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Abstract

Learning distance functions with side information plays a key role in many ma-
chine learning and data mining applications. Conventional approaches often as-
sume a Mahalanobis distance function. These approaches are limited in two as-
pects: (i) they are computationally expensive (even infeasible) for high dimen-
sional data because the size of the metric is in the square of dimensionality; (ii)
they assume a fixed metric for the entire input space and therefore are unable
to handle heterogeneous data. In this paper, we propose a novel scheme that
learns nonlinear Bregman distance functions from side information using a non-
parametric approach that is similar to support vector machines. The proposed
scheme avoids the assumption of fixed metric by implicitly deriving a local dis-
tance from the Hessian matrix of a convex function that is used to generate the
Bregman distance function. We also present an efficient learning algorithm for
the proposed scheme for distance function learning. The extensive experiments
with semi-supervised clustering show the proposed technique (i) outperforms the
state-of-the-art approaches for distance function learning, and (ii) is computation-
ally efficient for high dimensional data.

1 Introduction

An effective distance function plays an important role in many machine learning and data mining
techniques. For instance, many clustering algorithms depend on distance functions for the pairwise
distance measurements; most information retrieval techniques rely on distance functions to identify
the data points that are most similar to a given query; k-nearest-neighbor classifier depends on dis-
tance functions to identify the nearest neighbors for data classification. In general, learning effective
distance functions is a fundamental problem in both data mining and machine learning.

Recently, learning distance functions from data has been actively studied in machine learning. In-
stead of using a predefined distance function (e.g., Euclidean distance), researchers have attempted
to learn distance functions from side information that is often provided in the form of pairwise con-
straints, i.e., must-link constraints for pairs of similar data points and cannot-link constraints for
pairs of dissimilar data points. Example algorithms include [14, 2, 7, 10].

Most distance learning methods assume a Mahalanobis distance. Given two data points = and /,
the distance between z and ' is calculated by d(z,2’) = (z — ') T A(x — 2'), where A is the
distance metric that needs to be learned from the side information. [14] learns a global distance
metric (GDM) by minimizing the distance between similar data points while keeping dissimilar data
points far apart. It requires solving a Semi-Definite Programming (SDP) problem, which is com-
putationally expensive when the dimensionality is high. BarHillel et al [2] proposed the Relevant
Components Analysis (RCA), which is computationally efficient and achieves comparable results
as GDM. The main drawback with RCA is that it is unable to handle the cannot-link constraints.
This problem was addressed by Discriminative Component Analysis (DCA) in [7], which learns a
distance metric by minimizing the distance between similar data points and in the meantime max-



imizing the distance between dissimilar data points. The authors in [4] proposed an information-
theoretic based approach for metric learning (ITML) approach that learns the Mahalanobis distance
by minimizing the differential relative entropy between two multivariate Gaussians. Neighborhood
Component Analysis (NCA) [5] learns a distance metric by extending the nearest neighbor classifier.
The maximum-margin nearest neighbor (LMNN) classifier [13] extends NCA through a maximum
margin framework. Yang et al. [15] propose a Local Distance Metric (LDM) that addresses multi-
modal data distributions. In addition to learning a distance metric, several studies [11, 6] are devoted
to learning a distance function, mostly non-metric, from the side information.

Despite the success, the existing approaches for distance metric learning are limited in two aspects.
First, most existing methods assume a fixed distance metric for the entire input space, which make
it difficult for them to handle the heterogeneous data. This issue was already demonstrated in [15]
when learning distance metrics from multi-modal data distributions. Second, the existing methods
aim to learn a full matrix for the target distance metric that is in the square of the dimensionality,
making it computationally unattractive for high dimensional data. Although the computation can be
reduced significantly by assuming certain forms of the distance metric (e.g., diagonal matrix), these
simplifications often lead to suboptimal solutions. To address these two limitations, we propose a
novel scheme that learns Bregman distance functions from the given side information. Bregman
distance or Bregman divergence [3] has several salient properties for distance measure. Bregman
distance generalizes the class of Mahalanobis distance by deriving a distance function from a given
convex function ¢ (). Since the local distance metric can be derived from the local Hessian matrix of
©(z), Bregman distance function avoids the assumption of fixed distance metric. Recent studies [1]
also reveal the connection between Bregman distances and exponential families of distributions. For
example, Kullback-Leibler divergence is a special Bregman distance when choosing the negative
entropy function for the convex function ¢(z).

