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Cascade RSVM in Peer-to-Peer Networks

Hock Hee Ang, Vivekanand Gopalkrishnan,
Steven C.H. Hoi, and Wee Keong Ng

Nanyang Technological University, Singapore

Abstract. The goal of distributed learning in P2P networks is to achieve
results as close as possible to those from centralized approaches. Learning
models of classification in a P2P network faces several challenges like
scalability, peer dynamism, asynchronism and data privacy preservation.
In this paper, we study the feasibility of building SVM classifiers in a
P2P network. We show how cascading SVM can be mapped to a P2P
network of data propagation. Our proposed P2P SVM provides a method
for constructing classifiers in P2P networks with classification accuracy
comparable to centralized classifiers and better than other distributed
classifiers. The proposed algorithm also satisfies the characteristics of
P2P computing and has an upper bound on the communication overhead.
Extensive experimental results confirm the feasibility and attractiveness
of this approach.

1 Introduction

Peer-to-peer (P2P) network is a large network of entities interconnected in a
point-to-point manner. The Internet as a large point-to-point network of com-
puters is a P2P network. P2P computing refers to computations performed in
a P2P network of computers where there is no absolute centralized control. In
recent years, data mining in P2P networks has attracted much attention as in-
creasingly many applications have distributed data, from which useful knowledge
may be mined. For instance, clustering and classification of peer data may reveal
networks of cliques in social networks, and classification of network traffic could
provide valuable information about network intrusions or usage behaviors.

The primary goal of learning in a P2P network is to achieve learning result
that is as close as possible to that of a centralized approach. Learning models
of classification (also clustering) is faced with several challenges [6]. In a P2P
setting, learning algorithms need to take into account the scalability issue (Can
the algorithm be computed when there are millions of peers?), peer dynamism
(Can the algorithm deal with the availability and unavailability of data as peers
connect and disconnect from the network?), asynchronism (Can the algorithm
produce sufficiently accurate results without global synchronization?), and data
privacy (Can the algorithm preserve the privacy of peer data when learning the
global model?).

In this paper, we study the feasibility of learning in a P2P network in the con-
text of learning classifiers. In particular, we are interested to know how Support
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Vector Machines (SVM) perform in a P2P network, as SVM is a class of pow-
erful classification and regression algorithms. Some of the weaknesses of SVM
is in its memory and computational requirements, which increase with the size
of training data set. A proven approach for alleviating such requirements, while
not degrading classification performance, is the cascade SVM approach, where
the data set is partitioned into smaller chunks and small-scale SVM learning
is performed on these chunks. Support vectors obtained from these small-scale
SVM models are combined with other chunks to derive better support vectors
and improve the final set of support vectors.

We show how the cascading of SVM learning can be mapped to a P2P network
of data propagation. As network communication is a performance issue, we show
how the sending of support vectors from peer to peer can be improved using
the Reduced Support Vector Machine (RSVM) [13] approach. Our proposed
P2P SVM provides a method for learning classifiers in a P2P network that
has classification accuracy comparable to a centralized classifier, yet satisfies the
characteristics of P2P computing and has an upper bound on the communication
overhead. We have implemented P2P SVM and experimental results confirm the
feasibility and attractiveness of using this approach.

We focus mainly on the classification accuracy, scalability in terms of compu-
tation and total bandwidth usage, effects of data distribution and imbalanced
class distribution. The other issues affecting classification in P2P networks such
as peer dynamism, data privacy, security and different types of P2P networks
will be studied in future works.

Our contributions in this paper are as follows: (1) We demonstrate the fea-
sibility of cascade SVM in a P2P network, which to the best of our knowledge,
is the first such attempt. (2) Our proposed P2P SVM has classification accu-
racy comparable to a centralized solution and better than other classification
approaches in a P2P network. (3) In order to reduce data propagation cost in a
P2P setting, we show how an upper bound can be derived to control the network
communication overhead.

The organization of this paper is as follows: Section 2 describes related work.
Section 3 introduces our proposed approach to perform SVM in a P2P network.
Section 4 describes our experiments and the last section concludes the paper.

