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Abstract. Distance metric learning has been widely investigated in
machine learning and information retrieval. In this paper, we study a
particular content-based image retrieval application of learning distance
metrics from historical relevance feedback log data, which leads to a
novel scenario called collaborative image retrieval. The log data provide
the side information expressed as relevance judgements between image
pairs. Exploiting the side information as well as inherent neighborhood
structures among examples, we design a convex regularizer upon which a
novel distance metric learning approach, named output regularized met-
ric learning, is presented to tackle collaborative image retrieval. Different
from previous distance metric methods, the proposed technique inte-
grates synergistic information from both log data and unlabeled data
through a regularization framework and pilots the desired metric toward
the ideal output that satisfies pairwise constraints revealed by side infor-
mation. The experiments on image retrieval tasks have been performed
to validate the feasibility of the proposed distance metric technique.

Keywords: Distance Metric Learning, Side Information, Output Regu-
larized Metric Learning, Collaborative Image Retrieval.

1 Introduction

Recently, there are some emerging research interests in exploring the historical
log data of the user’s relevance feedback in content-based image retrieval (CBIR).
Hoi et al. [1] proposed the log-based relevance feedback with support vector
machines (SVMs) through engaging the feedback log data in traditional online
relevance feedback sessions. In this paper, we study distance metric learning
to discover the potential of the log data so that the needs of online relevance
feedback can be avoided.

Distance metric learning has attracted increasing attention in recent machine
learning and computer vision studies, which may be classified into two main cat-
egories. The first category is supervised learning approaches for classification,
where distance metrics are usually learned from the training data associated
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with explicit class labels. The representative techniques include Linear Discrim-
inant Analysis (LDA) [2] and some other recently proposed methods, such as
Neighbourhood Components Analysis (NCA) [3], Maximally Collapsing Met-
ric Learning (MCML) [4], metric learning for Large Margin Nearest Neighbor
classification (LMNN) [5], and Local Distance Metric Learning (LDML) [6].

Our work is closer to the second category, i.e., semi-supervised distance met-
ric learning which learns distance metrics from pairwise constraints, or known
as side information [7]. Each constraint indicates whether two data objects are
“similar” (must-link) or “dissimilar” (cannot-link) in a particular learning task.
A well-known metric learning method with these constraints was proposed by
Xing et al. [7], who cast the learning task into a convex optimization problem
and applied the generated solution to data clustering. Following their work, there
are several emerging metric techniques in this “semi-supervised” direction. For
instance, Relevance Component Analysis (RCA) learns a global linear transfor-
mation by exploiting only the equivalent (must-link) constraints [8]. Discriminant
Component Analysis (DCA) improves RCA via incorporating the inequivalent
(cannot-link) constraints [9]. Si et al. [10] proposed a regularized metric learning
method by formulating the side information into a semidefinite program.

Particularly, we are aware that routine metric techniques may be sensitive to
noise and fail to learn reliable metrics when handling small amount of side infor-
mation. In this paper, we present a new semi-supervised distance metric learning
algorithm to incorporate the unlabeled data together with side information in
producing metrics with high fidelity. Specifically, we develop an output regular-
ized framework to integrate the synergistic information from both the log data
and the unlabeled data for the goal of coherently learning a distance metric. The
proposed output regularized metric learning (ORML) algorithm is elegantly for-
mulated, resulting in a close-form solution which can be obtained with a global
optimum substantially efficiently.

2 Collaborative Image Retrieval

In the field of CBIR, choosing appropriate distance metrics plays a key role
in establishing an effective CBIR system. Regular CBIR systems usually adopt
Euclidean metrics for distance measure on images represented into vector form.
Unfortunately, the Euclidean distance is generally not effective enough in re-
trieving relevant images. A main reason stems from the well-known semantic
gap between low-level visual features and high-level semantic concepts [11].