The objective of this work is to design an efficient and effective algorithm that learns a Bregman
distance function from pairwise constraints. Although Bregman distance or Bregman divergence has
been explored in [1], all these studies assume a predfined Bregman distance function. To the best of
our knowledge, this is the first work that addresses the problem of learning Bregman distances from
the pairwise constraints. We present a non-parametric framework for Bregman distance learning,
together with an efficient learning algorithm. Our empirical study with semi-supervised clustering
show that the proposed approach (i) outperforms the state-of-the-art algorithms for distance metric
learning, and (ii) is computationally efficient for high dimensional data.

The rest of the paper is organized as follows. Section 2 presents the proposed framework of learning
Bregman distance functions from the pairwise constraints, together with an efficient learning algo-
rithm. Section 3 presents the experimental results with semi-supervised clustering by comparing
the proposed algorithms with a number of state-of-the-art algorithms for distance metric learning
algorithms. Section 5 concludes this work.

2 Learning Bregman Distance Functions

2.1 Bregman Distance Function

Bregman distance function is defined based on a given convex function. Let ¢(x) : R? — R be a
strictly convex function that is twice differentiable. Given (z), the Bregman distance function is
defined as

d(z1,22) = p(x1) — p(w2) — (21 — 22) " Vip(2)
For the convenience of discussion, we consider a symmetrized version of the Bregman distance
function that is defined as follows

d(z1,22) = (Vep(x1) = Vip(2)) " (21 — 22) (D
The following proposition shows the properties of d(z1, z3).

Proposition 1. The distance function defined in (1) satisfies the following properties if o(x) is a
strictly convex function: (a) d(z1,x2) = d(z2,21), (b) d(x1,22) > 0, (¢)d(x1,22) =0 < x1 = T2

Remark To better understand the Bregman distance function, we can rewrite d(z1, z2) in (1) as

d(z1,22) = (21 — 22) ' V20(Z) (21 — 72)



where Z is a point on the line segment between 21 and z2. As indicated by the above expression,
the Bregman distance function can be viewed as a general Mahalanobis distance that introduces a
local distance metric A = V2¢(Z). Unlike the conventional Mahalanbis distance where metric A is
a constant matrix throughout the entire space, the local distance metric A = V2 (&) is introduced
via the Hessian matrix of convex function () and therefore depends on the location of 1 and x5.

Although the Bregman distance function defined in (1) does not satisfy the triangle inequality, the
following proposition shows the degree of violation could be bounded if the Hessian matrix of ()
is bounded.

Proposition 2. Let ) be the closed domain for x. If 3m, M € R, M > m > 0 and

I < min V? < 2 < MI
ml < min Vie(z) = maxVip(z) =

where 1 is the identity matrix, we have the following inequality
\/d(xa,:cb) < \/d(xa, Tc) + \/d(xm xp) + (VM — /m) [d(xa,zc)d(xc,xb)}lﬂl 2

The proof of this proposition can be found in Appendix A. As indicated by Proposition 2, the de-
gree of violation of the triangle inequality is essentially controlled by v/M — /m. Given a smooth
convex function with almost constant Hessian matrix, we would expect that to a large degree, Breg-
man distance will satisfy the triangle inequality. In the extreme case when op(z) = 2" Az/2 and
V2p(x) = A, we have a constant Hessian matrix, leading to a complete satisfaction of the triangle
inequality.

2.2 Problem Formulation

To a learn a Bregman distance function, the key is to find the appropriate convex function ¢(x) that
is consistent with the given pairwise constraints. In order to learn the convex function ¢ (z), we take
a non-parametric approach by assuming that ¢(-) belongs to a Reproducing Kernel Hilbert Space
H,. Given a kernel function x(x,z’) : R? x R? R, our goal is to search for a convex function
¢(x) € H, such that the induced Bregman distance function, denoted by d,(z, =), minimizes the
overall training error with respect to the given pairwise constraints.