2 Background and Related Work

Many well-known classifiers such as decision tree, nearest neighbor classifier,
artificial neural networks, Bayes classifier and support vector machine (SVM)
work well with small datasets, but fail to maintain reasonable time and cost
benefits on large datasets common to many domains. Hence, researchers have
developed alternative methods such as selective sampling [2, 13, 14], parallelized
and distributed learning [3, 9, 12, 15, 19, 23], in order to learn from such large
datasets.

Breiman [2] introduced the pasting of Ivotes (or Rvotes) that trains an en-
semble of classifiers, each built from a subset of data that has been selectively
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sampled using out-of-bag estimation (or randomly sampled for Rvotes). Lee and
Mangasarian [13] presented the Reduced Support Vector Machines (RSVM) ap-
proach that solves the SVM optimization problem using a randomly selected
smaller portion of the whole dataset. Lin and Lin [14] studied several imple-
mentations of RSVM and showed that for problems with dense support vectors,
RSVM significantly reduces the training time that is required for a small drop
in accuracy compared with the SVM solution.

Parallelized and distributed algorithms represent another paradigm to solve
the large dataset problem. These algorithms can be broadly classified as ensemble
and cascade approaches. In general, these approaches split a large problem into
smaller easily solvable sub-problems, and then combine their results. A useful
side-effect of approaches under this paradigm is that they can also be used on
naturally distributed data, saving the cost of moving data to a single location for
training using a centralized solution.

Distributed ensemble approaches can be further divided as voting [5, 12] and
meta-learning [3, 7, 17] approaches. Voting approaches build an ensemble of
classifiers and then perform final classification based on the votes of all classifiers
in the ensemble. For instance, Lazarevic and Obradovic [12] provide a distributed
boosting framework that exchanges training statistics and performs weighted
majority voting to obtain the final prediction. On the other hand, Chawla et al.
[5] present a distributed version of Ivotes (DIvotes) and Rvotes (DRvotes) that
works by first splitting the data, then performing Ivotes on each subset, and
obtaining the final hypothesis by majority voting. The advantage that DIvotes
has over distributed boosting is that no communication is required among the
distributed parities during the training phase, thus, significantly reducing the
communication overhead.

Meta-learning is in essence the learning of meta-attributes generated from var-
ious learners (classifiers). Chan and Stoflo [3] present an arbiter tree approach
that builds various levels of classifiers and combines the results using arbitra-
tion rules. More recently, Pfahringer et al. [17] proposed to landmark various
learning algorithms in order to characterize the classification problems and find
the relationship between classifiers, whereas Džeroski and Ženko [7] presented
their approach of using the model tree induction to learn the meta-level features
generated.

Cascade learning was proposed mainly for the purpose of speeding up com-
putation. Tveit and Engum [19] pioneered the work on cascading SVM by pro-
viding a heap-based tree topology framework for parallelizing the computation
of Proximal SVM. Since then, a number of works have focused on cascade SVM
[9, 15, 23]. Lu et al. [15] presented and compared various ways of cascading
SVM. Zhang et al. [23] further improved cascade SVM by examining various
ways of performing feedback to obtain a global optimal solution. Graf et al. [9]
also provided a cascade SVM algorithm with feedback and formally proved the
convergence of the algorithm.
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2.1 Learning in P2P Networks

In recent years, there has been increasing interest in classification problems in
P2P networks. A P2P network consists of a set of k peers P = {p1, . . . , pk},
where all peers function equally as both servers and clients. However, a P2P
environment possesses unique characteristics that introduce challenges for the
classification task. These characteristics include scalability, peer dynamism, data
dynamism, asynchronism and privacy and security [6]. P2P networks can be con-
sidered as a massively distributed environment as the number of peers, k, in the
network usually exceeds hundreds or thousands. In addition, these peers may
leave and join the network anytime, and the data they possess may change
frequently. Due to the size of the network, it is not feasible to perform syn-
chronization considering the network latency and bandwidth. If data exchange
among peers is involved, privacy and security may also pose concerns.

