22,28,34,35,38,40]. To evaluate the per-
formance of CASE, for each fold, we compute accuracy which is
defined as the ratio between the total number of prediction hit and
the total number of API discussions in our test fold. We report the
average accuracy across the 10 iterations.

6.2 Research Questions
We are interested to answer the following research questions:

RQ1 How effective is CASE? How much improvement could our
proposed approach gain over the baseline method by Hou and Mo?

Hou and Mo propose the usage of naive Bayes multinomial (NBM)
to solve the content categorization of API discussions problem [14].
In this research question, we investigate the extent our approach
(CASE) outperforms this state-of-the-art approach. To answer this
research question, we compare the average accuracy of CASE with
that of NBM for each of the 3 datasets.

RQ2 Can the term cache algorithm and APIComposer improve the
performance of CASE?

CASE first applies our term cache algorithm to cache the terms
for each category, and then apply APIComposer to combine 3 clas-
sifiers. In this research question, we investigate the performance of
CASE without the term cache algorithm, and without APICompos-
er.

To answer this research question, we first remove the term cache
algorithm from CASE, and we directly combine these 3 compo-
nents, we refer to this algorithm as CASEBasic. Next, we remove
the APIComposer from CASE, i.e., we do not consider the com-
bination of 3 components, we refer to the text, code, and original
components with the term cache algorithm as TextC , CodeC , and
OrigC , respectively. We compare the average accuracy of CASE
with those of CASEBasic, TextC , CodeC , and OrigC for each
of the 3 datasets, respectively.

RQ3 Do different numbers of cached terms affect the performance
of CASE?

By default, we cache 5% of the terms. We investigate whether
different percentages of cached terms would affect the performance
of CASE. To answer this research question, we vary the percentages
of terms cached from 1% to 20%.

RQ4 What are the best features (i.e., terms) for discriminating
different categories?

Aside from producing a model that can identify different cat-
egories of API discussions, we are also interested in finding dis-
criminative features that could help in distinguishing different cate-
gories of API discussions. In this research questions, we would like
to identify these features (i.e., terms) that we extract from the textu-
al description of API discussions. To answer this research question,
we compute the term affinity scores for all the terms and categories
we considered.

RQ5: How much time does it take for CASE to run?
The efficiency of CASE would affect its usability. In this ques-

tion, we investigate whether the runtime of CASE is reasonable. To
answer this research question, we report the model building and
prediction time of CASE and compare them with those of naive
Bayes multinomial (NBM) used by Hou and Mo [14].
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Table 4: Experiment Results for CASE Compared with Naive
Bayes Multinomial (NBM).

Datasets CASE Data Type NBM Improvement

Data-1.0 0.6889
Text 0.5333 29.17%
Code 0.3778 82.35%

Original 0.6222 10.71%

Data-2.0 0.7658
Text 0.6772 13.08%
Code 0.6519 17.48%

Original 0.6962 10%

Data-3.0 0.9615
Text 0.9411 2.17%
Code 0.9291 3.49%

Original 0.9315 3.26%

Table 5: Experiment Results for CASE Compared with
CASEBASIC .

Datasets CASE CASEBASIC Improvement

Data-1.0 0.6889 0.6000 14.81%
Data-2.0 0.7658 0.6962 10.00%
Data-3.0 0.9615 0.9507 1.14%

6.3 RQ1: Performance of CASE
Table 4 compares the accuracy of CASE and that of naive Bayes

multinomial (NBM). The accuracy of CASE varies from 0.6889 -
0.9615. We notice the improvement of CASE over NBM is substan-
tial. To compare with the best performance of NBM (we choose
original8 for Data-1.0, and Data-2.0, and text9 for Data-3.0), CASE
outperforms NBM by 10.71%, 10%, and 2.17% for Data-1.0, Data-
2.0, and Data-3.0, respectively.

Notice for Data-3.0, the improvement of CASE over NBM is not
as high as those for the other 2 datasets; this is because the accu-
racy for the baseline algorithm is already around 94%, and CASE
improves it from 94% to 96%. Considering error rate [10], our im-
provement for Data-3.0 is substantial. For Data-3.0, the error rate
for NBM is (1− 0.9411) = 0.0589, while the error rate for CASE
is (1− 0.9615) = 0.0385. CASE improves the error rate of NBM
by 39.21%. Thus, the improvement that CASE achieves over NBM
for all datasets is substantial.

6.4 RQ2: Performance of Term Cache and API-
Composer Algorithms

Table 5 compares the accuracy of CASE and CASEBASIC . The
accuracy of CASEBASIC varies from 0.6 – 0.9507. We notice the
improvement of CASE over CASEBASIC is substantial, CASE
outperforms CASEBASIC by 14.81%, 10%, and 1.14% for Data-
1.0, Data-2.0, and Data-3.0, respectively.