We denote by D = {(z},27,y;),i = 1,...,n} the collection of pairwise constraints for training.
Each pairwise constraint consists of a pair of instances =} and z2, and a label y; that is +1 if 2} and
x? are similar and —1 if ] and z? are dissimilar. We also introduce X = (z1,...,zy) to include

the input patterns of all training instances in D.

Following the maximum margin framework for classification, we cast the problem of learning a
Bregman distance function from pairwise constraints into the following optimization problem, i.e.,

. T 0 - 1,2

- C E Uy;ld(x;,x7) — b 3
QM beR 2|(p|H“ + P (yild(y, i) = B]) )
where Q(H) = {f € H : fisconvex} refers to the subspace of functional space H that only

includes convex functions, ¢(z) = max(0, 1 — z) is a hinge loss, and C' is a penalty cost parameter.

The main challenge with solving the variational problem in (3) is that it is difficult to derive a
representer theorem for ¢(z) because it is V(z) used in the definition of distance function, not
©(x). Note that although it seems to be convenient to regularize V(x), it will be difficult to restrict
() to be convex. To resolve this problem, we consider a special family of kernel functions k(x, ')
that has the form (2, 72) = h(x{ z2) where h : R +— R is a strictly convex function. Examples
of h(z) that guarantees (-, -) to be positive semi-definite are h(z) = |2|¢ (d > 1), h(2) = |z + 1]¢
(d > 1), and h(z) = exp(z). For the convenience of discussion, we assume h(0) = 0 throughout
this paper.

First, since p(x) € H,, we have

o(z) = / dyr(z, y)aly) = / dyh(zy)q(y) @

where ¢(y) is a weighting function. Given the training instances 1, ..., zxy, we divide the space
R? into A and A that are defined as
A =span{zy,...,2n}, A=Null(zy,...,zN) ®)



We define H); and H as follows
H)| = span{r(z,-), Vo € A}, H. = span{x(z,-),Vz € A} (6)

The following proposition summarizes an important property of reproducing kernel Hilbert space
'H,. when kernel function (-, -) is restricted to the form in Eq. (2.2).

Proposition 3. If the kernel function (-, -) is written in the form of Equation (2.2) with h(0) = 0,
we have H| and 'H | form a complete partition of Hy, i.e., Hx = H UHL, and H) LH .

We therefore have the following representer theorem for ¢(x) that minimizes (3)

Theorem 1. The function ¢(x) that minimizes (3) admits the following expression

o) e Hy = [ dyatyh(sTy) = [ duglwhaTxu) g
yeA
where u € RN and X = (z1,...,2N).

The proof of the above theorem can be found in Appendix B.

2.3 Algorithm

To further derive a concrete expression for ¢ (z), we restrict ¢(y) in (7) to the special form: ¢(y) =
Zfil ;0(y — x;) where o; > 0,7 = 1,..., N are non-negative combination weights. This results
in(x) = Zi\; a;h(z] ), and consequently d(z,, ;) as follows

N
d(za, ) = 3 ai(W (xg 2:) = B (3 )] (20 — ) (8)
i=1
By defining h(z,) = (h'(x) z1),..., W (z) xn)) T, we can express d(z,, z3) as follows
(1) = (20 — ) X (@00 (1) — hmy)) ©

Notice that when h(z) = 22 /2, we have d(z,, ;) expressed as
d(xq,xp) = (24 — 1) | Xdiag(a)X T (x4 — ). (10)

This is a Mahanabolis distance with metric A = Xdiag(a)X T = Zivzl a;zir] . When h(z) =
exp(z), we have h(z) = (exp(zx1),...,exp(z"zy)), and the resulting distance function is no
longer stationary due to the non-linear function exp(z).

Given the assumption that ¢(y) = Zivzl a;0(y — x;), we have (3) simplified as

S .
alef%g{}’b 2@ Ka—&—C;ei (11)
st i (@t~ a) X (a0 [h(ad) - hE) —b) > 1- <,

3

g>0,i=1,....,n,ap. >0,k=1,...,N

Note that the constraint o, > 0 is introduced to ensure p(z) = Zszl agh(zTxy) is a convex
function. By defining

zi = [h(x;) = (@) o [X T (27 — 27)], (12)
we simplify the problem in (11) as follows
. L T - T
agﬂ{el?,b L= e KonrC;E(yi[zi a—1b]) (13)

where ¢(z) = max(0,1 — z).



