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Abstract. Online learningandkernel learningare two active research topics in
machine learning. Although each of them has been studieshsixely, there is a
limited effort in addressing the intersecting researchhis paper, we introduce a
new research problem, termé@xhline Multiple Kernel Learning (OMKL), that
aims to learn a kernel based prediction function from a pbptedefined kernels
in an online learning fashion. OMKL is generally more chadjang than typical
online learning because both the kernel classifiers and lihear combination
weights must be learned simultaneously. In this work, wesittat two setups for
OMKL, i.e. combining binary predictions or real-valued puts from multiple
kernel classifiers, and we propose both deterministic amchastic approaches
in the two setups for OMKL. The deterministic approach updatll kernel clas-
sifiers for every misclassified example, while the stochagpiproach randomly
chooses a classifier(s) for updating according to some $agngtrategies. Mis-
take bounds are derived for all the proposed OMKL algorithms

Keywords: On-line learning and relative loss bounds, Kernels

1 Introduction

In recent years, we have witnessed increasing interestotinonline learningand
kernel learning Online learning refers to the learning process of answeaisequence
of questions given the feedback of correct answers to puswipiestions and possibly
some additional prior information [27]; Kernel learningres to identify an effective
kernel for a given learning task [20, 28, 12]. A well-knowrrikel learning method is
Multiple Kernel Learning (MKL) [3, 28], that seeks the comhtion of multiple kernels
in order to optimize the performance of kernel based legrmiethods (e.g., Support
Vector Machines (SVM)).

Although kernel trick has been explored in online learnif,[7], it is often as-
sumed that kernel function is given apriori. In this work, agdress a a new research
problem,Online Multiple Kernel Learning (OMKL), which aims to simultaneously
learn multiple kernel classifiers and their linear combiova from a pool of given ker-
nels in an online fashion. Compared to the exiting methodsdtiple kernel learning
(see [17] and reference therein), online multiple kernaidéeng is computationally ad-
vantageous in that it only requires going through trainixaneples once. We emphasize
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that online multiple kernel learning is significantly moredlenging than typical online
learning because both the optimal kernel classifiers aridlthear combinations have
to be learned simultaneously in an online fashion.

In this paper, we consider two different setups for onlindtiple kernel learning. In
the first setup, termed @nline Multiple Kernel Learning by Predictiorss OMKL-P,
its objective is to combine thieinary predictionsfrom multiple kernel classifiers. The
second setup, termed @sline Multiple Kernel Learning by Outputs OMKL-O, im-
proves OMKL-P by combining theeal-valued outputfrom multiple kernel classifiers.
Our online learning framework for multiple kernel learnisdased on the combination
of two types of online learning techniques: therceptronalgorithm [25] that learns a
classifier for a given kernel, and tiveedgealgorithm [9] that linearly combines multi-
ple classifiers. Based on the proposed framework, we présertypes of approaches
for each setup of OMKL , i.egdeterministicandstochasticapproaches. The determin-
istic approach updates each kernel classifier for everylasisified example, while the
stochastic approach chooses a subset of classifiers fotingdeased on certain sam-
pling strategies. Mistake bounds are derived for all theppsed algorithms for online
kernel learning.

The rest of this paper is organized as follows. Section 2erevithe related work
on both online learning and kernel learning. Section 3 aegrs the problem of online
multiple kernel learning. Section 4 presents the algorittior Online Multiple Ker-
nel Learning by Predictions and their mistake bounds; Bedipresents algorithms
for Online Multiple Kernel Learning by Outputs and their taise bounds. Section 6
concludes this study with future work.

2 Related Work

Our work is closely related to botbnline learningand kernel learning Below we
briefly review the important work in both areas.