Table 6 compares the accuracy of CASE with TextC , CodeC ,
andOrigC . We notice that the improvement of CASE over TextC ,
CodeC , and OrigC are substantial. CASE outperforms TextC

by 19.23%, 10%, and 3.47% for Data-1.0, Data-2.0, and Data-3.0,
respectively; CASE outperforms CodeC by 93.75%, 11.01%, and
22.25% for Data-1.0, Data-2.0, and Data-3.0, respectively; CASE
outperforms OrigC by 14.81%, 2.54%, and 8.07% for Data-1.0,
Data-2.0, and Data-3.0, respectively.

8We extract both textual descriptions and code from bug reports.
9We only take textual descriptions from bug reports.

Figure 4: Experiment Results of CASE with Textual Terms
from 1% to 20%.

6.5 RQ3: Effect of Varying the Number of
Terms

We vary the percentage of cached terms from 1% to 20% for
Data-1.0, Data-2.0, and Data-3.0, respectively. Figure 4 presents
the experiment results of CASE with different percentages of cached
terms. We notice that for very small percentages of terms, such as
1% to 4%, the accuracy is relatively low. For example, in Data-3.0,
the accuracy for 1%, 2%, 3%, and 4% are 0.3822, 0.4820, 0.6887,
and 0.8546, respectively. Then the accuracy achieves a peak value
at 5% percent, i.e., 0.6889, 0.7658, and 0.9615, for Data-1.0, Data-
2.0, and Data-3.0, respectively. When the percentage of cached
terms increases from 6% to 20%, the accuracy of CASE is stable.
For example, for Data-3.0, the accuracy for 6%, 10%, 15%, and
20% are 0.9471, 0.9338, 0.9411, 0.9387, respectively.

6.6 RQ4: Important Terms for API Discus-
sion Categorization

From the API discussions, we extract thousands of features (i.e.,
terms). For this RQ, we also report discriminative features from the
thousands of features. We extract the top-10 terms based on their
category-term affinity score. Tables 7, 8, and 9 present the top-10
terms (considering both text and code) per category for Data-1.0,
Data-2.0, and Data-3.0, respectively.

Some terms are good indicators to identify the category of an
API discussion. For example, for the category “borderandMargin”,
terms “inputborder”, “compoundborder”, “titledborder”, “borders”
are all good indicators; for the category “textIconPosition”, terms
“basicbutton”, “windowbutton”, “settextposit”, “alight”, “settren-
derer” are all good indicators.

6.7 RQ5: Time Efficiency of CASE
Table 10 presents the average model building time and predic-

tion time it takes for the 2 algorithms, i.e., CASE and NBM. We
notice that the model building time and prediction time of CASE
are longer than those of NBM. However, they are still reasonable.
On average, we need 4.33 seconds to train a model, and 0.44 sec-
onds to predict the categories of API discussions in a test set. Note
that the model building phase can be done offline (e.g., overnight).

7. RELATED WORK
In this section, we first introduce Hou and Mo’s work which is

most related to ours in Section 7.1. Next, we briefly review studies
on software information sites in Section 7.2. Finally, we describe
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Table 6: Experiment Results for CASE Compared with TextC , CodeC , and OrigC , Respectively.
Datasets CASE TextC Improvement CodeC Improvement OrigC Improvement

Data-1.0 0.6889 0.5778 19.23% 0.3556 93.75% 0.6000 14.81%
Data-2.0 0.7658 0.6962 10.00% 0.6899 11.01% 0.7468 2.54%
Data-3.0 0.9615 0.9303 3.47% 0.7476 22.25% 0.9014 8.04%

Table 7: Top-10 Terms (Considering Both Text and Code) Per Category (Excluding the Category Others) for Data-1.0.
action border dispose drawing focus icon layout rendererEditor title
absolut surround parameter trans foc setcontentpan detail jtree setundecor
tooltip createborder forgot layer keyboard sourc repl child minim
myact javadoc dispos chessboard getbackground geticon layoutmanager nod maxim
print occup proces width addfocuslistener docum constraint treecellrenderer titl
separ model window height focusgain entr poster treecelledit decor

command dear stupid math focusev horizon shift renderer meta
attribut consider clos replac focuslost icon gridbag jcheckbox advis
alignm setborder perform graph affect cast gridwidth listen hid

setaction lower textfield drawstr square getwidth nest accord vis
const border expect getcompon plat background cover figur system