We solve the above problem by a simple subgradient descent approach. In particular, at iteration ¢,
given the current solution o and b, we compute the gradients as

VoLl =Kao'+CY 0l(yilz] o' = b )yizi, Vol = =C Y llyi[z] o — b))y, (14)

i=1 i=1
where /() stands for the subgradient of £(z). Let S;% € D denotes the set of training instances for
which (a, b') suffers a non-zeros loss, i.e.,

S ={(zi,4:) €D :yi(z o' —b") <1} (15)
We can then express the sub-gradients of £ at o and b* as follows:
Vaﬁ =Ka-C Z YiZi, Vbﬁ =C Z Yi (16)
(ziy:)€SF (zi,9:)€S;
The new solution, denoted by a**! and b+, is computed as follows:
abt™ = o) (af = % [VaL]k), BT =b" — 7, VL a7
where afjl is the k-th element of vector a'™!, ms(z) projects  into the domain G, and +; is the

step size that is set to be v, = % by following the Pegasos algorithm [9] for solving SVMs. The
pseudo-code of the proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Algorithm of Learning Bregman Distance Functions

INPUT:
o data matrix: X € RV
e pair-wise constraint { (2}, z7, y*),
e kernel function: k(z1,z2) = h(z
e penalty cost parameter C
OUTPUT:
e Bregman coefficients o« € RY, b € R
PROCEDURE
. initialize Bregman coefficients: o = ao, b = bg
. calculate kernel matrix: K = [h(z] z;)]Nx N
: calculate vectors z;: z; = [h(z}) — h(z?)] o [X T (z} — 2?))
: set iteration step t = 1;
: repeat
(1) update the learning rate: v = C/t,t =t + 1
(2) update subset of training instances: S;" = {(z;,v:) € D : yi(z] o —b) < 1}
(3) compute the gradients w.r.t o and b:
Vol =Ko — szqesj Yizi, VoL = sz,esj Yi
10: (4) update Bregman coefficients o = (a1, . . . , o, ) and threshold b:
11: b+ b— ’yvbﬂ, Qf < 7'('[0,+QO] (Oék — W[Va[,]k) 3 k= ].7 PN ,N
12: until convergence

i=1,...,n}
Iﬂﬂz)

R I Al

Computational complexity One of the major computational costs for Algorithm 1 is the prepa-
ration of kernel matrix K and vector {z;}1_,, which fortunately can be pre-computed. Each step of
the subgradient descent algorithm has a linear complexity, i.e., O(max(N,n)), which makes it rea-
sonable even for large data sets with high dimensionality. The number of iterations for convergence
is O(1/€%) where € is the target accuracy. It thus works fine if we are not critical about the accuracy
of the solution.

3 Experiments

We evaluate the proposed distance learning technique by semi-supervised clustering. In particular,
we first learn a distance function from the given pairwise constraints and then apply the learned
distance function to data clustering. We verify the efficacy and efficiency of the proposed technique
by comparing it with a number of state-of-the-art algorithms for distance metric learning.

3.1 Experimental Testbed and Settings

We adopt six well-known datasets from UCI machine learning repository, and six popular text bench-
mark datasets' in our experiments. These datasets are chosen for clustering because they vary signif-

!The Reuter dataset is available at: http://renatocorrea.googlepages.com/textcategorizationdatasets



icantly in properties such as the number of clusters/classes, the number of features, and the number
of instances. The diversity of datasets allows us to examine the effectiveness of the proposed learn-
ing technique more comprehensively. The details of the datasets are shown in Table 1.

dataset #samples  #feature  #classes | dataset #samples  #feature  #classes
breast-cancer 683 10 2 wla 2,477 300 2
diabetes 768 8 2 w2a 3,470 300 2
ionosphere 251 34 2 wba 17,188 300 2
liver-disorders 345 6 2 WebKB 4,291 19,687 6
sonar 208 60 2 newsgroup 7,149 47,411 11
ala 1,605 123 2 Reuter 10,789 5,189 79

