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ABSTRACT
Kernel machines have been shown as the state-of-the-art
learning techniques for classification. In this paper, we pro-
pose a novel general framework of learning the Unified Ker-
nel Machines (UKM) from both labeled and unlabeled data.
Our proposed framework integrates supervised learning, semi-
supervised kernel learning, and active learning in a unified
solution. In the suggested framework, we particularly fo-
cus our attention on designing a new semi-supervised ker-
nel learning method, i.e., Spectral Kernel Learning (SKL),
which is built on the principles of kernel target alignment
and unsupervised kernel design. Our algorithm is related
to an equivalent quadratic programming problem that can
be efficiently solved. Empirical results have shown that
our method is more effective and robust to learn the semi-
supervised kernels than traditional approaches. Based on
the framework, we present a specific paradigm of unified
kernel machines with respect to Kernel Logistic Regresions
(KLR), i.e., Unified Kernel Logistic Regression (UKLR). We
evaluate our proposed UKLR classification scheme in com-
parison with traditional solutions. The promising results
show that our proposed UKLR paradigm is more effective
than the traditional classification approaches.

Categories and Subject Descriptors
I.5.2 [PATTERN RECOGNITION]: Design Methodol-
ogy—Classifier design and evaluation; H.2.8 [Database Man-
agement]: Database Applications—Data mining

General Terms
Design, Algorithms, Experimentation

Keywords
Classification, Kernel Machines, Spectral Kernel Learning,
Supervised Learning, Semi-Supervised Learning, Unsuper-
vised Kernel Design, Kernel Logistic Regressions, Active
Learning
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1. INTRODUCTION
Classification is a core data mining technique and has been

actively studied in the past decades. In general, the goal of
classification is to assign unlabeled testing examples with a
set of predefined categories. Traditional classification meth-
ods are usually conducted in a supervised learning way, in
which only labeled data are used to train a predefined clas-
sification model. In literature, a variety of statistical models
have been proposed for classification in the machine learn-
ing and data mining communities. One of the most popu-
lar and successful methodologies is the kernel-machine tech-
niques, such as Support Vector Machines (SVM) [25] and
Kernel Logistic Regressions (KLR) [29]. Like other early
work for classification, traditional kernel-machine methods
are usually performed in the supervised learning way, which
consider only the labeled data in the training phase.

It is obvious that a good classification model should take
advantages on not only the labeled data, but also the un-
labeled data when they are available. Learning on both la-
beled and unlabeled data has become an important research
topic in recent years. One way to exploit the unlabeled data
is to use active learning [7]. The goal of active learning is
to choose the most informative example from the unlabeled
data for manual labeling. In the past years, active learning
has been studied for many classification tasks [16].

Another emerging popular technique to exploit unlabeled
data is semi-supervised learning [5], which has attracted
a surge of research attention recently [30]. A variety of
machine-learning techniques have been proposed for semi-
supervised learning, in which the most well-known approaches
are based on the graph Laplacians methodology [28, 31, 5].
While promising results have been popularly reported in
this research topic, there is so far few comprehensive semi-
supervised learning scheme applicable for large-scale classi-
fication problems.

Although supervised learning, semi-supervised learning
and active learning have been studied separately, so far
there is few comprehensive scheme to combine these tech-
niques effectively together for classification tasks. To this
end, we propose a general framework of learning the Uni-
fied Kernel Machines (UKM) [3, 4] by unifying supervised
kernel-machine learning, semi-supervised learning, unsuper-
vised kernel design and active learning together for large-
scale classification problems.

The rest of this paper is organized as follows. Section 2 re-
views related work of our framework and proposed solutions.
Section 3 presents our framework of learning the unified ker-



nel machines. Section 4 proposes a new algorithm of learning
semi-supervised kernels by Spectral Kernel Learning (SKL).
Section 5 presents a specific UKM paradigm for classifica-
tion, i.e., the Unified Kernel Logistic Regression (UKLR).
Section 6 evaluates the empirical performance of our pro-
posed algorithm and the UKLR classification scheme. Sec-
tion 7 sets out our conclusion.

2. RELATED WORK
Kernel machines have been widely studied for data clas-

sification in the past decade. Most of earlier studies on
kernel machines usually are based on supervised learning.
One of the most well-known techniques is the Support Vec-
tor Machines, which have achieved many successful stories
in a variety of applications [25]. In addition to SVM, a
series of kernel machines have also been actively studied,
such as Kernel Logistic Regression [29], Boosting [17], Reg-
ularized Least-Square (RLS) [12] and Minimax Probability
Machines (MPM) [15], which have shown comparable per-
formance with SVM for classification. The main theoretical
foundation behind many of the kernel machines is the the-
ory of regularization and reproducing kernel Hilbert space
in statistical learning [17, 25]. Some theoretical connections
between the various kernel machines have been explored in
recent studies [12].