Table 8: Top-10 Terms (Considering Both Text and Code) Per Category for Data-2.0.
action borderAndMar. defaultButton dispose drawing dynamicHie. focus layout loadingIcons
myact createtitleborder initialvalu memor painticon validatetre keyfocus constraint seticonim
attribut getborder messagetyp garb getconwidth stack veto poster director
indentif abstractborder optiontyp report dash subcomponent cares weightx jpeg

lot matteborder defaultbutton twic geticonheight revel focusgain gridx ioexcept
moment compoundborder keylistener lock draw revalis marc smaller shuffl

creatborder emptyborder getkeycod prim rot lightweight testfoc bigger geticon
correspons painborder setdefaultbutton rock drawstr progres grabfoc detail path

iter margin fun getjbutton bufferedim root clearfocus port bles
clean occuo keybind jtextfield bunch neces focuslistenr crus environment

statement pixel bind shuttl scal invalis focusev gridwidth recogn

mouseMotion. OOP rendererEditor social textIconPos. threading titleBar titleBarFont
detect illegalaugument customrenderer netbean dict timer captur metatitlepan

visiblerect getlogger selectionback additem basicbutton isdisplay maxim titlefont
awteventlistener mymainfram setrenderer combobox windowsbutton blink minim myfont

head logger defaultrenderer shout triv fetch renam dialogu
mouselistener login listcellrenderer flag imageur getlayout observ tall
requirement invocationtarget cellhasfoc alloc alttext getloc char getlayeredpan

setcur jam editor explan verticalalignm record repla getcomponent
convers dead jtree bug jradiobutton upload opinion font

mousemov jerom treecelledit opens swingconst rect decor ital
mousedrag guid listen extr align swingworker entr setfont

Table 9: Top-10 Terms (Considering Both Text and Code) Per Category for Data-3.0.
borderAndMargin dispose drawing dynamicHierarchy focus layout textIconPosition titleBar

accrod filechooser transluc prgsitem keyboardfocus layout basicbutton setundecord
inputborder cancelselect phot typeitem veto diction windowsbutton iconif

inparam opens getdevic typemenu firstfield proport layoutlabel trayicon
bordertext freed logger simulation secondfield closest settextposit spacebar

view profiler getlogger unformat testfoc former justf pit
compoundborder demostr newx framepanel focusmanager nextint alight removetitlebar

irrespect childfram movement verticalpan focustpolic quadr settrenderer nullif
titledborder methot seticon jscrollbar getfocus ipad textposit setdecor

borders closewindow drawgraph reload clearfocus setconstraint gettrenderer myrootpaneu
inputparameter wish drawpanel disappear getfocusowner btnpanel cellrenderer reimpl

several studies that categorize various software artifacts in in Sec-
tion 7.3.

7.1 Content Categorization
To our best knowledge, Hou and Mo’s work is the most related

to ours [14]. Hou and Mo proposed the problem of content catego-

rization of API discussion, and they solved the problem by lever-
aging naive Bayes multinomial. They collected 3 API discussion
datasets from Swing forums, and the experiment results showed
naive Bayes multinomial achieved a reasonable performance. Our
work extends theirs; we propose a more accurate algorithm for the
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Table 10: Average Model Building Time and Prediction Time
(Seconds) for CASE and NBM.

Datasets
Model Building Time (s) Prediction Time (s)
CASE NBM CASE NBM

Data-1.0 0.265 0.026 0.004 0.002
Data-2.0 0.673 0.034 0.003 0.007
Data-3.0 12.062 0.081 1.296 0.007

same problem. We first create 3 documents per API discussion:
text, code, and original. And based on these three, we cache terms
for each category. Finally, we combine 3 classifiers built using the
cached terms from these 3 sets of documents. The experiment re-
sults show that our algorithm achieves a substantial improvement
over naive Bayes multinomial.

7.2 Software Information Sites
Software information sites refer to the online media (e.g., social

coding sites, online forums, Q&A sites) which help software en-
gineers improve their performance in the whole lifecycle of soft-
ware development, maintenance and test processes [40]. There
have been a number of studies on software information sites and
social media for software engineering [5, 8, 12, 15, 23, 30, 31, 40].
Storey et al. [30] and Begel et al. [5] write two position papers
to describe the future of research in social media for software en-
gineering. They propose a set of research questions at community,
project, and individual development level. Hong et al. study the de-
veloper social networks in open source projects, and compare them
with the general social networks such as Facebook, twitter [12].
Gottipati et al. develop a semantic search engine to automatically
infer tags for posts in software engineer forums and recover rele-
vant answers according to user queries [8]. Surian et al. mine the
collaboration patterns from a large-scale developer social network
extracted from SourceForge.Net, and recommend developer based
on these mined patterns [31]. Prasetyo et al. propose an automated
technique to categorize software related microblogs into different
labels [23]. Barua et al. use LDA to automatically infer the main
topics in StackOverflow [3]. Jiang et al. study the project dis-
semination phenomenon in GitHub, and they conclude that social
relationships are not reciprocal, and social links play a important
role for project dissemination [15]. Xia et al. propose a compos-
ite method which combines 3 components (i.e., multi-label rank-
ing component, similarity based ranking component, and tag-term
based ranking component) to recommend tags in software informa-
tion sites [40].