Based on data propagation, existing P2P classification approaches can be
categorized as 1) model propagation [18] and 2) test data propagation [8, 16]
approaches. Model propagation approaches build local classifiers on each peer
and then propagate the model to other peers. The peers can then use the col-
lected models for performing classification. In the latter approach, a peer only
propagates test instances to other peers, which in turn classify these instances
and return results to the requesting peer. The model propagation approaches
generally incur more communication cost during the model construction phase,
which exacerbates when the classification model frequently changes. However,
under this approach, classification of test instances is faster and peers have more
freedom on how the models can be used (e.g., perform meta-learning using the
models).

Siersdorfer and Sizov [18] have proposed a framework for classifying web doc-
uments in a P2P environment. The algorithm trains a local classifier and prop-
agates it to other peers. Each peer then uses the received models to construct
a meta model for performing classification. Although the paper states that the
propagated model should be a compressed representation of the local data set,
it neither provides details on how this may be achieved, nor on how the mod-
els may evolve with the addition of new data. Furthermore, the tuning of the
global model to improve accuracy requires synchronization among peers, which
increases communication cost.

On the contrary, test instance propagation approaches are not affected by
frequent changes of models and does not incur communication cost during con-
struction of models. However, classification tasks are slower since requests have
to be made to the P2P network, and if these tasks are frequent, the communi-
cation cost can be comparable to that of the model propagation.

Gorodetskiy et al. prototyped an agent-based, service-oriented P2P distrib-
uted classification approach [8]. However, the focus of the paper is not on the
classification task, but to provide a proof-of-concept implementation and to ex-
plore the issues that may exist in the agent-based, service-oriented P2P network.

More recently, Luo et al. [16] proposed a P2P classification approach by past-
ing of small votes. In this approach, each peer pastes small bites to build local
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classifiers until the error between subsequent models falls below a certain thresh-
old. The final classification is then performed by sending classification requests
to all peers based on an optimal communication protocol.

3 Approach

In this section, we present our proposed approach, illustrating the design process
and finally providing a complexity analysis. Our approach based on the cascade
SVM paradigm, is specifically designed for the P2P network, addressing the ad-
ditional constraints not found in the general distributed and parallel computing
environment. The three basic processes in cascade SVM are: 1)build an SVM for
each of the local data, then iteratively 2) propagate and 3) merge the models
to create an improved SVM until all subsets have been combined. Let us now
examine cascade SVM and our proposed approach in detail.

3.1 Cascade SVM

In cascade SVM, the algorithm starts by building SVM using local data. The
purpose of using SVM (as well as merging) is to filter out as many non support
vectors as early as possible, to reduce the time and space complexity required to
efficiently build the global solution. However, using standard SVM may generate
quite a high number of support vectors. Since our approach requires propagation
of models in the P2P network, these large number of support vectors result in a
high communication cost. Hence, algorithms based on standard SVM are usually
not viable. Therefore, our criteria for building local classifiers changes from being
able to effectively filter out redundant data, to being able to extract a very small
set of representative data.

3.2 P2P Cascade RSVM

Based on the above considerations, we employ an approximate SVM solution -
RSVM, which reduces the number of support vectors, for the task. The disadvan-
tage of using RSVM is that the resulting cascade SVM cannot produce a global
optimal solution. By global optimal solution, we refer to the solution produced
by SVM and cascade SVM with feedback/synchronization, which however, is in-
feasible to achieve, since the convergence to the global optimal solution requires
synchronization among all peers (for the validation process). As the number of
support vectors in a SVM has extensive influence on the memory and training
time, being able to reduce the number of support vectors greatly improves the
training speed and lowers the memory requirements. However, since the SVM
decision hyperplane is constructed from these support vectors, reducing the num-
ber of support vectors may also reduce the classification accuracy. Despite this,
it has been found that RSVM can use a very small subset to represent the whole
data, with only a slight drop in classification accuracy compared to traditional
SVM [16]. Hence, usage of RSVM does not cause any serious drawback.
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Since peer data constantly change in a P2P network, a set of new training data
is treated as a new peer’s dataset, and goes through the same processes as the
existing local data. This addresses the data dynamism issue, allowing incremen-
tal learning. Although, our approach allows incremental learning, decremental
learning or removal of data is not addressed, as this concerns the issue of concept
drift and is not within the scope of this paper.