Semi-supervised learning has recently received a surge of
research attention for classification [5, 30]. The idea of semi-
supervised learning is to use both labeled and unlabeled data
when constructing the classifiers for classification tasks. One
of the most popular solutions in semi-supervised learning
is based on the graph theory [6], such as Markov random
walks [22], Gaussian random fields [31], Diffusion models [13]
and Manifold learning [2]. They have demonstrated some
promising results on classification.

Some recent studies have begun to seek connections be-
tween the graph-based semi-supervised learning and the ker-
nel machine learning. Smola and Kondor showed some theo-
retical understanding between kernel and regularization based
on the graph theory [21]. Belkin et al. developed a frame-
work for regularization on graphs and provided some anal-
ysis on generalization error bounds [1]. Based on the emerg-
ing theoretical connections between kernels and graphs, some
recent work has proposed to learn the semi-supervised ker-
nels by graph Laplacians [32]. Zhang et al. recently pro-
vided a theoretical framework of unsupervised kernel design
and showed that the graph Laplacians solution can be con-
sidered as an equivalent kernel learning approach [27]. All
of the above studies have formed the solid foundation for
semi-supervised kernel learning in this work.

To exploit the unlabeled data, another research attention
is to employ active learning for reducing the labeling efforts
in classification tasks. Active learning, or called pool-based
active learning, has been proposed as an effective technique
for reducing the amount of labeled data in traditional super-
vised classification tasks [19]. In general, the key of active
learning is to choose the most informative unlabeled exam-
ples for manual labeling. A lot of active learning meth-
ods have been proposed in the community. Typically they
measure the classification uncertainty by the amount of dis-
agreement to the classification model [9, 10] or measure the
distance of each unlabeled example away from the classifi-
cation boundary [16, 24].

3. FRAMEWORK OF LEARNING UNIFIED
KERNEL MACHINES

In this section, we present the framework of learning the
unified kernel machines by combining supervised kernel ma-
chines, semi-supervised kernel learning and active learning
techniques into a unified solution. Figure 1 gives an overview
of our proposed scheme. For simplicity, we restrict our dis-
cussions to classification problems.

Let M(K, α) denote a kernel machine that has some un-
derlying probabilistic model, such as kernel logistic regres-
sions (or support vector machines). In general, a kernel ma-
chine contains two components, i.e., the kernel K (either a
kernel function or simply a kernel matrix), and the model pa-
rameters α. In traditional supervised kernel-machine learn-
ing, the kernel K is usually a known parametric kernel func-
tion and the goal of the learning task is usually to determine
the model parameter α. This often limits the performance of
the kernel machine if the specified kernel is not appropriate.

To this end, we propose a unified scheme to learn the uni-
fied kernel machines by learning on both the kernel K and
the model parameters α together. In order to exploit the un-
labeled data, we suggest to combine semi-supervised kernel
learning and active learning techniques together for learn-
ing the unified kernel machines effectively from the labeled
and unlabeled data. More specifically, we outline a general
framework of learning the unified kernel machine as follows.

Figure 1: Learning the Unified Kernel Machines

Let L denote the labeled data and U denote the unlabeled
data. The goal of the unified kernel machine learning task is
to learn the kernel machineM(K∗, α∗) that can classify the
data effectively. Specifically, it includes the following five
steps:

• Step 1. Kernel Initialization

The first step is to initialize the kernel component K0

of the kernel machineM(K0, α0). Typically, users can
specify the initial kernel K0 (function or matrix) with
a standard kernel. When some domain knowledge is
available, users can also design some kernel with do-
main knowledge (or some data-dependent kernels).

• Step 2. Semi-Supervised Kernel Learning

The initial kernel may not be good enough to clas-
sify the data correctly. Hence, we suggest to employ



the semi-supervised kernel learning technique to learn
a new kernel K by engaging both the labeled L and
unlabeled data U available.

• Step 3. Model Parameter Estimation

When the kernel K is known, to estimate the param-
eters of the kernel machines based on some model as-
sumption, such as Kernel Logistic Regression or Sup-
port Vector Machines, one can simply employ the stan-
dard supervised kernel-machine learning to solve the
model parameters α.

• Step 4. Active Learning

In many classification tasks, labeling cost is expensive.
Active learning is an important method to reduce hu-
man efforts in labeling. Typically, we can choose a
batch of most informative examples S that can most ef-
fectively update the current kernel machineM(K, α).

• Step 5. Convergence Evaluation

The last step is the convergence evaluation in which we
check whether the kernel machine is good enough for
the classification task. If not, we will repeat the above
steps until a satisfied kernel machine is acquired.

This is a general framework of learning unified kernel ma-
chines. In this paper, we focus our main attention on the
the part of semi-supervised kernel learning technique, which
is a core component of learning the unified kernel machines.

4. SPECTRAL KERNEL LEARNING
We propose a new semi-supervised kernel learning method,

which is a fast and robust algorithm for learning semi-supervised
kernels from labeled and unlabeled data. In the following
parts, we first introduce the theoretical motivations and then
present our spectral kernel learning algorithm. Finally, we
show the connections of our method to existing work and
justify the effectiveness of our solution from empirical ob-
servations.