Extensive studies have been devoted to online learning l&msification. Start-
ing from Perceptron algorithm [1, 25, 23], a number of onlitessification algorithms
have been proposed including the ROMMA algorithm [21], thevhA algorithm [11],
the MIRA Algorithm [8], the NORMA algorithm [16, 15], and thenline Passive-
Aggressive algorithms [7]. Several studies extended thedpé&ron algorithm into a
nonlinear classifier by the introduction of kernel funcgda6, 10]. Although these al-
gorithms are effective for nonlinear classification, theyally assume that appropriate
kernel functions are given apriori, which limits their ajgptions. Besides online clas-
sification, our work is also related to online predictioniwéixpert advices [9, 22, 30].
The most well-known work is probably the Hedge algorithm [®hich was a direct
generalization of Littlestone and Warmuth'’s Weighted Miajo(\WM) algorithm [22].
We refer readers to the book [4] for the in-depth discussidhie subject.

Kernel learning has been actively studied thanks to thet gngacesses of kernel
methods, such as support vector machines (SVM) [29, 26]eiRestudies of kernel
learning focus on learning an effective kernel automdiicabm training data. Var-
ious algorithms have been proposed to learn parametric moi-g@rametric kernels
from labeled and/or unlabeled data. Example techniqudadeccluster kernels [5],
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diffusion kernels [18], marginalized kernels [14], grapased spectral kernel learn-
ing approaches [32, 13], non-parameric kernel learninggllzand lower-rank kernel
learning[19]. Among various approaches for kernel leagnMultiple Kernel Learn-
ing(MKL) [20], whose goal is to learn an optimal combinatiofimultiple kernels,
has emerged as a promising technique. A number of approaelvesbeen proposed
to solve the optimization problem related to MKL, includittge conic combination
approach via regular convex optimization [20], the serfinite linear program (SILP)
approach[28], the Subgradient Descent approach [24] teneetent level method [31].

We emphasize that although both online learning and keeaehlng have been ex-
tensively studied, little work has been done to addressekérnel learning, especially
online multiple kernel learning. To the best of our knowledthis is the first theoretic
study that addresses the OMKL problem.

3 Online Multiple Kernel Learning

Before presenting the algorithms for online multiple kétaarning, we first briefly de-
scribe the Multiple Kernel Learning (MKL) problem. Given et ®f training examples
Dr ={(zt,y:),t =1,...,T}wherey; € {—1,+1},t =1,...,T, and a collection of
kernel functionsC,, = {k; : X x X — R,i =1,...,m}, ourgoalis to identify the op-
timal combination of kernel functions, denoted®y= (u1,--- ,u,,) ", that minimizes
the margin classification error. It is cast as the followipgimization problem:

T
. o1
min min 7., + C;f(f(wt),yt) (1)
whereH,, denotes the reproducing kernel Hilbert space defined byekermA denotes
asimplex, i.eA = {0 e R[>, 0; =1}, and

’fu(', ) = Zujﬂj('v ')7 g(f(xt)vyt) = Inax(O, 1- Utf(zt))

It can also be cast into the following minimax problem:

T m
. 1 . _
J— l.Kl 2
€l aclo.C]r {Zt_l o= zlaey) (Zi_l ! ) (e y)} @

whereK* € R™" with K} | = ri(zj, 1),y = (y1,- - ,yr)", ando is the element-
wise product between two vectors.

The formulation for batch mode multiple kernel learningihdims to learn a single
function in the space ;. Itis well recognized that solving the optimization praible
in (1) is in general computationally expensive. In this wonle aim to alleviate the
computational difficulty of multiple kernel learning by a@mé learning that only needs
to scan through training examples once.

The following theorem allows us to simplify this problem bgabmposing it into
two separate tasks, i.e., learning (i) a classifier for eaclividual kernel, and (ii)
weights that combine the outputs of individual kernel dféessto form the final pre-
diction.
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Theorem 1 The optimization problem in (1) is equivalent to

min U;
ucA, {wa'HK Z H.fz”’}-[ +OZ€ <lz'u,lfl th ) (3)

1i=1
Proof. It is important to note that problem in (3) is non-convex, dnerefore we can

not directly deploy the standard approach to convert it itdalual form. In order to

transform (3) into (1), we rewrité(z, y) = m[%xl] a(1l—yz), and rewrite (3) as follows
ac|0,

a + E 1- E
WEA {fi€Hn, )i, aclo.C)T “leH “ ( v 2 uifilre )

Since the problem is convex yf‘; and concave i, we can switch the minimization of
fi with the maximization ofv. By taking the minimization off;, we have

) = Zatytﬁi(xta')vi = 17" ., m

and the resulting optimization problem becomes

m

Uj :
Kl
umelgaér})ag Zat ;2 (aoy) K'(aoy),
which is identical to the optimization problem of batch madeltiple kernel learning
in (2).