To remedy the semantic gap issue, relevance feedback is frequently engaged
in CBIR systems. Relevance feedback mechanism has been vastly studied in the
CBIR community and demonstrated to improve retrieval performance. However,
the relevance feedback mechanism has some drawbacks in practice. One prob-
lem is that relevance feedback often has to involve overloaded communication
between systems and users, which might not be efficient for real-time applica-
tions. Further, relevance feedback often has to be repeated several times for
retrieving relevant images. This procedure could be a tedious task for users.
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Thus, relevance feedback may not be an efficient and permanent solution for
addressing the semantic gap from a long-term perspective.

In this paper, we consider an alternative solution, called collaborative image
retrieval (CIR), for attacking the semantic gap challenge by leveraging the his-
torical log data during the user’s relevance feedback. CIR has attracted a surge
of research interests in the past few years [1,10]. The key to CIR is to find a
convenient and effective way of leveraging the log data in relevance feedback
so that the semantic gap can be successfully reduced. A lot of ways could be
studied to use the log data to boost the retrieval performance. In this paper, we
explore to learn distance metrics from the log data for image retrieval tasks, and
address some practical problems in applying distance metric techniques to the
CIR application.

3 Distance Metric Learning with Side Information

3.1 Side Information

Assume that we have a set of n data points X = {xi}ni=1 ⊂ R
m, and two sets of

pairwise constraints on these data points:

S = {(xi,xj) | xi and xj are judged to be equivalent}
D = {(xi,xj) | xi and xj are judged to be inequivalent}, (1)

where S is the set of similar pairwise constraints, and D is the set of dissimilar
pairwise constraints. Each pairwise constraint indicates if two data points xi

and xj are equivalent (similar) or inequivalent (dissimilar) judged by users under
certain application context. The two types of constraints S and D are referred to
as side information. Note that it is not necessary for all the points in X involved
in S or D.

For any pair of points xi and xj , let d(xi,xj) denote the distance function
between them. By introducing a symmetric matrix A ∈ R

m×m, we can then
express the distance function as follows:

dA(xi,xj) = ‖xi − xj‖A =
√

(xi − xj)T A(xi − xj). (2)

In practice, the metric matrix A is a valid metric if and only if it satisfies the
non-negativity and the triangle inequality conditions. In other words, A must be
positive semidefinite, i.e., A � 0. Generally speaking, the matrix A parameterizes
a family of Mahalanobis distances defined on the vector space R

m. As an extreme
case, when setting A to be the identity matrix Im×m, the distance in Eqn. (2)
becomes the common Euclidean distance.

Abiding by the settings of semi-supervised learning, our learning problem is to
learn an optimal square matrix A ∈ R

m×m from a collection of data points X ⊂
R

m coupled with a set of similar pairwise constraints S and a set of dissimilar
pairwise constraints D. So far, the central theme to attack metric learning is to
design an appropriate optimization objective and then find an efficient algorithm
to solve the optimization problem.
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3.2 Optimization Model

One intuitive yet effective principle for designing metric learning approaches is
to minimize the distances between the data points with similar constraints and
meanwhile to maximize the distances between the data points with dissimilar
constraints. We call it as the min-max principle. Some existing work [7][10] can
be interpreted in terms of the min-max principle.

To make metric learning techniques practical, the second principle we want to
highlight is the regularization principle, which is a key to empowering the learnt
metric with the generalization and robustness capabilities. Motivated by the idea
of regularization in kernel machines [12], we formulate a general regularization
prototype for distance metric learning as follows:

min
A

R(A,X ,S,D) + γV(A,S,D) (3)

s.t. A � 0

where R(·) is some regularizer defined on the target metric A, raw samples X
and side information S and D. V(·) is some loss function defined on A and side
information, and γ is a regularization parameter for controlling the trade-off be-
tween two terms in Eqn. (3). According to the min-max principle, a good loss
function V(·) should be designed in a way such that its minimization will simulta-
neously result in shrinking the distances between points with similar constraints
and elongating the distances between points with dissimilar constraints.