4.1 Theoretical Foundation
Let us first consider a standard supervised kernel learn-

ing problem. Assume that the data (X, Y ) are drawn from
an unknown distribution D. The goal of supervised learn-
ing is to find a prediction function p(X) that minimizes the
following expected true loss:

E(X,Y )∼DL(p(X), Y ),

where E(X,Y )∼D denotes the expectation over the true un-
derlying distribution D. In order to achieve a stable estima-
tion, we usually need to restrict the size of hypothesis func-
tion family. Given l training examples (x1,y1),. . .,(xl,yl),
typically we train a prediction function p̂ in a reproducing
Hilbert space H by minimizing the empirical loss [25]. Since
the reproducing Hilbert space can be large, to avoid over-
fitting problems, we often consider a regularized method as
follow:

p̂ = arg inf
p∈H

�
1

l

l�
i=1

L(p(xi), yi) + λ||p||2H
�

, (1)

where λ is a chosen positive regularization parameter. It
can be shown that the solution of (1) can be represented as

the following kernel method:

p̂(x) =
l�

i=1

α̂ik(xi,x)

α = arg inf
α∈Rl

�
1

l

l�
i=1

L (p(xi), yi) + λ

l�
i,j=1

αiαjk(xi, xj)

�
,

where α is a parameter vector to be estimated from the
data and k is a kernel, which is known as kernel func-
tion. Typically a kernel returns the inner product between
the mapping images of two given data examples, such that
k(xi,xj) = 〈Φ(xi), Φ(xj)〉 for xi,xj ∈ X .

Let us now consider a semi-supervised learning setting.
Given labeled data {(xi, yi)}li=1 and unlabeled data {xj}nj=l+1,
we consider to learn the real-valued vectors f ∈ R

n by the
following semi-supervised learning method:

f̂ = arg inf
f∈Rn

�
1

n

n�
i=1

L(fi, yi) + λf�K−1f

�
, (2)

where K is an n × n kernel matrix with Ki,j = k(xi,xj).
Zhang et al. [27] proved that the solution of the above semi-
supervised learning is equivalent to the solution of standard
supervised learning in (1), such that

f̂j = p̂(xj) j = 1, . . . , n. (3)

The theorem offers a principle of unsupervised kernel de-
sign: one can design a new kernel k̄(·, ·) based on the unla-
beled data and then replace the original kernel k by k̄ in the
standard supervised kernel learning. More specifically, the
framework of spectral kernel design suggests to design the
new kernel matrix K̄ by a function g as follows:

K̄ =

n�
i=1

g(λi)viv
�
i , (4)

where (λi,vi) are the eigen-pairs of the original kernel ma-
trix K, and the function g(·) can be regarded as a filter func-
tion or a transformation function that modifies the spectra
of the kernel. The authors in [27] show a theoretical justifi-
cation that designing a kernel matrix with faster spectral de-
cay rates should result in better generalization performance,
which offers an important principle in learning an effective
kernel matrix.

On the other hand, there are some recent papers that
have studied theoretical principles for learning effective ker-
nel functions or matrices from labeled and unlabeled data.
One important work is the kernel target alignment, which
can be used not only to assess the relationship between the
feature spaces by two kernels, but also to measure the simi-
larity between the feature space by a kernel and the feature
space induced by labels [8]. Specifically, given two kernel
matrices K1 and K2, their relationship is defined by the
following score of alignment :

Definition 1. Kernel Alignment: The empirical align-
ment of two given kernels K1 and K2 with respect to the
sample set S is the quantity:

Â(K1, K2) =
〈K1, K2〉F�〈K1, K1〉F 〈K2, K2〉F

(5)



where Ki is the kernel matrix induced by the kernel ki and
〈·, ·〉 is the Frobenius product between two matrices, i.e.,
〈K1, K2〉F =

�n
i,j=1 k1(xi,xj)k2(xi,xj).

The above definition of kernel alignment offers a princi-
ple to learn the kernel matrix by assessing the relationship
between a given kernel and a target kernel induced by the
given labels. Let y = {yi}li=1 denote a vector of labels in
which yi ∈ {+1,−1} for binary classification. Then the tar-
get kernel can be defined as T = yy�. Let K be the kernel
matrix with the following structure

K =

�
Ktr Ktrt

K�
trt Kt

�
(6)

where Kij = 〈Φ(xi), Φ(xj)〉, Ktr denotes the matrix part of
“train-data block” and Kt denotes the matrix part of “test-
data block.”