Based on the results of the above theorem, our strategydawdine kernel learning
is to simultaneously learn a set of kernel classifigrs = 1, ..., m and their combina-
tion weighsu. We consider two setups for Online Multiple Kernel Learn{@MKL).
In the first setup, termed Online Multiple Kernel Learning®redictions (OMKL-P),
we simplify the problem by only considering combining th@doiy predictions from
multiple kernel classifiers, i.ej, = > .., w;sign(f;(z)). In the second setup, termed
Online Multiple Kernel Learning by Outputs (OMKL-O), we lgeto combine the real-
valued outputs from multiple kernel classifiers, je= >_." | u; f;(z). In the next two
sections, we will discuss algorithms and theoretic progefor OMKL-P and OMKL-
O, respectively.

For the convenience of analysis, throughout the paper, wenaessx;(x,z) < 1
for all the kernel functions:;(-,-) and for any example.. Below we summarize the
notations that are used throughout this paper:

— Dr = {(as,y:),t = 1,...,T} denotes a sequenceBitraining examplest,, =
{k; : X x X = R,i=1,...,m} denotes a collection of. kernel functions.

- £.(:) = (fi(),---, fL ()" denotes the collection af. classifiers in round,
where f}(-) represents the classifier learned using the ketpl ). For the pur-
pose of presentation, we ue f! for short.f;(x) = (fi(x),--- , f.,(x)) " denotes
the real-valued outputs on exampldy them classifiers learned in round t, and
sign(f;(z)) = (sign(fi(z)),--- ,sign(ft, (x)))" denotes the binary predictions by
the corresponding classifiers on example
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t

- w; = (wh, -, wt,)T denotes the weight vector for the classifiers in round t;

m
W, = Y., w! represents the sum of weights in roundy, = (¢f,....q},)"
denotes the normalized weight vector, ie= w!/W;.
-z = (2¢,---,2¢ )T denotes the indicator vector, where = I(y;f}(x;) < 0)

indicates if theith kernel classifier makes a mistake on examglewherel(C)
outputsl when(C'is true and zero otherwise.

- m; = (m},--- ,m’,)" denotes the 0-1 random variable vector, whefec {0, 1}
indicates if theith kernel classifier is chosen for updating in round t.

- p: = (pi,---,pt,) " denotes a probability vector, i.g. € [0, 1].

— a - b denotes the dot-product between vecicand vectorb, 1 denotes a vector
with all elements equal to 1, arddenotes a vector with all elements equal to 0.

— Multi_Sample(p,) denotes a multinomial sampling process following the piob
ity distributionp; € A that outputs; € {1,...,m}. Bern_Sample(p!) denotes a
Bernoulli sampling process following the probabiljtythat outputs a binary vari-
ablem! € {1,0}.

4 Algorithms for Online Kernel Learning by Predictions
(OMKL-P)

4.1 Deterministic Approaches(DA)

As already pointed out, the main challenge of OMKL is thathtbie kernel classifiers
and their combination are unknown. The most straightfodwaproach is to learn a
classifier for each individual kernel function and decidgedbmbination weight based
on the number of mistakes made by the kernel classifier. Boethdl, we combine the
Perceptron algorithm and the Hedge algorithm togetherahtiqular, for each kernel,
the Perceptron algorithm is employed to learn a classifiet,the Hedge algorithm is
used to update its weight. Algorithm 1 shows the determmagorithm for OMKL-P.