3.3 Dissimilarity-Enhanced Regularizer

There are a lot of options to decide a regularizer in the above regularization
prototype. The simplest one is based on the Frobenius norm: R(A) = ‖A‖F that
simply prevents any elements within the matrix A from being overlarge [10].
However, this regularizer cannot take advantage of any side information. Hence,
we intend to formulate a better regularizer by exploiting side information and
unlabeled data information which is beneficial to semi-supervised learning tasks.

Given the collection of n data points X including the unlabeled data and the
side information S and D, we define a weight matrix W ∈ R

n×n on X :

Wij =

⎧
⎪⎪⎨
⎪⎪⎩

α, (xi,xj) ∈ S
β, (xi,xj) ∈ D
1, (xi,xj) �∈ S ∪ D and (xi ∈ N (xj) or xj ∈ N (xi))
0, otherwise

(4)

where N (xi) denotes the list composed of k nearest neighbors of the point xi,
and α, β > 0 are two weighting parameters corresponding to S, D. It is worth
mentioning that W absorbs and encodes the side information as well as inherent
neighborhood structures among examples. We define another weight matrix T ∈
R

n×n based on only dissimilarity constraints:

Tij =
{

β, (xi,xj) ∈ D
0, otherwise (5)
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To delve into a metric matrix A, one can assume there exits a linear mapping
U : R

m �→ R
r to constitute A = UUT , where U = [u1, . . . ,ur] ∈ R

m×r. We
require u1, . . . ,ur be linearly independent so that r is the rank of A. Then, the
distance under A between two inputs can be written as:

dA(xi,xj) =
√

(xi − xj)T A(xi − xj) =
√

(xi − xj)T UUT (xi − xj)

=
∥∥UT (xi − xj)

∥∥ =

√√√√
r∑

d=1

(
uT

d xi − uT
d xj

)2
. (6)

Minimizing dA(xi,xj) will lead to uT
d xi−uT

d xj → 0 corresponding to projection
direction ud. Specially, we define a new function as follows

hA(xi,xj) =
√

(xi + xj)T A(xi + xj) =
∥∥UT (xi + xj)

∥∥

=

√√√√
r∑

d=1

(
uT

d xi + uT
d xj

)2
. (7)

At this time, minimizing hA(xi,xj) will lead to uT
d xi+uT

d xj → 0, which actually
pushes xi and xj far away along each projection direction ud.

Intuitively, we would like to minimize dA(xi,xj) if xi and xj meet the similar-
ity constraint or belong to the nearest neighbors of each other, and meanwhile
to minimize hA(xi,xj) if xi and xj meet the dissimilarity constraint. By lever-
aging side information and neighborhood structures in the weight matrix W , we
formulate the regularizer as follows:

R(A,X ,S,D) =
1
2

⎡
⎣ ∑

(xi,xj) �∈D
d2

A(xi,xj)Wij +
∑

(xi,xj)∈D
h2

A(xi,xj)Wij

⎤
⎦

=
1
2

r∑
d=1

⎡
⎣ ∑

(xi,xj) �∈D

(
uT

d xi − uT
d xj

)2
Wij +

∑
(xi,xj)∈D

(
uT

d xi + uT
d xj

)2
Wij

⎤
⎦

=
1
2

r∑
d=1

⎡
⎣

n∑
i,j=1

(
uT

d xi − uT
d xj

)2
Wij + 4

∑
(xi,xj)∈D

(
uT

d xi

) (
uT

d xj

)
Wij

⎤
⎦

=
1
2

r∑
d=1

⎡
⎣2

n∑
i=1

(
uT

d xi

)2
Dii − 2

n∑
i,j=1

(
uT

d xi

) (
uT

d xj

)
Wij + 4

n∑
i,j=1

(
uT

d xi

) (
uT

d xj

)
Tij

⎤
⎦

=
r∑

d=1

uT
d X(D −W + 2T )XT ud =

r∑
d=1

uT
d XMXT ud = tr(UT XMXT U), (8)

where D ∈ R
n×n is a diagonal matrix whose diagonal elements equal the sums of

the row entries of W , i.e., Dii =
∑n

j=1 Wij , M = D−W +2T ∈ R
n×n, and tr(·)
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stands for the trace operator. Note that L = D −W is well known as the graph
Laplacian. The matrix M = L + 2T is thus the combination of graph Laplacian
matrix L and dissimilarity matrix T .