Table 1: The details of our experimental testbed

Similar to previous work [14], the pairwise constraints are created by random sampling. More
specifically, we randomly sample a subset of pairs from the pool of all possible pairs (every two
instances forms a pair). Two instances form a must-link constraint (i.e., y; = +1) if they share the
same class label, and form a cannot-link constraint (i.e., y; = —1) if they are assigned to different
classes. To calculate the Bregman function, in this experiment, we adopt the non-linear function
h(z) = (exp(x T z1),...,exp(z zxN)).

To perform data clustering, we run the k-means algorithm using the distance function learned from
500 randomly sampled positive constraints 500 random negative constraints. The number of clusters
is simply set to the number of classes in the ground truth. The initial cluster centroids are randomly
chosen from the dataset. To enable fair comparisons, all comparing algorithms start with the same
set of initial centroids. We repeat each clustering experiment for 20 times, and report the final results
by averaging over the 20 runs.

We compare the proposed Bregman distance learning method using the k-means algorithm for semi-
supervised clustering, termed Bk-means, with the following approaches: (1) a standard k-means,
(2) the constrained k-means [12] (Ck-means), (3) Ck-means with distance learned by RCA [2], (4)
Ck-means with distance learned by DCA [7], (5) Ck-means with distance learned by the Xing’s
algorithm [14] (Xing), (6) Ck-means with information-theoretic metric learning (/TML) [4], and (7)
Ck-means with a distance function learned by a boosting algorithm (DistBoost) [11].

To evaluate the clustering performance, we use the some standard performance metrics, in-
cluding pairwise Precision, pairwise Recall, and pairwise F1 measures [8], which are evalu-
ated base on the pairwise results. Specifically, pairwise precision is the ratio of the number
of correct pairs placed in the same cluster over the total number of pairs placed in the same
cluster, pairwise recall is the ratio of the number of correct pairs placed in the same cluster
over the total number of pairs actually placed in the same cluster, and pairwise FI equals to
2 x precision X recall/(precision + recall).

3.2 Performance Evaluation on Low-dimensional Datasets

The first set of experiments evaluates the clustering performance on six UCI datasets. Table 2 shows
the average precision, recall, and F1 measurements of all the competing algorithms given a set of
1, 000 random constraints. The top two highest average F1 scores on each dataset were highlighted
in bold font. From the results in Table 2, we observe that the proposed Bregman distance based
k-means clustering approach (Bk-means) is either the best or the second best for almost all datasets,
indicating that the proposed algorithm is in general more effective than the other algorithms for
distance metric learning.

3.3 Performance Evaluation on High-dimensional Text Data

We evaluate the clustering performance on six text datasets. Since some of the methods are infeasible
for text clustering due to the high dimensionality, we only include the results for the methods which
are feasible for this experiment (i.e., OOM indicates the method takes more than 10 hours, and
OOT indicates the method needs more than 16G REM). Table 3 summarizes the F1 performance
of all feasible methods for datasets wla, w2a, wba, WebKB, 20newsgroup and reuter. Since cosine
similarity is commonly used in textual domain, we use k-means, Ck-means in both Euclidian space
and Cosine similarity space as baselines. The best F1 scores are marked in bold in Table 3. The
results show that the learned Bregman distance function is applicable for high dimensional data, and
it outperforms the other commonly used text clustering methods for four out of six datasets.