The theorem below shows the mistake bound for Algorithm 1 tk@ convenience
of presentation, we define the optimal margin error for kkrng, -) with respect to a
collection of training exampleB as:

T
9(ki, £) = fgl?{& <|f|%h7 + 2Z£(f(xt)ayt)>

t=1

Theorem 2 After receiving a sequence Bftraining example®r, the number of mis-
takes made by running Algorithm 1 is bounded as follows

T
2In(1 . 2Inm
M:ZI(Qt'Zt >0.5) < %éﬁ)lginmg(m,f)-i- 13
t=1 ==

(4)

The proof for the theorem as well as the following theoremskistched in the Ap-
pendix.

Note that in Algorithm 1 the weight for each individual kerokassifier is based on
whether they classify the training example correctly. Areadative approach for up-
dating the weights is to take into account the output valdigs’p} ™ ; by penalizing a
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Algorithm 1 DA for OMKL-P (1) Algorithm 2 DA for OMKL-P (2)
1: INPUT: 1: INPUT:
— Kernels:C,, — Kernels:C,,,
— Discount weight$3 € (0,1) — Discount weight3 € (0,1)
2: Initialization : f; = 0, w; =1 — Max-misclassification levely > 0
3:fort=1,2,...do 2: Initialization : f; = 0,w; =1
4:  Receive an instance 3:fort=1,2,...do
5. Predict:j; = sign (q: - sign(fi(z+))) 4:  Receive an instance
6:  Receive the class labg} 5 Predict:g: = sign (q¢ - sign(f:(x¢)))
7. fori=1,2,...,mdo 6 Receive the class labgf
8: Setz! = I(yefi(z:) <0) 7: fori=1,2,...,mdo
9: Updatew! ™" = w! B 8 Setz; = I(y:fi(x:) < 0), v =
10: Updatef! ™ = f! + ztyiri(ze, -) 2{(1/2 + min(y, —y: fi (2+)))
11: end for 9 Updatew; ™" = w}p"i®
12: end for 10: Updatef, ™ = f! + z{yiri(zs, -)
11:  endfor
12: end for

kernel classifier more if its degree of misclassificationameed by-y, f! (z:), is large.
To this end, we present the second version of the deterngiigproach for OMKL-
P in Algorithm 2 that takes into account the value{gf } ", when updating weights
{w;}™,. In this alternate algorithm, we introduce the parametavhich can be inter-
preted as the maximum level of misclassification. The keyntjtyeintroduced in Algo-
rithm 2 isv! that measures the degree of misclassification /¢ min(vy, —y: ff(x)).
Note that we did not directly usey, f!(x) for updating weightgw, } ™, because it is
unbounded.

Theorem 3 After receiving a sequence Bftraining example®Dr, the number of mis-
takes made by Algorithm 2 is bounded as follows

20/249)0(01/B) oo AL/24 )

T
M= ZI Q202 05) < 1— B2t 1<i<m 1 — pl/2+y

t=1
The proofis essentially similar to that of Theorem 2 withthedification that addresses
variabley;(t) introduced in Algorithm 2.
One problem with Algorithm 1 is how to decide an appropriaatue for 5. A
straightforward approach is to chogsehat minimizes the mistake bound, leading to
the following corollary.

\ /léni<n E?:l 2
Corollary 4 By choosing3 = —— , we have the following mistake
\/ min E?:] zf+\/lnm

1<i<m

bound

< i . . ‘
M<2 (121;17”9(!%,[) +Inm + 2\/121%17”9(&“@) lnm>
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Proof. Followed by inequality in (4), we have

M <

where we usén(1/5) < 1/8 — 1. By setting the derivative of the above upper bound
with respect tq3 to zero, and using the inequal@?:1 2t < g(k;,¢) as shown in the
appendix, we have the result.

Directly using the result in Corollary 4 is unpractical besa it requires foreseeing
the future to compute the quanti%nig Zthl zt. We resolve this problem by ex-
sm

ploiting the doubling trick [4]. In particular, we divide ¢hsequence, 2, ..., T into s
segments:

To+1=1T][T1+1,Ts],...,[Ts-1+1,Ts =T

such that (a%mm S 2t =2k fork =0,...,s-2,and (b) min_ S 2

< 2°~1. Now, for each segmeti}, + 1, T;1], we introduce a different, denote by
B, and set its value as

2k/2
Vinm + 2k/2°

The following theorem shows the mistake bound of Algorithmith suchs.