Importantly, the regularizer R(U) = tr(UT XMXTU) in terms of the trans-
form U is convex because the matrix XMXT is positive semidefinite (XMXT �
0 has been proved in Eqn. (3.3) as R(U) ≥ 0 for any U). Previous metric
learning methods [5][7] treat the dissimilarity side information as hard con-
straints, but we leverage the dissimilarity constraints into the convex regularizer,
which sheds light on efficient optimization. We call the formulated regularizer
R(U) = tr(UT XMXT U) as the dissimilarity-enhanced regularizer since the core
matrix M engages the dissimilarity information other than the similarity infor-
mation. Our regularizer is similar to the label regularizer proposed in [13] in
utilizing dissimilarity information.

3.4 Regularization Framework

Without loss of generality, we suppose the first l samples in X are involved in the
side information and form Xl = [x1, · · · ,xl] ∈ R

m×l. Using the above regularizer,
we propose a novel distance metric learning approach, called Output Regularized
Metric Learning (ORML), based on the following regularization framework

min
U∈Rm×r

tr(UT XMXTU) + γ
∥∥UT Xl − Yl

∥∥2

F
(9)

s.t. UT U = Σ (10)

where Yl ∈ R
r×l is the ideal output of some conceived linear transform Ũ ap-

plied to the data matrix Xl such that the output Yl = ŨT Xl perfectly satisfies
the pairwise constraints in S ∪ D. The least squares formulation ‖UT Xl − Yl‖2F
instantiates the loss function V(A,S,D) stated in the regularization prototype
Eqn. (3). Σ ∈ R

r×r is a diagonal matrix with positive entries, i.e., Σ � 0. More
clearly, the constraint in Eqn. (10) is equivalent to

uT
i uj = 0, i, j = 1, · · · , r, i �= j. (11)

It indicates that U = [u1, · · · ,ur] consists of r orthogonal vectors in R
m. The

reason to impose such an orthogonal constraint is to explicitly make the pro-
jection vectors u1, · · · ,ur linearly independent and, more notably, uncorrelated.
Actually, u1, · · · ,ur are principle eigenvectors of the metric matrix A and are
thus physically meaningful to construct the metric as A = UUT =

∑r
i=1 uiuT

i .
The major merit of the proposed regularization framework Eqn. (9)(10) is

to adroitly drop the positive semidefinite constraint A � 0 in Eqn. (3) which
casts the metric learning problem into Semidefinite Programming (SDP) [14].
SDP takes an expensive optimization cost and even becomes computationally
prohibitive when the dimension of A is large, e.g., m > 103. Equivalently, we
optimize the transformation matrix U instead of the metric matrix A and thus
formulate the metric learning task as a constrained quadratic optimization prob-
lem which can be solved quite efficiently with a global optimum solution. In the
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next section, we will show the skills for finding the ideal output Yl as well as
coping with the orthogonal constraint in Eqn. (11).

4 ORML Algorithm for CIR

Now, we discuss how to apply ORML to collaborative image retrieval (CIR) and
implement related optimization in details. As in the previous work in [1,10], we
assume the log data are collected in the form of log sessions, of which each one
corresponds to a particular user querying process. During each log session, a user
first submits an image example to a CBIR system and then judges the relevance
on the top ranked images returned by the CBIR system. The relevance judge-
ments specified by the user and the involved image samples, i.e., log samples,
are then saved as the log data.