The theory in [8] provides the principle of learning the
kernel matrix, i.e., looking for a kernel matrix K with good
generalization performance is equivalent to finding the ma-
trix that maximizes the following empirical kernel alignment
score:

Â(Ktr, T ) =
〈Ktr, T 〉F�〈Ktr, Ktr〉F 〈T, T 〉F

(7)

This principle has been used to learn the kernel matrices
with multiple kernel combinations [14] and also the semi-
supervised kernels from graph Laplacians [32]. Motivated
by the related theoretical work, we propose a new spectral
kernel learning (SKL) algorithm which learns spectra of the
kernel matrix by obeying both the principle of unsupervised
kernel design and the principle of kernel target alignment.

4.2 Algorithm
Assume that we are given a set of labeled data L =
{xi, yi}li=1, a set of unlabeled data U = {xi}ni=l+1, and
an initial kernel matrix K. We first conduct the eigen-
decomposition of the kernel matrix:

K =
n�

i=1

λiviv
�
i , (8)

where (λi,vi) are eigen pairs of K and are assumed in a
decreasing order, i.e., λ1 ≥ λ2 ≥ . . . ≥ λn. For efficiency
consideration, we select the top d eigen pairs, such that

Kd =

d�
i=1

λiviv
�
i ≈ K , (9)

where the parameter d� n is a dimension cutoff factor that
can be determined by some criteria, such as the cumulative
eigen energy.

Based on the principle of unsupervised kernel design, we
consider to learn the kernel matrix as follows

K̄ =

d�
i=1

µiviv
�
i , (10)

where µi ≥ 0 are spectral coefficients of the new kernel ma-
trix. The goal of spectral kernel learning (SKL) algorithm is
to find the optimal spectral coefficients µi for the following

optimization

max
K̄,µ

Â(K̄tr, T ) (11)

subject to K̄ =
�d

i=1 µiviv
�
i

trace(K̄) = 1

µi ≥ 0,

µi ≥ Cµi+1, i = 1, . . . , d− 1 ,

where C is introduced as a decay factor that satisfies C ≥ 1,
vi are top d eigen vectors of the original kernel matrix K,
K̄tr is the kernel matrix restricted to the (labeled) training
data and T is the target kernel induced by labels. Note
that C is introduced as an important parameter to control
the decay rate of spectral coefficients that will influence the
overall performance of the kernel machine.

The above optimization problem belongs to convex opti-
mization and is usually regarded as a semi-definite program-
ming problem (SDP) [14], which may not be computation-
ally efficient. In the following, we turn it into a Quadratic
Programming (QP) problem that can be solved much more
efficiently.

By the fact that the objective function (7) is invariant
to the constant term 〈T, T 〉F , we can rewrite the objective
function into the following form

〈K̄tr, T 〉F�
〈K̄tr, K̄tr〉F

. (12)

The above alignment is invariant to scales. In order to re-
move the trace constraint in (11), we consider the following
alternative approach. Instead of maximizing the objective
function (12) directly, we can fix the numerator to 1 and
then minimize the denominator. Therefore, we can turn the
optimization problem into:

min
µ

�
〈K̄tr, K̄tr〉F (13)

subject to K̄ =
�d

i=1 µiviv
�
i

〈K̄tr, T 〉F = 1

µi ≥ 0,

µi ≥ Cµi+1, i = 1, . . . , d− 1 .

This minimization problem without the trace constraint is
equivalent to the original maximization problem with the
trace constraint.

Let vec(A) denote the column vectorization of a matrix A
and let D = [vec(V1,tr) . . . vec(Vd,tr)] be a constant matrix
with size of l2× d, in which the d matrices of Vi = viv

�
i are

with size of l × l. It is not difficult to show that the above
problem is equivalent to the following optimization

min
µ

||Dµ|| (14)

subject to vec(T )�Dµ = 1

µi ≥ 0

µi ≥ Cµi+1, i = 1, . . . , d− 1 .

Minimizing the norm is then equivalent to minimizing the
squared norm. Hence, we can obtain the final optimization
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Figure 2: Illustration of cumulative eigen energy and the spectral coefficients of different decay factors on
the Ionosphere dataset. The initial kernel is a linear kernel and the number of labeled data is 20.
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Figure 3: Classification performance of semi-supervised kernels with different decay factors on the Ionosphere
dataset. The initial kernel is a linear kernel and the number of labeled data is 20.

problem as

min
µ

µ�D�Dµ

subject to vec(T )�Dµ = 1

µi ≥ 0

µi ≥ Cµi+1, i = 1, . . . , d− 1 .

This is a standard Quadratic Programming (QP) problem
that can be solved efficiently.

4.3 Connections and Justifications
The essential of our semi-supervised kernel learning method

is based on the theories of unsupervised kernel design and
kernel target alignment. More specifically, we consider a
dimension-reduction effective method to learn the semi-supervised
kernel that maximizes the kernel alignment score. By exam-
ining the work on unsupervised kernel design, the following
two pieces of work can be summarized as a special case of
spectral kernel learning framework:

• Cluster Kernel

This method adopts a “[1,. . . ,1,0,. . . ,0]” kernel that

has been used in spectral clustering [18]. It sets the
top spectral coefficients to 1 and the rest to 0, i.e.,

µi =

�
1 for i ≤ d
0 for i > d

. (15)

For a comparison, we refer to this method as “Cluster
kernel” denoted by KCluster .