By, = k=0,...,s—1 5)

Theorem 5 By running Algorithm 1 with3; specified in (5), we have the following
mistake bound

<
M <2 <121<Il 9(ki, €) +1Inm + _1\/ min g(k;, £ lnm)

+2 {logQ (1m1<n g(m,é))-‘ Inm

where[z] computes the smallest integer that is larger than or equal.to

4.2 Stochastic Approaches

The analysis in the previous section allows us to bound tretalkes when classifying

examples with a mixture of kernels. The main shortcomindptie deterministic ap-

proach is that in each round, all the kernel classifiers habe tthecked and potentially
updated if the training example is classified incorrectlyisicould lead to a high com-

putational cost when the number of kernels is large. In #aisisn, we present stochastic
approaches for online multiple kernel learning that exgiji@address this challenge.
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Single Update Approach(SUA)Algorithm 3 shows a stochastic algorithm for OMKL-
P. In each round, instead of checking every kernel classifieisample a single kernel
classifier according to the weights that are computed baseldeonumber of mistakes
made by individual kernel classifiers. However, it is impattto note that rather than
using ¢! directly to sample one classifier to update, we add a smaogtieirm §/m
to the sampling probability?, This smoothing term guarantees a low boundfior
which ensures that each kernel classifier will be exploread @i least certain amount
of probability, which is similar to methods for the multirarbandit problem [2] to
ensure the tradeoff between exploration and exploitafibe.theorem below shows the
mistake bound of Algorithm 3.

Theorem 6 After receiving a sequence dftraining example®r, the expected num-
ber of mistakes made by Algorithm 3 is bounded as follows

EM]=E > I(q -z >05) min g(k;, £) +

— 5(1—p) 1<i<m i(1—-p)

a ] < 2m1In(1/5) 2mInm

Remark Comparing to the mistake bound in Theorem 2 by Algorithm &, tiistake
bound by Algorithm 3 is amplified by a factor of/§ due to the stochastic procedure of
updating one out af: kernel classifiers. The smoothing paramétessentially controls
the tradeoff between efficacy and efficiency. To see this, ote that the bound for
the expected number of mistakes is inversely proportiomdj tn contrast, the bound

for the expected number of updaﬂé{ztll Py mﬁzﬂ =E [ZL Py pﬁzf} <

(1-90)E [Zle Dy quf] + 0T has a leading termiT" whenJ is large, which is
proportional tad.

Multiple Updates Approach(MUA) Compared with the deterministic approaches, the
stochastic approach, i.e. the single update algorithms dagnificantly improve the
computational efficiency. However, one major problem whign $ingle update algorithm
is that in any round, only one single kernel classifier is ctelé for updating. As a
result, the unselected but possibly effective kernel diass lose their opportunity for
updating. This issue is particularly critical at the begngof an online multiple kernel
learning task where most individual kernel classifiers dgdrform poorly.

In order to make a better tradeoff between efficacy and efiigiewe develop an-
other stochastic algorithm for online multiple kernel leiag. The main idea of this new
algorithm is to randomly choose multiple kernel classifferaipdating and predictions.
Instead of choosing a kernel classifier from a multinomiatribution, the updating of
each individual kernel classifier is determined by a sepaatnoulli distribution gov-
erned byp! for each classifier. The detailed procedure is shown in Aflgor 4. The
theorem below shows the mistake bound of the multiple usdagwrithm.

Theorem 7 After receiving a sequence dftraining example®r, the expected num-
ber of mistakes made by Algorithm 4 is bounded as follows