Within each log session of the user’s relevance feedback, we can convert the
relevance judgements to similar and dissimilar pairwise constraints. For instance,
given the query image xi and each top-ranked image xj , if they are marked as
relevant in one log session q, we will put (xi,xj) into the set of similar pairwise
constraints Sq; if they are marked as irrelevant, we will put (xi,xj) into the
set of dissimilar pairwise constraints Dq. Note that the first element xi in an
ordinal pair (xi,xj) always represents a query image. Consequently, we denote
the collection of log data as {(Sq ∪ Dq)|q = 1, . . . , Q}, where Q is the total
number of log sessions. The log data exactly provide the side information needed
by distance metric learning.

4.1 Ideal Output

Eqn. (9) is essentially a quadratically constrained quadratic optimization prob-
lem, and is not easy to solve directly. Here we adopt a heuristic method to
explore the solution.

First, we can get an initial transformation matrix V with Principal Compo-
nent Analysis (PCA) [2]. Without loss of generality, we assume that {xi}ni=1

be zero-centered. This can be simply achieved by subtracting the mean vector
from all xis. Let P contain r ≤ min{m, n} unitary eigenvectors of XXT , i.e.,
P = [p1, · · · ,pr], corresponding to the r largest eigenvalues λ1, · · · , λr with a
nonincreasing order. We define the diagonal matrix Λ = diag(λ1, · · · , λr) and
have PT XXT P = Λ. Then we acquire the initial transform V ∈ R

m×r by

V = PΛ−1/2, (12)

such that V T XXT V = Λ−1/2PT XXT PΛ−1/2 = I. For any column vector v ∈
R

m in V and any two inputs xi and xj , we utilize
∑n

i=1

(
vT xi

)2 = vT XXTv = 1
to conclude

|vT xi − vT xj | =
√

(vT xi − vT xj)2 ≤
√

2 ((vT xi)2 + (vT xj)2) ≤
√

2, (13)

which indicates that the range of 1D projections {vTxi} on vector v is upper-
bounded.
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Let us suppose that the pairwise constraints are imposed on l log samples
{x1, · · · ,xl}. Thus, we only need to find the output Yl of Xl. In light of Eqn. (13),
we may correct the output V T Xl under the initial transform V piloted by the
constraints Sq ∪ Dq within each log session q.

Concretely, we investigate each row vT
d Xl of V T Xl and form each row vector

y(d) ∈ R
l in output Yl as follows (d = 1, · · · , r)

y
(d)
j =

⎧
⎨
⎩

vT
d xi, (xi,xj) ∈ Sq

−sgn(vT
d xi)(|vT

d xi|+ 1√
r
), (xi,xj) ∈ Dq

(14)

where sgn(·) denotes the sign function, returning -1 for negative input and 1
otherwise. The idea of setting y

(d)
j based on the PCA output vT

d xj and side
information Sq ∪ Dq is in tune with the proposed regularizer in Eqn. (3.3) as it
turns out that y

(d)
i −y

(d)
j = 0, (xi,xj) ∈ Sq and |y(d)

i +y
(d)
j | = 1√

r
, (xi,xj) ∈ Dq.

The residue 1/
√

r < 1 prevents the freak case y
(d)
i = y

(d)
j = 0, (xi,xj) ∈ Dq.

Throughout all log sessions (q=1, · · · , Q), we sequentially set up y(1), · · · ,y(r)

using Eqn. (14) and ultimately arrive at

Yl = [y(1), · · · ,y(r)]T = [x̂1, · · · , x̂l] ∈ R
r×l, (15)

in which x̂i is the low-dimensional representation of xi via some conceived linear
mapping Ũ : xi �→ x̂i = ŨTxi. Importantly, Yl exactly obeys all those pairwise
constraints {Sq ∪ Dq} because we have

‖x̂i − x̂j‖ = 0, (xi,xj) ∈ Sq; ‖x̂i − x̂j‖ ≥ 1, (xi,xj) ∈ Dq, (16)

which implies that the distances between ideal low-dimensional points with sim-
ilar constraints are zeros and the distances between those with dissimilar con-
straints are always larger than a constant.