After the model is generated, it is propagated to other peers. Despite the
main disadvantage of high communication cost (effect reduced as stated above),
model propagation provides a way to counter the peer dynamism constraint.
With model propagation, even when peers go offline, their models still exist on
other peers on the P2P network (provided they have successfully propagated to
other peers before they went offline). This allows sharing of models between peers
which were not present on the P2P network at the same time, which is an impor-
tant factor for maintaining high classification accuracy within the P2P network.
In addition, our approach ensures that models are only collected/merged once
to prevent duplication. Besides these, model propagation guarantees achieving a
local optimal solution with cascade SVM, since it becomes possible to validate
using the peers’ models, and the high duplication rate of models allows higher
throughput for the transfer of models.

Similar to the automatic document organization approach, model propagation
in our approach can be implemented separately from the building of the classifier.
This allows our approach to be deployed in any type of P2P network increasing
its flexibility. By viewing the models as files in a P2P network, we can map the
problem of model propagation in P2P network to the file propagation problem in
P2P network, which has been extensively studied. For our approach, we utilize
the UPTReC [21] algorithm, because it provides a probabilistic guarantee in
file consistency which helps to ensure that models can be properly propagated
within the P2P network. Experiments [21] show that UPTReC can reduce up to
70% overhead messages compared with other existing techniques.

Models are collected as peers propagate them in the P2P network. In contrast
to the cascade SVM, since we do not have control over how, when and how many
of the peers’ models will be collected, we perform the merging process as follows.
All models collected within t duration are merged together in a single process
and then merged with the peer’s local optimal SVM. In the two extreme cases,
given t = 0, this simply implies that each time a peer’s model is collected, it
is merged immediately with the last cascaded model, and given t = the time
required to collect models of all uncollected peers in the P2P network, all newly
collected models are merged in a single process with the previously cascaded
RSVM. For example, consider that peer j receives three new models from other
peers before time t after startup, and two other new models between time t
and 2t. Therefore, at time t from startup, peer j will merge the three newly
received models with the latest local model, and at time 2t from startup, it
will merge the two newly received models with the latest cascaded model. This
process is illustrated in Figure 1, and the training phase of the proposed approach
is given in Algorithm 1.
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Fig. 1. Illustration of merging support vectors

To summarize, the main differences between existing cascading approaches
and our proposed P2P Cascade RSVM lies in the use of RSVM, and in the
ad-hoc merging of the collected models due to the high dynamism of the P2P
networks. This greatly reduces the communication overhead for distributing data
after distributed and parallelized construction of local models. These extensions
of cascade SVM make it feasible to learn from the P2P environments and even
achieve results comparable to centralized solution, while reducing computation
and communication costs.

Algorithm 1. P2P Cascade RSVM algorithm for peer pi

input: the percentage p of support vectors to use,
the duration t to wait before merging,
local training data Di

SSVi = {}1

PSVi = {}2
training data T = ∅3

Train local classifier model Mi using RSVM on Di4

Propagate the support vectors SVi of Mi to other peers5
while true do6

while waiting time < t do7

foreach SVj of peer pj received do8
if SVj /∈ SSVi and SVj /∈ PSVi then9

PSVi = PSVi ∪ SVj10

if PSVi is not empty then11
T = support vectors of Mi12

forall SV ∈ PSVi do13
T = T ∪ SV14

Mi = SVM model trained using T15

SSVi = SSVi ∪ PSVi16
PSVi = {}17
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3.3 Model Propagation Cost

In our approach, since the number of support vectors directly determines the
size of the model to be propagated, the communication cost can also be greatly
reduced. Furthermore, by specifying the size of the support vectors, either ab-
solutely or as a percentage of the training data, we can give an upper bound
on the communication cost of the construction of the cascade SVM as follows.
Let N be the total number of peers in the P2P network, l be the total size (in
terms of number of vectors) of the problem and s, s < 1 be the percentage of
the problem to be used as support vectors. Then the upper bound of the total
communication cost, c, required for all peers to obtain the global model is

c = N · l · s (1)

for a two-class problem. For a multi class problem, where the number of classes
is nc, and using the one-against-one strategy for SVM classification, the cost is
as follows:

c = N · l · s · (nc · (nc − 1)/2) (2)