T 2In(1/8) . 2 m
Zl(qt -z > 05)] < m 1<i<m 0(1-p)

t=1

E[M]=E
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Algorithm 3 SUA for OMKL-P Algorithm 4 MUA for OMKL-P
1: INPUT: 1. INPUT:
— Kernels:C,, — Kernels:C,,,
— Discount weight$3 € (0,1) — Discount weight3 € (0,1)
— Smoothing parameted: € (0, 1) — Smoothing parametes: € (0, 1)
2: Initialization : f; = 0,w; =1,p1 = 1/m  2: Initialization : f; =0,w; =1,p1 =1
3:fort=1,2,...do 3:fort=1,2,...do
4:  Receive an instance, 4: Receive an instance,
5: Predictj; = sign (qt . sign(ft(xt))) 5: Predict:j; = sign (qt - sign (£ (xt)))
6:  Receive the class labgl 6:  Receive the class labgl
7:  4.=Multi_Sample(p:) 7. fori=1,2,...,mdo
8 fori=1,2,...,mdo 8: Samplen! = Bern_Sample(p?)
9: Setm! = I(i = i) 9: Setz! = I(yifi(x:) <0)
10: Setz; = I(y:fi (x) < 0) 10: Updatew! ™" = w!gmi=i
11: Updatew!+! = w! g™ 11: Updatef ' = f! + mizlyri(a, )
12: Updatef/™" = fI + miztyimi(2e,-) 120 end for
13:  end for 13:  Updatepi+1 = (1 — d)qs+1 + 61
14: Updatepiti = (1 — §)qe+1 + 01/m 14: end for
15: end for

Remark Compared to the mistake bound in Theorem 2 by Algorithm 1 ntistake
bound by Algorithm 4 is amplified by a factor @f § due to the stochastic procedure.
On the other hand, compared to the mistake bound of singlatagd Theorem 6,
the mistake bound by Algorithm 4 is improved by a factornef mainly due to si-
multaneously updating multiple kernel classifiers in eamind. The expected num-

ber of updates for multiple updates approach is bounded E)Ztll Yo mizt| =
E [ZL Z;’;lpﬁzﬂ <(1-90)E [Zle Yot qizt| + omT, where the first term is

17

discounted by a factor af: and the second term is amplified by a factono€ompared
to that of single update approach.

5 Algorithms for Online Multiple Kernel Learning by Outputs
(OMKL-O)

5.1 A Deterministic Approach

In the following analysis, we assume the functional norm oy alassifier f;(-) is
bounded byR, i.e., || fills,, < R.We define domain2,, asf2., = {f € Hs, :
[ fll#,., < R}. Algorithm 5 shows the deterministic algorithm for OMKL-Gom-
pared to Algorithm 1, there are three key features of Algonit5. First, in step 11,
the updated kernel classifig(-) is projected into domaiif2,, to ensure its norm is
no more thanR. This projection step is important for the proof of the mikstdoound
that will be shown later. Second, each individual kernessiféer is updated only when
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the prediction of the combined classifier is incorrect iygj; < 0. This is in contrast
to the Algorithm 1, where each kernel classifjéf-) is updated when it misclassifies
the training example:;. This feature will make the proposed algorithm significantl
more efficient than Algorithm 1. Finally, in step 9 of Algdrih 5, we update weights
w!™ based on the outpyt (). This is in contrast to Algorithm 1 where weights are
updated only based on if the individual classifiers clagsiéyexample correctly.

Theorem 8 After receiving a sequence Bftraining example®Dr, the number of mis-
takes made by Algorithm 5 is bounded as followg4fin(1/3) < 1

) . 2lnm
g (u, {fi}i%) + (1 — R?In(1/8))In(1/8)
whereg (u, {fi}12,) = 200 will fill3,,, +2 i £ (a- £l ).

Using the result in Theorem 1, we have the following corglldrat bounds the
number of mistakes of online kernel learning by the objectinnction used in the batch
mode multiple kernel learning.

M< — i
~— 1—R?In(1/8) ueA,{.glelIrlzNi m

Corollary 9 We have the following mistake bound for running Algorithi/&in(1/3) <
1

< _r min g (x(u),?) + 2lnm
= 1— R2In(1/B) uea,fe2, ’ (1—-R2In(1/6))In(1/B)

whereg (r(w), £) = || f[I3, + 221 £ (f(20), 92)-

M

5.2 A Stochastic Approach

Finally, we present a stochastic strategy in Algorithm 6@dKL-O. In each round,
we randomly sample one classifier to update by following ttebability distribution
p:- Similar to Algorithm 3, the probability distributiop; is a mixture of the normalized
weights for classifiers and a smoothing teffmn. Different from Algorithm 5, the up-
dating rule for Algorithm 6 has two additional factors, i} which is non-zero for the
chosen classifier and has expectation equal to 1, and theigsgpwhich is essentially
introduced to ensure a good mistake bound as shown in treioly theorem.