In summary, the found output Yl perfectly conforms to the min-max principle
with skillfully modifying the heuristic output V T Xl supported by PCA.

4.2 Orthogonal Pursuit

If the constraint in Eqn. (10) is removed, Eqn. (9) can be easily solved and even
result in a close-form solution. Eqn. (9) is rewritten as

tr(UT XMXT U) + γ
∥∥UT Xl − Yl

∥∥2

F

=
r∑

d=1

uT
d XMXTud + γ

r∑
d=1

∥∥∥XT
l ud − y(d)

∥∥∥
2

=
r∑

d=1

(uT
d XMXTud + γ

∥∥∥XT
l ud − y(d)

∥∥∥
2

), (17)

which guides us to greedily pursue the target vectors ud (d = 1, · · · , r).
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Now we tackle the orthogonal constraint with a recursive notion. Suppose we
have obtained d−1 (1 ≤ d ≤ r) orthogonal projection vectors u1, · · · ,ud−1, and
calculate

V (d) =
d−1∏
i=1

(
I − uiuT

i

‖ui‖2
)

[vd, · · · ,vr] ∈ R
m×(r−d+1), (18)

where V (1) = V = [v1, · · · ,vr].
We constrain ud to be the form of V (d)b (b is an arbitrary vector) and have

the following proposition.

Proposition. ud = V (d)b is orthogonal to previous d−1 vectors {u1, · · · ,ud−1}.
Proof. For 1 ≤ i ≤ d− 1, we have

uT
i ud = uT

i V (d)b = uT
i

(
I − uiuT

i

‖ui‖2
) d−1∏

t�=i

(
I − utuT

t

‖ut‖2
)

[vd, · · · ,vr]b

= (uT
i − uT

i )
d−1∏
t�=i

(
I − utuT

t

‖ut‖2
)

[vd, · · · ,vr]b = 0. (19)

��
This proposition shows that the expression ud = V (d)b must satisfy the orthog-
onal constraint. To obtain the exact solution, we substitute ud = V (d)b into
Eqn. (17) and derive

min
b

bT V (d)T XMXTV (d)b + γ
∥∥∥XT

l V (d)b− y(d)
∥∥∥

2

, (20)

whose derivatives with respect to b will vanish at the minimizer b∗. In the sequel,
we get the close-form solution for each projection vector:

ud = V (d)b∗ = V (d)

[
V (d)T

(
1
γ

XMXT + XlX
T
l

)
V (d)

]−1

V (d)T Xly(d). (21)

4.3 Algorithm

We summarize the Output Regularized Metric Learning (ORML) algorithm for
CIR below. It is appreciable that the number r of the learnt projection vectors
is independent of the size l of log samples and can stretch until r = m (m < n
in this paper).

1. Compute the regularizer: Build two weight matrices W and T upon all
n input samples with Eqn. (4) and Eqn. (5), respectively. Calculate the graph
Laplacian matrix L and the matrix M = L + 2T . Compute the matrix S =
XMXT ∈ R

m×m used in the dissimilarity-enhanced regularizer.
2. PCA: Run PCA on {x1, · · · ,xn} ∈ R

m to get the matrix V =[v1, · · · ,vr] ∈
R

m×r (r ≤ m) such that V T XXT V = I.
3. Get output: Given the log data Xl ∈ R

m×l and {Sq,Dq}Qq=1, use Eqn. (14)
and Eqn. (15) to get the output matrix Yl = [y(1), · · · ,y(r)]T ∈ R

r×l.
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4. Orthogonal pursuit:
For d = 1 to r

ud ←− V
[
V T

(
1
γ S + XlX

T
l

)
V

]−1

V T Xly(d);
V ←− exclude the first column of V ;
V ←−

(
I − uduT

d

‖ud‖2

)
V ;

End.
5. Construct the metric: Form the projection matrix U = [u1, · · · ,ur] ∈

R
m×r, and then construct the distance metric as A = UUT .