• Truncated Kernel

Another method is called the truncated kernel that
keeps only the top d spectral coefficients

µi =

�
λi for i ≤ d
0 for i > d

, (16)

where λi are the top eigen values of an initial kernel.
We can see that this is exactly the method of ker-
nel principal component analysis [20] that keeps only
the d most significant principal components of a given
kernel. For a comparison, we denote this method as
KTrunc.
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Figure 4: Example of Spectral coefficients and performance impacted by different decay factors on the
Ionosphere dataset. The initial kernel is an RBF kernel and the number of labeled data is 20.
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Figure 5: Classification performance of semi-supervised kernels with different decay factors on the Heart
dataset. The initial kernel is a linear kernel and the number of labeled data is 20.

In our case, in comparison with semi-supervised kernel
learning methods by graph Laplacians, our work is similar
to the approach in [32], which learns the spectral transfor-
mation of graph Laplacians by kernel target alignment with
order constraints. However, we should emphasize two im-
portant differences that will explain why our method can
work more effectively.

First, the work in [32] belongs to traditional graph based
semi-supervised learning methods which assume the kernel
matrix is derived from the spectral decomposition of graph
Laplacians. Instead, our spectral kernel learning method
learns on any initial kernel and assume the kernel matrix is
derived from the spectral decomposition of the normalized
kernel.

Second, compared to the kernel learning method in [14],
the authors in [32] proposed to add order constraints into
the optimization of kernel target alignment [8] to enforce the
constraints of graph smoothness. In our case, we suggest
a decay factor C to constrain the relationship of spectral
coefficients in the optimization that can make the spectral
coefficients decay faster. In fact, if we ignore the difference
of graph Laplacians and assume that the initial kernel in our
method is given as K ≈ L−1, we can see that the method

in [32] can be regarded as a special case of our method when
the decay factor C is set to 1 and the dimension cut-off
parameter d is set to n.

4.4 Empirical Observations
To argue that C = 1 in the spectral kernel learning al-

gorithm may not be a good choice for learning an effective
kernel, we illustrate some empirical examples to justify the
motivation of our spectral kernel learning algorithm. One
goal of our spectral kernel learning methodology is to attain
a fast decay rate of the spectral coefficients of the kernel
matrix. Figure 2 illustrates an example of the change of the
resulting spectral coefficients using different decay factors in
our spectral kernel learning algorithms. From the figure, we
can see that the curves with larger decay factors (C = 2, 3)
have faster decay rates than the original kernel and the one
using C = 1. Meanwhile, we can see that the cumulative
eigen energy score converges to 100% quickly when the num-
ber of dimensions is increased. This shows that we may use
much small number of eigen-pairs in our semi-supervised
kernel learning algorithm for large-scale problems.

To examine more details in the impact of performance
with different decay factors, we evaluate the classification



performance of spectral kernel learning methods with dif-
ferent decay factors in Figure 3. In the figure, we compare
the performance of different kernels with respect to spectral
kernel design methods. We can see that two unsupervised
kernels, KTrunc and KCluster , tend to perform better than
the original kernel when the dimension is small. But their
performances are not very stable when the number of di-
mensions is increased. For comparison, the spectral kernel
learning method achieves very stable and good performance
when the decay factor C is larger than 1. When the decay
factor is equal to 1, the performance becomes unstable due
to the slow decay rates observed from our previous results
in Figure 3. This observation matches the theoretical jus-
tification [27] that a kernel with good performance usually
favors a faster decay rate of spectral coefficients.

Figure 4 and Figure 5 illustrate more empirical examples
based on different initial kernels, in which similar results
can be observed. Note that our suggested kernel learning
method can learn on any valid kernel, and different initial
kernels will impact the performance of the resulting spectral
kernels. It is usually helpful if the initial kernel is provided
with domain knowledge.

5. UNIFIED KERNEL LOGISTIC
REGRESSION

In this section, we present a specific paradigm based on
the proposed framework of learning unified kernel machines.
We assume the underlying probabilistic model of the ker-
nel machine is Kernel Logistic Regression (KLR). Based on
the UKM framework, we develop the Unified Kernel Lo-
gistic Regression (UKLR) paradigm to tackle classification
tasks. Note that our framework is not restricted to the KLR
model, but also can be widely extended for many other ker-
nel machines, such as Support Vector Machine (SVM) and
Regularized Least-Square (RLS) classifiers.

Similar to other kernel machines, such as SVM, a KLR
problem can be formulated in terms of a standard regular-
ized form of loss+penalty in the reproducing kernel Hilbert
space (RKHS):

min
f∈HK

1

l

l�
i=1

ln(1 + e−yif(xi)) +
λ

2
||f ||2HK

, (17)

where HK is the RKHS by a kernel K and λ is a regular-
ization parameter. By the representer theorem, the optimal
f(x) has the form:

f(x) =

l�
i=1

αiK(x,xi) , (18)

where αi are model parameters. Note that we omit the con-
stant term in f(x) for simplified notations. To solve the
KLR model parameters, there are a number of available
techniques for effective solutions [29].