Hou and Li study the API usage obstacles on 172 API discus-
sions in Swing forums, and they analyze the root cause of these
obstacles [13]. Rupakheti and Hou perform an empirical study on
API usage problem in Swing forum, and build a critic to advise the
usage of an API [25]. Zhang and Hou apply natural language pro-
cessing and sentiment analysis techniques to extract problematic
API features from forum discussions [41].

Our study is orthogonal to the above studies; after a developer
posts an API discussion in an online forum, our tool automatically
predicts its category.

7.3 Software Categorization
There have been a number of studies that categorize various soft-

ware artifacts [1,4,11,16,17,21,22,29,33,35,36,38]. Baruchelli and
Giancarlo propose a fuzzy set based approach to classify software
components [4]. Kawaguchi et al. propose a tool named MUD-

ABlue which not only automatically categorizes software system-
s, but also extract categories from the software systems collection
automatically [16]. Sandhu et al. use different pure and hybrid ap-
proaches such as Probabilistic Latent Semantic Analysis (PLSA)
approach, LSA, Singular Value Decomposition (SVD) technique,
and LSA Semi-Discrete Matrix Decomposition (SDD) to classify
software components [26]. Antoniol et al. apply text mining tech-
niques to distinguish bug reports from enhancements on Mozilla,
Eclipse, and JBoss [1]. Kim et al. use machine learning tech-
niques to classify if a change set is clean or buggy [17]. Hindle
et al. build an automated classifier to assign a change request to
one of the 5 categories: corrective, adaptive, perfective, feature ad-
dition, and non-functional improvement, using machine learning
techniques [11]. Tian et al. propose a semi-supervised learning al-
gorithm to identify Linux bug fixing patches based on the changes
and commit messages recorded in code repositories [35]. Men-
zies and Marcus propose a machine learning algorithm to predict
the severity of a bug report [22]. Mcmillan et al. use Application
Programming Interface (API) calls from third-party libraries as at-
tributes to automatically classify software applications [21]. Thung
et al. collect various features from bug and code repositories to pre-
dict the type of a defect [33]. Tian et al. propose DRONE which
predicts the priority of a bug report by leveraging a logistic regres-
sion algorithm [36]. Somasundaram and Murphy propose the usage
of LDA to predict the correct component of a bug report [29]. Xia
et al. use genetic algorithm to combine different multi-label learn-
ing algorithms to categorize failure reports [38].

Our study is orthogonal to the above studies; we categorize a
different kind of software artifacts namely API discussions.

8. THREATS TO VALIDITY
In this section, we highlight threats to internal validity, external

validity, and construct validity.

Threats to internal validity relate to errors in our experiments.
We have double checked our experiments and the datasets collected
from the 4 projects, still there could be errors that we did not notice.
We use the same datasets as those used by Hou and Mo [14].

Threats to external validity relate to the generalizability of our re-
sults. We have evaluated our approach using 1,035 API discussions
from Swing forum, and investigate 25 different categories. In the
future, we plan to reduce this threat further by analyzing more API
discussions from more software forums.

Threats to construct validity refer to the suitability of our eval-
uation measures. We use the average accuracy scores as our e-
valuation measure which is also used by past studies to evaluate
the effectiveness of a prediction technique in various software en-
gineering studies [11, 14, 17, 28]. Thus, we believe there is little
threat to construct validity.

9. CONCLUSION AND FUTURE WORK
In this paper, we propose a more accurate algorithm named CASE

for content categorization of API discussions. CASE has 3 compo-
nents which analyze an API discussion considering different kinds
of data: text, code, and both text and code (original). For each
of the component, CASE first caches terms that have the highest
affinity scores to each category, and then builds a classifier using
the cached terms. Finally, CASE combines these 3 classifiers to
achieve a better performance. The experiment results on 3 API dis-
cussion datasets shows that CASE achieves accuracy scores of 0.69,
0.77, and 0.96 for each of the 3 datasets respectively, which outper-
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forms the accuracy scores of the method used by Hou and Mo by
11%, 10%, and 2%, respectively.

In the future, we plan to evaluate CASE using more API discus-
sions from various online forums, and evaluate CASE using differ-
ent underlying classifiers (such as SVM and decision tree [10]), an-
alyze the misclassified cases to understand why our approach fail-
s to correctly classify a number of API discussions, and develop
a more accurate algorithm (such as ensemble learning algorithm-
s [6]). We also plan to evaluate our algorithms using the longitudi-
nal data setup as described in [32, 39].
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