5 Experiments

In our experiments, we evaluate the effectiveness of the proposed ORML algo-
rithm applied to collaborative image retrieval. We design the experiments in
several perspectives for extensive performance evaluation, where we compare
ORML with state-of-the-art distance metric learning techniques through engag-
ing normal, limited and noisy log data.

We obtained a standard CBIR testbed from the authors in [1]. The testbed
consists of real-world images from COREL image CDs. It contains two datasets
: 20-Category (20-Cat) that includes images from 20 different categories, and
50-Category (50-Cat) that includes images from 50 different categories. Each
category consists of exactly 100 images that are randomly selected from relevant
examples in the COREL CDs. Every category represents a different semantic
topic, such as antelope, balloon, butterfly, car, cat, dog, horse, etc. The way of
sampling the images with semantic categories lets us evaluate the retrieval per-
formance automatically, which significantly reduces the subjective errors caused
by manual evaluations. In this paper, we only employ 50-Cat since it provides
us much more samples.

5.1 Image Representation and Log Data

We use color, edge and texture to represent images. Three types of color mo-
ments, mean, variance and skewness, are extracted in each color channel (H, S,
and V), resulting in a 9-dimensional color moment feature vector. The Canny
edge detector is applied to obtain the edge image from which the edge direction
histogram is computed. Each edge direction histogram is quantized into 18 bins
of 20 degrees each and an 18-dimensional edge feature vector is acquired. To
extract texture features, the Discrete Wavelet Transformation (DWT) is per-
formed on the image using a Daubechies-4 wavelet filter [15]. For each image,
3-level DWT decompositions are conducted and the entropy values of 9 result-
ing subimages are computed, which gives rise to a 9-dimensional texture feature
vector. Finally, an image is represented as a 36-dimensional feature vector.

We collected the real log data related to the COREL testbed by a real CBIR
system from the authors in [1]. In their collection, there are two sets of log data.
One is a set of normal log data, which contains small noise. The other is a set of
noisy log data with relatively large noise. In log data, a log session is defined as
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Table 1. The log data collected from users

Dataset Normal Log Noisy Log
#Log Sessions Noise # Log Sessions Noise

50-Cat 150 7.7% 150 17.1%

the basic unit. Each log session corresponds to a customary relevance feedback
process, in which 20 images were judged by a user. So, each log session contains
20 log samples that are marked as either relevant or irrelevant. Table 1 shows
the basic information of the log data.

5.2 Experimental Setup

We compare ORML with representative metric learning techniques using side
information. It is noticeable that we do not compare ORML with supervised
metric learning approaches as they require explicit class labels for classification,
which is unsuitable for CIR. The compared approaches include six distance met-
ric techniques:

– Euclidean: The baseline denoted as “EU”.
– Xing: A pairwise constraint-based metric learning method with an iterative

convex optimization procedure [7].
– RCA: Relevance Component Analysis, which learns linear transformations

using only equivalent (similar) constraints [8].
– DCA: Discriminative Component Analysis, which improves RCA by engag-

ing inequivalent (dissimilar) constraints [9].
– RML: Regularized Metric Learning using the Frobenius norm as the regu-

larizer [10].
– ORML: the proposed Output Regularized Metric Learning algorithm using

the dissimilarity-enhanced regularizer and the output-based loss function.

Lately, an information-theoretic metric learning approach is presented to ex-
press the metric learning problem as a Bregman optimization problem [16]. This
approach aims at minimizing the differential relative entropy between two mul-
tivariate Gaussians under pairwise constraints on the distance function. Due to
the space limit in this paper, we do not contrast ORML with the information-
theoretic metric learning approach.