breast diabetes

method precision recall F1 precision recall F1

baseline 72.85+3.77 72524230  72.73£3.42 | 52.47£893  57.17£3.68 56.411+4.53
Ck-means 98.104+2.20 81.01£0.10 85.31+1.48 | 60.06+1.13  55.98+0.64 57.57+0.85
ITML 97.05+2.77 88.96+£0.30  91.9442.15 | 73.93+1.28  70.11+0.41 71.55+0.81
Xing 93.614+0.14 84.19+0.83  88.11+0.22 | 58.11+0.48  58.31+0.16 58.21£0.31
RCA 85.40+0.14 94.164+0.29  90.18+£2.94 | 59.86+£2.99  62.70£2.18 61.2242.59
DCA 94.534+0.34 93.23+0.29 93.88+0.22 | 61.23+£2.05 64.88£0.56  63.00+0.75
DistBoost 94.76+0.24 93.83+0.31 94.29+0.29 | 64.45+£1.02 68.33+£0.98 66.33+1.00
Bk-means 99.0440.10 98.33+0.24  98.37+0.19 | 99.42+0.40 64.68+0.63 77.43+0.92

ionosphere liver-disorders

method precision recall F1 precision recall F1

baseline 62.354+6.30 53394274 57.284+6.20 | 63.92+£8.60  50.50+0.40 55.67£5.96
Ck-means 57.05£1.24 51.28£1.58 61.46£1.36 | 62.904+8.43  50.35£1.68 55.13£1.63
ITML 97.104+2.70 59.994+0.31 72.62+1.24 | 93.53+£3.28  55.57+0.10 68.73+1.40
Xing 63.46£0.11 64.10£0.03  63.52+£0.39 | 95.424+2.85 49.65+0.08 65.31£1.10
RCA 100.00+6.19  50.36+1.44 66.99£0.45 | 59.56+18.95 52.15£1.68 54.92+5.76
DCA 66.36+£3.01 67.01£2.12  66.68+£0.00 | 70.1844.27 50.41£0.07 58.67£1.63
DistBoost 7591+1.11 69.34+091 72.72+1.03 | 51.60+£1.43  52.88+£1.31 52.23+1.37
Bk-means 97.64+£1.93 62.71+£1.94 73.28+1.93 | 96.89+4.11  50.29+£2.09 66.86+3.10

sonar ala

method precision recall F1 precision recall F1

baseline 52.98£2.05 50.84£1.69 51.87£1.47 | 55.81+1.01  69.99£091 62.10£0.99
Ck-means 60.441+4.53 S171£1.17  55.32+1.37 | 69.91+£0.08  80.34+0.18 77.01£0.12
ITML 98.68+2.46 56.31£2.28 70.46£2.35 | 99.99+0.98  70.30£0.54 81.76+0.76
Xing 96.99+4.53 69.81+0.05 79.83£2.70 | 57.70£1.32  70.89£1.01 63.62+1.21
RCA 100.00+13.69  69.81£1.33  79.83+5.85 | 76.64+0.08  66.96+0.35 69.96+0.18
DCA 100.00+0.64  59.75+0.30 73.11£0.57 | 57.15£1.32  71.76£1.87 63.63+1.55
DistBoost 76.64£0.57 74.48+0.69  75.54£0.62 n/a n/a n/a

Bk-means 99.20+1.62 74244123  82.52+1.44 | 99.98+0.21  77.72+0.17 86.32+0.19

Table 2: Evaluation of clustering performance (average precision, recall, and F1) on six UCI
datasets. The top two F1 scores are highlighted in bold font for each dataset.

methods wla w2a wba WebKB newsgroup Reuter
k-means(EU) 76.68+£0.25  72.59£0.77  76.524+0.97  35.78+0.17 16.544+0.05 43.884+0.23
k-means(Cos) 76.87+5.61  73.47£1.35 77.16£1.27 35.184+3.41 18.87£0.14 45.42+0.73
Ck-means(EU) | 87.04+1.15 97.23+1.21 76.52+1.01  70.84£2.29 19.12+0.54 56.00+£0.42
Ck-means(Cos) | 87.14£2.14 97.144+2.12  75324+091 75.84£1.08 20.08+0.49 58.24+0.82
RCA 91.00£1.02 96.45+1.17 93.51%1.13 OOM OOM O0T
DCA 92.13+1.04 94.30+£2.56  87.44+1.99 OOM OOM ooT
ITML 92.31£0.84 94.12£0.92  96.95 +0.13 OO0T OOM OO0T
Bk-means 93.43+1.07 96.92+1.02  98.64+£0.24  73.94+1.25 25.17+£1.27 64.51+0.95

Table 3: Evaluation of clustering F1 performance on the high dimensional text data. Only applicable
methods are shown. OOM indicates “out of memory”, and OOT indicates “out of time”.