When the kernel K and the model parameters α are avail-
able, we use the following solution for active learning, which
is simple and efficient for large-scale problems. More specifi-
cally, we measure the information entropy of each unlabeled
data example as follows

H(x; α, K) = −
NC�
i=1

p(Ci|x)log(p(Ci|x)) , (19)

Algorithm: Unified Kernel Logistic Regresssion
Input

• K0: Initial normalized kernel

• L: Set of labeled data

• U : Set of unlabeled data

Repeat

• Spectral Kernel Learning
K ← Spectral Kernel(K0, L, U);

• KLR Parameter Estimation
α ← KLR Solver(L, K);

• Convergence Test
If (converged), Exit Loop;

• Active Learning
x∗ ← maxx∈U H(x;α, K)
L∗ ← L ∪ {x∗}, U∗ ← U − {x∗}

Until converged.
Output

• UKLR =M(K, α).

Figure 6: The UKLR Algorithm.

where NC is the number of classes and Ci denotes the ith

class and p(Ci|x) is the probability of the data example x
belonging to the ith class which can be naturally obtained
by the current KLR model (α, K). The unlabeled data ex-
amples with maximum values of entropy will be considered
as the most informative data for labeling.

By unifying the spectral kernel learning method proposed
in Section 3, we summarize the proposed algorithm of Uni-
fied Kernel Logistic Regression (UKLR) in Figure 6. In the
algorithm, note that we can usually initialize a kernel by a
standard kernel with appropriate parameters determined by
cross validation or by a proper design of the initial kernel
with domain knowledge.

6. EXPERIMENTAL RESULTS
We discuss our empirical evaluation of the proposed frame-

work and algorithms for classification. We first evaluate the
effectiveness of our suggested spectral kernel learning algo-
rithm for learning semi-supervised kernels and then com-
pare the performance of our unified kernel logistic regression
paradigm with traditional classification schemes.

6.1 Experimental Testbed and Settings
We use the datasets from UCI machine learning reposi-

tory1. Four datasets are employed in our experiments. Ta-
ble 1 shows the details of four UCI datasets in our experi-
ments.

For experimental settings, to examine the influences of
different training sizes, we test the compared algorithms on
four different training set sizes for each of the four UCI
datasets. For each given training set size, we conduct 20
random trials in which a labeled set is randomly sampled

1www.ics.uci.edu/ mlearn/MLRepository.html



Table 1: List of UCI machine learning datasets.
Dataset #Instances #Features #Classes

Heart 270 13 2
Ionosphere 351 34 2
Sonar 208 60 2
Wine 178 13 3

from the whole dataset and all classes must be present in
the sampled labeled set. The rest data examples of the
dataset are then used as the testing (unlabeled) data. To
train a classifier, we employ the standard KLR model for
classification. We choose the bounds on the regularization
parameters via cross validation for all compared kernels to
avoid an unfair comparison. For multi-class classification,
we perform one-against-all binary training and testing and
then pick the class with the maximum class probability.

6.2 Semi-Supervised Kernel Learning
In this part, we evaluate the performance of our spectral

kernel learning algorithm for learning semi-supervised ker-
nels. We implemented our algorithm by a standard Matlab
Quadratic Programming solver (quadprog). The dimension-
cut parameter d in our algorithm is simply fixed to 20 with-
out further optimizing. Note that one can easily determine
an appropriate value of d by examining the range of the
cumulative eigen energy score in order to reduce the com-
putational cost for large-scale problems. The decay factor
C is important for our spectral kernel learning algorithm.
As we have shown examples before, C must be a positive
real value greater than 1. Typically we favor a larger decay
factor to achieve better performance. But it must not be
set too large since the too large decay factor may result in
the overly stringent constraints in the optimization which
gives no solutions. In our experiments, C is simply fixed to
constant values (greater than 1) for the engaged datasets.

For a comparison, we compare our SKL algorithms with
the state-of-the-art semi-supervised kernel learning method
by graph Laplacians [32], which is related to a quadrati-
cally constrained quadratic program (QCQP). More specif-
ically, we have implemented two graph Laplacians based
semi-supervised kernels by order constraints [32]. One is the
order-constrained graph kernel (denoted as “Order”) and
the other is the improved order-constrained graph kernel
(denoted as “Imp-Order”), which removes the constraints
from constant eigenvectors. To carry a fair comparison, we
use the top 20 smallest eigenvalues and eigenvectors from
the graph Laplacian which is constructed with 10-NN un-
weighted graphs. We also include three standard kernels for
comparisons.