3.4 Computation Cost

Considering the following SVM optimization problem [20]:

min
w,b,ξ

1
2
wT w + C(

l∑

i=1

ξ2
i )

subject to yi(wT wφ(xi) + b) ≥ 1 − ξi (3)

given that xi is a feature vector and yi is the corresponding label of a training
set, where xi ∈ Rn and yi ∈ {1, −1}. As φ(x) maps x into a higher dimensional
space, we can simply solve its dual, which is a quadratic programming problem:

min
α

1
2
αT (Q +

I

2C
)α − eTα

subject to yTα = 0,

0 ≤ αi, i = 1, . . . , l (4)

where the number of variables equals l, e is the unity vector, Q is an l by l
positive semi-definite matrix, Qij ≡ yiyjK(xi, xj) and K(xi, xj) ≡ φ(xi)Tφ(xj)
is the kernel function. Computing the kernel function K(xi, xj) for every training
instance costs O(l2) and solving (4) costs O(l3).

However, for RSVM based on Least-Square SVM, we are only required to
solve

min
α̃

f(α̃) =
1

2C
α̃T α̃ + α̃T (Q̃T Q̃)α̃ − 2eT Q̃α̃ + eT e (5)
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where f can minimized by finding the solution of ∂f
∂α̃i

= 0, i = 1, . . . , m:

1
C
α̃ + 2Q̃T Q̃α̃ − 2Q̃T e = 0, (6)

(Q̃T Q̃ +
I

2C
)α̃ = Q̃T e (7)

a positive definite linear system of size m, where m is the size of the subset R used
in RSVM, α̃ are the coefficients of the separating hyperplane and Q̃ = [Q:,R y].
Hence, the total time complexity for RSVM is O(lm2). For the complete formu-
lation, refer to [14].

To analyze the time complexity of our approach, we have to examine the
process of building the local model and merging of the collected models. Given a
P2P network with N peers, and total training data of size l, let the size of local
data for peer i be li, and the percentage of local data to be used for RSVM be
s, s < 1. Then, the size of the subproblem to solve in RSVM is mi = lis, and the
time complexity for building a local model for peer i with RSVM is O(lim2

i ).
Since the size of the subproblem optimized by RSVM is already very small, and
we have no prior knowledge of the amount of reduction that can be achieved by
the optimization process, we assume that the size of the support vectors for the
resulting models is the same as the size of the subproblem. Hence, after a peer
constructs the local model (of size at most mi), it propagates the model to other
peers. The size of the support vectors collected from all peers is m =

∑N
1 mi.

If traditional SVM is used, the complexity of merging is O(m3). However, with
other more efficient techniques such as SMO, cost of merging can be reduced,
but in this case, we use the complexity of SVM to provide the upper bound. All
in all, with lim2

i << m3, the complexity of our proposed approach is O(m3).
Using centralized SVM and RSVM as comparison, we present a summary of

the computation and communication costs of the various SVM based approaches
in Table 1. It can be seen from Table 1 that our proposed approach has the least
cost with respect to the centralized approaches.

Table 1. Summary of the training costs

Approach Computation Cost Communication Cost
SVM O(l3) O(l)

RSVM O(lm2) O(l)
P2P Cascade RSVM O(m3) O(m)

4 Experiments and Result Analysis

Here, we present the experimental results on some large sized problems to simu-
late the problem size that may exist in a real P2P environment. First we describe
the experimental setup. Then we compare the classification accuracy of central-
ized and existing P2P classification approaches, followed by a demonstration of
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the effect of scalability, peers’ data distribution and data class distribution on
the various algorithms. Finally we illustrate the effect of the number of support
vectors on the classification accuracy of our approach.

4.1 Experimental Setup

We used the covertype dataset and the waveform data generator available from
the UCI repository [1]. For waveform, we generated 100,000 instances with 21
attributes. The covertype dataset was used further to generate a binary covertype
dataset with class two versus all other classes. Summary of the datasets used is
presented in Table 2. All attributes of the datasets were scaled to between -1
and 1.