We follow the standard procedure in CBIR experiments. Specifically, a query
image is picked from the database and then queried with the evaluated six dis-
tance metrics. The retrieval performance is evaluated based on top ranked images
ranging from top 10 to top 100. The average precision (AP) and Mean Aver-
age Precision (MAP) are used as the performance measures, which are broadly
adopted in CBIR experiments. To implement ORML, we use k = 6 nearest
neighbors, α = 1 and β = 2 to compute the matrix M used in our regularizer.
The regularization parameter γ is simply fixed to 9 and the number of projection
vectors, which construct the target distance metric, is set to r = 15.
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Fig. 1. Average precision of top ranked images on the 50-Category testbed with normal
log data

Table 2. Mean Average Precision (%) of top ranked images on the 50-Category testbed
over 5,000 queries with three kinds of log data. The last column shows the relative
improvement of the proposed ORML over the baseline (Euclidean).

Datasets EU Xing RCA DCA RML ORML ORML Improve

50-Cat+normal log 27.99 28.71 31.41 31.72 32.47 34.13 21.94

50-Cat+small log 27.99 28.27 31.31 31.64 31.41 32.68 16.76

50-Cat+noisy log 27.99 27.95 29.79 30.14 31.08 33.48 19.61

5.3 Normal Log Data

Above all, we perform experiments on the normal log data. Figure 1 shows the
experimental results on the 50-Category dataset. By comparing the four previous
metric learning methods, Xing, RCA, DCA and RML, RML achieves the best
overall performance, obtaining 16.0% improvement on MAP over the baseline,
as shown in Table 2. Xing performs the worst among the four methods. Overall,
we find that the proposed ORML algorithm achieves the best performance, sig-
nificantly improving the baseline by about 21% on MAP. It demonstrates that
ORML is more effective than the previous methods when working on the normal
log data. Here, we find that Xing et al.’ method does not perform well in this
dataset. One possible reason is that this method may be too sensitive to noise
since it imposes the hard constraint on dissimilar data points.

5.4 Small Log Data

In this experiment, we evaluate the robustness of the metric learning methods on
small amount of normal log data. This situation usually happens at the beginning
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Fig. 2. Average precision of top ranked images on the 50-Category testbed with small
and noisy log data.

stage of CBIR systems. Figure 2(a) shows the experimental results on the 50-
Category testbed with a small subset of the normal log data which contains only
50 log sessions randomly selected from the normal log dataset. Again, we find
that ORML achieves the best improvement among all compared methods over
the baseline. It also shows that the proposed ORML method is more effective to
learn robust metrics by utilizing the unlabeled data, even with limited log data.

5.5 Noisy Log Data

To further validate the robustness performance, the third experiment is to eval-
uate the metric learning methods on the noisy log data carrying relatively large
noise. Figure 2(b) shows the experimental results on the 50-Category testbed
with the noisy log data. From the experimental results, we find that Xing et
al.’s method fails to improve over the baseline due to the noise problem. The re-
sults also validate our previous conjecture that Xing et al.’s method may be too
sensitive to noise. Compared with Xing, the other three metric learning methods
including RCA, DCA and RML are less sensitive to noise, but they still suffer a
lot from the noise. For example, RCA achieves 12.2% improvement on MAP with
the normal log data as shown in Table 2, but only achieves 6.4% improvement
on MAP with the same amount of noisy log data. In contrast, ORML achieves
21.94% improvement on MAP with normal log data, and is able to keep 19.61%
improvement on MAP with the larger noisy log data without too much drop-
ping. These experimental results again validate that ORML is effective to learn
reliable distance metrics with real noisy log data.

6 Conclusion

This paper studies distance metric learning with side information and its ap-
plication to collaborative image retrieval, in which real log data provided by
the user’s relevance feedback are leveraged to improve traditional CBIR perfor-
mance. To robustly exploit the log data and smoothly incorporate the unlabeled
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data, we propose the Output Regularized Metric Learning (ORML) algorithm.
ORML uses the dissimilarity-enhanced regularizer and the ideal output of log
samples piloted by side information for learning a series of orthogonal projection
vectors that readily construct an effective metric. The promising experimen-
tal results show that the proposed ORML algorithm is more effective than the
state-of-the-arts in learning reliable metrics with real log data.
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