Table 2 shows the experimental results of the compared
kernels (3 standard and 5 semi-supervised kernels) based on
KLR classifiers on four UCI datasets with different sizes of
labeled data. Each cell in the table has two rows: the upper
row shows the average testing set accuracies with standard
errors; and the lower row gives the average run time in sec-
onds for learning the semi-supervised kernels on a 3GHz
desktop computer. We conducted a paired t-test at signifi-
cance level of 0.05 to assess the statistical significance of the
test set accuracy results. From the experimental results,
we found that the two order-constrained based graph ker-
nels perform well in the Ionosphere and Wine datasets, but
they do not achieve important improvements on the Heart

and Sonar datasets. Among all the compared kernels, the
semi-supervised kernels by our spectral kernel learning algo-
rithms achieve the best performances. The semi-supervised
kernel initialized with an RBF kernel outperforms other ker-
nels in most cases. For example, in Ionosphere dataset, an
RBF kernel with 10 initial training examples only achieves
73.56% test set accuracy, and the SKL algorithm can boost
the accuracy significantly to 83.36%. Finally, looking into
the time performance, the average run time of our algorithm
is less than 10% of the previous QCQP algorithms.

6.3 Unified Kernel Logistic Regression
In this part, we evaluate the performance of our proposed

paradigm of unified kernel logistic regression (UKLR). As
a comparison, we implement two traditional classification
schemes: one is traditional KLR classification scheme that
is trained on randomly sampled labeled data, denoted as
“KLR+Rand.” The other is the active KLR classification
scheme that actively selects the most informative examples
for labeling, denoted as “KLR+Active.” The active learn-
ing strategy is based on a simple maximum entropy criteria
given in the pervious section. The UKLR scheme is imple-
mented based on the algorithm in Figure 6.

For active learning evaluation, we choose a batch of 10
most informative unlabeled examples for labeling in each
trial of evaluations. Table 3 summarizes the experimental re-
sults of average test set accuracy performances on four UCI
datasets. From the experimental results, we can observe
that the active learning classification schemes outperform
the randomly sampled classification schemes in most cases.
This shows the suggested simple active learning strategy is
effectiveness. Further, among all compared schemes, the
suggested UKLR solution significantly outperforms other
classification approaches in most cases. These results show
that the unified scheme is effective and promising to inte-
grate traditional learning methods together in a unified so-
lution.

6.4 Discussions
Although the empirical results have shown that our scheme

is promising, some open issues in our solution need be fur-
ther explored in future work. One problem is to investigate
more effective active learning methods in selecting the most
informative examples for labeling. One solution to this issue
is to employ the batch mode active learning methods that
can be more efficient for large-scale classification tasks [11,
23, 24]. Moreover, we will study more effective kernel learn-
ing algorithms without the assumption of spectral kernels.
Further, we may examine the theoretical analysis of gener-
alization performance of our method [27]. Finally, we may
combine some kernel machine speedup techniques to deploy
our scheme efficiently for large-scale applications [26].

7. CONCLUSION
This paper presented a novel general framework of learn-

ing the Unified Kernel Machines (UKM) for classification.
Different from traditional classification schemes, our UKM
framework integrates supervised learning, semi-supervised
learning, unsupervised kernel design and active learning in
a unified solution, making it more effective for classification
tasks. For the proposed framework, we focus our attention
on tackling a core problem of learning semi-supervised ker-
nels from labeled and unlabeled data. We proposed a Spec-



Table 2: Classification performance of different kernels using KLR classifiers on four datasets. The mean
accuracies and standard errors are shown in the table. 3 standard kernels and 5 semi-supervised kernels are
compared. Each cell in the table has two rows. The upper row shows the test set accuracy with standard
error; the lower row gives the average time used in learning the semi-supervised kernels (“Order” and “Imp-
Order” kernels are sovled by SeDuMi/YALMIP package; “SKL” kernels are solved directly by the Matlab
quadprog function.

Train Standard Kernels Semi-Supervised Kernels
Size Linear Quadratic RBF Order Imp-Order SKL(Linear) SKL(Quad) SKL(RBF)

Heart

10
67.19 ± 1.94 71.90 ± 1.23 70.04 ± 1.61 63.60 ± 1.94 63.60 ± 1.94 70.58 ± 1.63 72.33 ± 1.60 73.37 ± 1.50

— — — ( 0.67 ) ( 0.81 ) ( 0.07 ) ( 0.06 ) ( 0.06 )

20
67.40 ± 1.87 70.36 ± 1.51 72.64 ± 1.37 65.88 ± 1.69 65.88 ± 1.69 76.26 ± 1.29 75.36 ± 1.30 76.30 ± 1.33

— — — ( 0.71 ) ( 0.81 ) ( 0.06 ) ( 0.06 ) ( 0.06 )

30
75.42 ± 0.88 70.71 ± 0.83 74.40 ± 0.70 71.73 ± 1.14 71.73 ± 1.14 78.42 ± 0.59 78.65 ± 0.52 79.23 ± 0.58

— — — ( 0.95 ) ( 0.97 ) ( 0.06 ) ( 0.06 ) ( 0.06 )