Table 2. Summary of the datasets used in experiments

Instances Attributes Classes
Binary Covertype 581,012 54 2

Covertype 581,012 54 7
Waveform 100,000 21 3

The experiments were conducted on a cluster of 16 machines, each with two
Intel Dual Core Xeon 3.0GHz processors, 4 GB of Ram and connected by a
gigabit ethernet.

The J48 algorithm (variant of the C4.5), from Weka [22] was used for the
centralized classification and as the base classifier for the algorithm from [16].
In addition, we implemented the algorithm from [16], which we refer to as P2P
Ivotes, in Java. We used the C-SVC algorithm from LIBSVM [4], in C++ as
the centralized SVM solution, and used RSVM based on Least Square SVM
algorithm from [14] in our approach which was implemented in C++.

In all P2P experiments, unless otherwise stated, we used 500 peers, and di-
vided the data equally among them. We did not experiment with more peers
since this would result in unrealistically small sizes for local peer data, which
would adversely affect performance of the P2P approaches. For P2P Ivotes, bite
size of 800 and λ of 0.02 were used. For SVM, SVM Ensemble and P2P Cascade
RSVM, we used the RBF kernel, and for each dataset, the γ and C values were
chosen using the model selection tool provided with LIBSVM on a 1 percent
stratified sampled data of the whole dataset. For all datasets, we used 1 percent
of the data as support vectors for our P2P cascade RSVM.

4.2 Classification Accuracy

In this experiment, we conducted a 10-fold cross validation using centralized
RSVM, centralized J48, plurality voting on ensemble of J48, plurality voting on
ensemble of SVM, P2P Ivotes and P2P Cascade RSVM on the binary covertype,
covertype and waveform dataset. In order to train all peers on the same amount
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Table 3. Tenfold cross-validation results

Accuracy (%)
Dataset RSVM J48 J48 SVM P2P P2P Cascade

Ensemble Ensemble Ivotes RSVM
Binary Covertype 71.97 73.3 58.26 54.16 58.72 72.93

Covertype 68.16 66.59 54.47 44.65 54.14 67.77
Waveform 99.8 99.86 99.62 99.79 99.78 99.61

Table 4. Average training time

Time (secs)
Dataset RSVM J48 J48 SVM P2P P2P Cascade

Ensemble Ensemble Ivotes RSVM
Binary Covertype 111.2 2357.9 159.04 48 326.56 11.9

Covertype 751.8 2501.64 238.12 53.5 378.38 126.4
Waveform 32 13.8 12 6.2 12 0.4

of data, we used 500 peers for binary covertype and covertype datasets and 100
peers for the waveform dataset. The classification accuracy and average training
time taken are shown in Tables 3 and 4 respectively.

As shown in Table 3, our approach has accuracy comparable to the centralized
solution on all datasets. Compared with other existing approaches, our approach
exhibits similar accuracy on the waveform dataset, but has far better accuracy
on the binary covertype and covertype datasets. In addition, our approach has
the least training time for binary covertype and waveform dataset and second
least for covertype dataset, which is probably due to the higher number of classes
in the latter. We note that the P2P Ivotes results obtained by our experiments
are dissimilar to those reported in [16], perhaps due to different methods of
assigning peers’ local training sets.

4.3 Scalability

To determine the scalability of the various P2P classification approaches, we
varied the number of peers from 100 to 600 based on a 10-fold cross validation.
For all approaches, the training data is divided equally among all peers with
random class distribution.

As can be seen in Figure 2, our approach achieves significantly (based on stu-
dent’s t-test with p-value of 0.05) higher accuracy on the binary covertype and
covertype data while producing similar accuracy on the waveform dataset. We
observe in Figure 2(a) and 2(b), that the two covertype datasets show similar re-
sults, which is not surprising. For the Waveform dataset, none of the approaches
seem to be affected by the number of peers that exist in the network. However,
for both covertype datasets, all approaches except ours lose some accuracy when
the number of peers increases. It is also noted that for all the datasets, the results
of the J48 ensemble and the P2P Ivotes showed similar trends.
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(a) Binary Covertype Dataset
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(b) Covertype Dataset
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(c) Waveform Dataset

Fig. 2. Effect of P2P network size on accuracy

We observed that some of the random data assignment resulted in a few
peers not obtaining data from certain classes, which might explain the poor
performance of the ensemble methods. This hypothesis will be verified in future
work with further experiments.