Theorem 10 After receiving a sequence Bftraining example®Dr, the expected num-
ber of mistakes made by Algorithm 6 is bounded as follows

T
E[M] < min > t(a-f(w), u) +2v/a(R, B,6)b(R, B,6)T

ucA {fi€y, Y%, P
R? 1 In(1/8)R*m? .
wherea(R, 3,6) = - + % b(R,3,0) = W + % andn is set to

a(R, B3,0)
b(R, 5,9)
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Algorithm 5 DA for OMKL-O Algorithm 6 SUA for OMKL-O
1: INPUT: 1: INPUT:
— Kernels:K,, — Km, B, R as in Algoirthm 5
— Discount weight;3 € (0,1) — Smoothing paramete§ € (0, 1), and
— Maximum functional normR Step sizen > 0
2: Initilization : f; =0, w; =1 2: Initialization : f; = 0,w; = 1,p1 =1/m
3:fort=1,2,...do 3:fort=1,2,...do
4:  Receive an instance, 4:  Receive an instance,
5: Predictj; = sign (qt - (:rt)) 5 Predict:j; = sign (qt . ft(xt))
6:  Receive the class labgl 6 Receive the class labgl
7. if g:y: < 0then 7. if g1y < 0then
8: fori=1,2,...,mdo 8 1:=Multi_Sample(p:)
9: Updatew!*! = wt gyt (@) 9 fori=1,2,...,mdo
10; Updatefi ™ = f! + yeri(ze, ) 10: Setm} = I(i = i), mj = mj/p}
11: Projectf! ™! into (2., by 11: Updatew! ™" = wig=mmivefi (@)
- - 12: U date~-t+l = Zt-i- ﬁlg tKi(Zt, -
£ = F max (L 1 e, /R) 13 Pfoject)}%“(m)}icnto gmi.y )
14: end for
12: end for 15: Updatep; = (1 — 8)q; + 61/m
13:  endif : ;
14: end for 16:  endif
17: end for

6 Conclusions

This paper investigates a new research problem, onlineéptelkernel learning (OMKL),
which aims to attack an online learning task by learning a&rased prediction func-
tion from a pool of predefined kernels. We consider two setapsnline kernel learn-
ing, online kernel learning by predictions that combines biinary predictions from
multiple kernel classifiers and online kernel learning btpois that combines the real-
valued outputs from kernel classifiers. We proposed a frasriefer OMKL by learning

a combination of multiple kernel classifiers from a pool ofagi kernel functions. We
emphasize that OMKL is generally more challenging thandgbonline learning be-
cause both the kernel classifiers and their linear comlinatre unknown. To solve
this challenge, we propose to combine two online learniggrhms, i.e., the Percep-
tron algorithm that learns a classifier for a given kernet| tire Hedge algorithm that
combines classifiers by linear weighting. Based on this,ideapresent two types of
algorithms for OMKL, i.e., deterministic approaches arathistic approaches. Theo-
retical bounds were derived for the proposed OMKL algorghm
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Appendix

Proof of Theorem 2

Proof. The proof essentially combines the proofs of the Percegtgorithm [25] and
the Hedge algorithm [9]. First, following the analysis if},[&e can easily have

T

In(1 1
> qt'ztgin( [0) i 37 at e m
t=1

Second, due to the convexity 6aind the updating rule fof;, whenz! = 1 we have
g(fit(xt)ayt) —L(f(xe),y:) < —yt<f£e -/ Zf’{i(xtv )>HM = —<f£e -/ ff“ - ff>Hh-i
(17 = FI3e, = 154 = F1B,, +#0)

<

N =

sincel(f (), yi) > =1, thenzt < || ff = fllZ,. — £ = fll3,. +20(F(x),0)-
Taking summation on both sides, we have

T

T T
D oet< min ; (17 = 7B, = 15 = Fl, ) +2 3 60 @), ) < gsi, )

t=1 t=1
Using the above inequality and noting tHat= "7 I (q;-2z; > 0.5) <23, q; -
z;, we have the result in the theorem.