40
78.24 ± 0.89 71.28 ± 1.10 78.48 ± 0.77 75.48 ± 0.69 75.48 ± 0.69 80.61 ± 0.45 80.26 ± 0.45 80.98 ± 0.51

— — — ( 1.35 ) ( 1.34 ) ( 0.07 ) ( 0.07 ) ( 0.07 )
Ionosphere

10
73.71 ± 1.27 71.30 ± 1.70 73.56 ± 1.91 71.86 ± 2.79 71.86 ± 2.79 75.53 ± 1.75 69.25 ± 1.67 83.36 ± 1.31

— — — ( 0.90 ) ( 0.87 ) ( 0.05 ) ( 0.05 ) ( 0.05 )

20
75.62 ± 1.24 76.00 ± 1.58 81.71 ± 1.74 83.04 ± 2.10 83.04 ± 2.10 78.78 ± 1.60 80.30 ± 1.77 88.55 ± 1.32

— — — ( 0.87 ) ( 0.79 ) ( 0.05 ) ( 0.06 ) ( 0.05 )

30
76.59 ± 0.82 79.10 ± 1.46 86.21 ± 0.84 87.20 ± 1.16 87.20 ± 1.16 82.18 ± 0.56 83.08 ± 1.36 90.39 ± 0.84

— — — ( 0.93 ) ( 0.97 ) ( 0.05 ) ( 0.05 ) ( 0.05 )

40
77.97 ± 0.79 82.93 ± 1.33 89.39 ± 0.65 90.56 ± 0.64 90.56 ± 0.64 83.26 ± 0.53 87.03 ± 1.02 92.14 ± 0.46

— — — ( 1.34 ) ( 1.38 ) ( 0.05 ) ( 0.04 ) ( 0.04 )
Sonar

10
63.01 ± 1.47 62.85 ± 1.53 60.76 ± 1.80 59.67 ± 0.89 59.67 ± 0.89 64.27 ± 1.91 64.37 ± 1.64 65.30 ± 1.78

— — — ( 0.63 ) ( 0.63 ) ( 0.08 ) ( 0.07 ) ( 0.07 )

20
68.09 ± 1.11 69.55 ± 1.22 67.63 ± 1.15 64.68 ± 1.57 64.68 ± 1.57 70.61 ± 1.14 69.79 ± 1.30 71.76 ± 1.07

— — — ( 0.68 ) ( 0.82 ) ( 0.07 ) ( 0.07 ) ( 0.08 )

30
66.40 ± 1.06 69.80 ± 0.93 68.23 ± 1.48 66.54 ± 0.79 66.54 ± 0.79 70.20 ± 1.48 68.48 ± 1.59 71.69 ± 0.87

— — — ( 0.88 ) ( 1.02 ) ( 0.07 ) ( 0.07 ) ( 0.07 )

40
64.94 ± 0.74 71.37 ± 0.52 71.61 ± 0.89 69.82 ± 0.82 69.82 ± 0.82 72.35 ± 1.06 71.28 ± 0.96 72.89 ± 0.68

— — — ( 1.14 ) ( 1.20 ) ( 0.07 ) ( 0.08 ) ( 0.07 )
Wine

10
82.26 ± 2.18 85.89 ± 1.73 87.80 ± 1.63 87.44 ± 2.21 87.44 ± 2.21 86.49 ± 2.48 86.55 ± 2.40 93.72 ± 0.65

— — — ( 1.02 ) ( 0.86 ) ( 0.09 ) ( 0.09 ) ( 0.09 )

20
86.39 ± 1.39 86.96 ± 1.30 93.77 ± 0.99 92.72 ± 1.32 92.72 ± 1.32 88.86 ± 3.31 93.39 ± 0.59 95.63 ± 0.45

— — — ( 0.92 ) ( 0.91 ) ( 0.09 ) ( 0.09 ) ( 0.09 )

30
92.50 ± 0.76 87.43 ± 0.63 94.63 ± 0.50 93.99 ± 0.53 93.99 ± 0.53 93.99 ± 1.55 94.63 ± 0.50 96.32 ± 0.33

— — — ( 1.28 ) ( 1.27 ) ( 0.09 ) ( 0.10 ) ( 0.09 )

40
94.96 ± 0.65 88.80 ± 0.93 96.38 ± 0.35 96.34 ± 0.33 96.34 ± 0.33 95.98 ± 0.41 95.25 ± 0.47 96.74 ± 0.27

— — — ( 1.41 ) ( 1.39 ) ( 0.08 ) ( 0.08 ) ( 0.10 )

tral Kernel Learning (SKL) algorithm, which is more effec-
tive and efficient for learning kernels from labeled and unla-
beled data. Under the framework, we developed a paradigm
of unified kernel machine based on Kernel Logistic Regres-
sion, i.e., Unified Kernel Logistic Regression (UKLR). Em-
pirical results demonstrated that our proposed solution is
more effective than the traditional classification approaches.
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