4.4 Peers’ Data Distribution

Here we illustrate the effect of distribution of peers’ data on the classification
accuracy. From 100 to 600 peers, we randomly assign a subset of the data to each
peer, where the size of the subset is based on exponential, uniform and normal
distributions and test the accuracy using 10-fold cross validation. We have used
the covertype dataset in this experiment.

As observed in Figure 3, the results for the different distributions do not seem
to be very much different. Including the results from Figure 2(b), which is based
on equal distribution, we conducted a student’s t-test and found that there is
actually no significant difference for each algorithm between the results of the dif-
ferent distributions. However, it would be interesting to see how peers dynamism
can actually affect accuracy based on the different data size distribution.

4.5 Effect of Imbalanced Class Distribution

To see if the P2P classification approaches can deal with peers having data with
imbalanced class distribution (natural class distribution of the whole dataset
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(a) Uniform Distribution
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(b) Normal Distribution
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(c) Exponential Distribution

Fig. 3. Effect of peers’ data distribution on accuracy (covertype dataset)

remains unchanged), we purposely vary the class distribution of the data subset
assigned to each peer. Using the binary covertype data, we modify the class
distribution such that the class distribution has d percentage of skew compared
to the natural class distribution. For example, if the natural class distribution
is 60/40, a skew of d = 10% generates a modified class distribution of 65/35 for
half of the peers and 55/45 for the other half of the peers. Although we modified
the class distribution of the local training data, we still ensured that every peer
received the same amount of data.

The results in Figure 4 show that our approach achieves better accuracy in the
presence of imbalanced class distribution. Performing a student’s t-test shows
that the difference in accuracy between the other existing P2P approaches and
our approach is significant with p-value of 0.05. Note that with the increase
in percentage of skewness, the accuracy of the J48 ensemble and P2P Ivotes
gradually decreases. However, the accuracies of our approach and SVM ensemble
are not affected. Our approach is unaffected by the class imbalance perhaps due
to the merging of support vectors that may have a rebalancing effect on the class
distribution.

4.6 Size of Support Vectors

By restricting the number of support vectors used to build the SVM, we can
limit the communication, computation and memory cost, albeit possibly at the
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Fig. 4. Effect of imbalance class distribution on accuracy (binary covertype dataset)
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Fig. 5. Effect of support vector size constraint on accuracy (covertype dataset)

expense of classification accuracy. Here, we demonstrate the effect of the number
of support vectors used on the accuracy. This experiment was conducted on the
covertype data using an ensemble of RSVM and P2P cascade RSVM with 500
peers, by varying the percentage of support vectors used (subproblem size) from
0.2 to 6 percent.

From Figure 5, we note that when the percentage of support vectors used is
too small (i.e. less than 1 percent), the classification accuracy is not stable and
of unacceptable level. However, when the percentage of support vectors increases
to above 1 percent, the increase in accuracy starts to plateau. Another point to
note is that time and memory complexity of SVM is quadratic with respect to
the number of support vectors. Therefore a low percentage of support vectors
would be preferred but care must be taken to ensure that there are enough
support vectors to represent the peers’ local training data (which is dependent
on the size of local training dataset).

5 Conclusion

In this paper, we study the problem of learning models of classification in a P2P
network. We have proposed a combination of the cascade SVM and Reduced Sup-
port Vector approaches to learn classifiers in a P2P setting. Experimental results
show that our proposed approach can learn classifiers with accuracies close to
those of centralized approaches. Moreover, our approach also outperforms other
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distributed models of classifier learning. The proposed approach scales with the
size of the network, and accuracy is not affected by the number of peers. Also, we
provide an upper bound on the massive communication overhead in P2P classi-
fication using the Reduced Support Vector approach to cap the number of sup-
port vectors computed. Overall, experimental results confirm the feasibility and
attractiveness of using our approach. As part of future work, we will be exploring
in detail, the effects of peer dynamism, cliques, and data privacy on the problem
of learning in P2P networks. In addition, we will investigate unified kernel ma-
chines [11] and distributed active learning [10] techniques for enhancing classifi-
cation performance.
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