Proof of Theorem 3

Proof. The proof can be constructed similarly to the proof for Tl@o2 by noting the
following three differtences. First, the updating rule fbetweights can be written as
with = wh(B/2H)vi/ (/247 wherev! < 1/2 + . Secondy", givt > 3, qtzt/2.

T

Third, we havel( ] (z¢), y:) > vi(t) + 2i(t)/2, and thereforez: vl < g(ki,€)/2.
t=1

Proof of Theorem 5

Proof. We denote byM;, the number of mistakes made during the segni@&pt+
1, Tk+1]. It can be shown that the following equality

1<i<m
t=Tr+1

Try1
M, <2 ( min Z zf+lnm+2vlnm2k/2) ,
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holds for anyk = 0, ..., s — 1. Taking summation over all/;,

s—1 s—1 Trt1
_ Z Z . ¢ k)2 T
M = M, <2 121<nm g zi +22 Inm +2slnm
k=0 k=0 | = = t=Th+1

we can obtain the bound in the theorem by noting gt ; 121<nm Z?:k}l“k-i—l 2t <

min zt and2°~! —1 < min 2t < mln Ki b
1<z<mzt 1= 1<z<mzt 17 = << g( i b)-

Proof of Theorem 6

Proof. Similar to the proof for Theorem 2, we can prove

S t 1t 15 t
S itmiet < B S

t=1 i=1 t=1

andmez < g(ki, £)

Taking expectation on both sides, and noting fjat!] = p! > §/m, we have

mln(1/5) mlnm
<Z qt Zt) < m 121<nmg(/’m€) + m

SinceM < 2 ZL q: - z¢, we have the result stated in the theorem.

Proof of Theorem 7

Proof. The proof can be duplicated similarly to the proof for Theoré, except for
pt >4,i=1,...,minthis case.

Proof of Theorem 8

Proof. In the following analysis, we only consider the subset ofatens where the
algorithm makes a mistake. By slightly abusing the notatiemdenote byt, 2, ..., M
the trials where the examples are misclassified by AlgorighrRor any combination
weightu = (u1,--- ,u,)" € A and any kernel classification functigin € (2,,,7 =
1,...,m, we have

Clae - £ (o), ye) — C(u-£(2e), ) < geye (qe - £ (we) —a-£(ay))
=gy (qr - fi(zy) —u-fi () + geye (u- £ () —u-£(2y))
9max(0,1-2) = —1 because examples are misclassified in

0z
z2=y:qe- £ (z1)
these trials. For the first term, following the proof for Thexm 11.3 in [4], we can have

whereg, =

n(1/8) o, 1

2 + In(1/p) {KL(ullq:) — KL(ullq¢+1)}

geye(ar —u) - fr(zy) <
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For the second term, following the analysis in the proof foedrem 2, we can have
grye (0 - £y () —u - £(z)) Zuz = [ geyeri(@e, ),

U;
< S (= A, 1 - 1B
i=1

Combining the above result together, we arrive at

Zﬁ a - £ulwe), ) Zf u- f(2),pr) < Zuzlllelm 18}’;)+1< n(1/8)R*+1)M

Sincel (q: - fi(z¢),y:) > 1, we can have the result in the theorem.

Proof of Theorem 10

Proof. Similar to the proof for the Theorem 8, we have the followirmgbd for the two
terms

E geye (@0 - £ (00) — u- fu(z))] = %E [gewe(ae — ue) - (e o £i(a1))]
1 In(1/8)R%n*m?

< Ty © KL(ula() — KL(ullq(t + )] + i
E [gyeu - (£ (z) — £(20))] = EZ % (ff = fismmlgeyeri(a, ')>’HN1’

m

mn Yingt _ 2 g pttl _ g2

Combining the above results together, and setting in the theorem, we have the result
in the theorem.
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