3.4 Computational Complexity

Here, we evaluate the running time of semi-supervised clustering. For a conventional clustering
algorithm such as k-means, its computational complexity is determined by both the calculation of
distance and the clustering scheme. For a semi-supervised clustering algorithm based on distance
learning, the overall computational time include both the time for training an appropriate distance
function and the time for clustering data points. The average running times of semi-supervised
clustering over the six UCI datasets are listed in Table 4. It is clear that the Bregman distance based
clustering has comparable efficiency with simple methods like RCA and DCA on low dimensional
data, and runs much faster than Xing, ITML, and DistBoost. On the high dimensional text data, it is
much faster than other applicable DML methods.

Algorithm k-means Ck-means ITML Xing RCA DCA DistBoost Bk-means
UCI data(Sec.) 0.51 0.72 759 856  0.88 0.90 13.09 1.70
Text data(Min.) 0.78 4.56 71.55 nfa 6890 69.34 n/a 3.84

Table 4: Comparison of average running time over the six UCI datasets and subsets of six text
datasets (10% sampling from the datasets in Table 1).



4 Conclusions

In this paper, we propose to learn a Bregman distance function for clustering algorithms using a
non-parametric approach. The proposed scheme explicitly address two shortcomings of the existing
approaches for distance fuction/metric learning, i.e., assuming a fixed distance metric for the entire
input space and high computational cost for high dimensional data. We incorporate the Bregman
distance function into the k-means clustering algorithm for semi-supervised data clustering. Exper-
iments of semi-supervised clustering with six UCI datasets and six high dimensional text datasets
have shown that the Bregman distance function outperforms other distance metric learning algo-
rithms in F1 measure. It also verifies that the proposed distance learning algorithm is computation-
ally efficient, and is capable of handling high dimensional data.
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APPENDIX A: Proof of Proposition 2
Proof. First, let us denote by f as follows:

= (VM — Vm)[d(zq, ze)d(xe, x)]/*
The square of the right side of Eq. 2)1is

\/d .Ta,l'c + \/d xaxb) + f1/4> d(xa; xb) n(xaaxbaxc) + 6($a7$b7xc)

where

0(xa, Ty, e) = f?+ 2f\d(zq, xc) + 2f\/d(xc,xb) + 2\/d(xa,xc)d(xc7xb)
N(@a, T, 2c) = (Vo(a) = V() (@e — x) + (Vo(ze) — Vo(zp))(Ta — zc).

From this above equation, the proposition holds if and only if 6(x,, zp, z.) — N(za, Tp, x.) > 0.
From the fact that

0(za,xp, xc) — N(Ta, T, Te)
(VM — /m)? + 2(vM — /m) ( (2o, ze) Fd(ze, 2) T + d(ze, ) d(2a, zc)i> 4 2d(a, ze)d(ze, Tb)
d(xa,zc)d(xc, Tp)
since v/M > y/m and the distance function d(-) > 0, we get § (4, Ty, Tc) — (T a, Tp, T) > 0. [

APPENDIX B: Proof of Theorem 1
Proof. We write p(x) = o) (x) + 1 (7) where

oy(x) € Hy = / dya(y)h(aTy), o (z) € Hy = / dya(y)h(zTy)

yeA yEA

Thus, the distance function defined in (1) is then expressed as

d(za,x0) = (za—15) (Voy(2a) — Veoy(as)) + (20 — 23) " (Vm(xa) Vi (zp))
— [ Wl - T (@ - o) — KTy (20— )
yeA yeA
= / a(y) (W (xgy) = W (2] 9))y " (@ — ) = (2a — )" (Voo (2a) — Vipy (1))
yeA
Since |o(z)[3,, = |y (z)[3,, +]eL(x)]7,_ . the minimizer of (1) should have [ ()[3, = 0. Since

ol (@) = (pL (), klx, Nn, < |k(z,)|n,.leL|n,. =0, wehave ¢, (x) = 0 for any x. We thus
have p(x) = o) (x), which leads to the result in the theorem. O
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