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Abstract. Online learningandkernel learningare two active research topics in
machine learning. Although each of them has been studied extensively, there is a
limited effort in addressing the intersecting research. Inthis paper, we introduce a
new research problem, termedOnline Multiple Kernel Learning (OMKL), that
aims to learn a kernel based prediction function from a pool of predefined kernels
in an online learning fashion. OMKL is generally more challenging than typical
online learning because both the kernel classifiers and their linear combination
weights must be learned simultaneously. In this work, we consider two setups for
OMKL, i.e. combining binary predictions or real-valued outputs from multiple
kernel classifiers, and we propose both deterministic and stochastic approaches
in the two setups for OMKL. The deterministic approach updates all kernel clas-
sifiers for every misclassified example, while the stochastic approach randomly
chooses a classifier(s) for updating according to some sampling strategies. Mis-
take bounds are derived for all the proposed OMKL algorithms.

Keywords: On-line learning and relative loss bounds, Kernels

1 Introduction

In recent years, we have witnessed increasing interests on both online learningand
kernel learning. Online learning refers to the learning process of answering a sequence
of questions given the feedback of correct answers to previous questions and possibly
some additional prior information [27]; Kernel learning aims to identify an effective
kernel for a given learning task [20, 28, 12]. A well-known kernel learning method is
Multiple Kernel Learning (MKL) [3, 28], that seeks the combination of multiple kernels
in order to optimize the performance of kernel based learning methods (e.g., Support
Vector Machines (SVM)).

Although kernel trick has been explored in online learning [10, 7], it is often as-
sumed that kernel function is given apriori. In this work, weaddress a a new research
problem,Online Multiple Kernel Learning (OMKL), which aims to simultaneously
learn multiple kernel classifiers and their linear combinations from a pool of given ker-
nels in an online fashion. Compared to the exiting methods for multiple kernel learning
(see [17] and reference therein), online multiple kernel learning is computationally ad-
vantageous in that it only requires going through training examples once. We emphasize



2 Online Multiple Kernel Learning

that online multiple kernel learning is significantly more challenging than typical online
learning because both the optimal kernel classifiers and their linear combinations have
to be learned simultaneously in an online fashion.

In this paper, we consider two different setups for online multiple kernel learning. In
the first setup, termed asOnline Multiple Kernel Learning by Predictionsor OMKL-P,
its objective is to combine thebinary predictionsfrom multiple kernel classifiers. The
second setup, termed asOnline Multiple Kernel Learning by Outputsor OMKL-O, im-
proves OMKL-P by combining thereal-valued outputsfrom multiple kernel classifiers.
Our online learning framework for multiple kernel learningis based on the combination
of two types of online learning techniques: thePerceptronalgorithm [25] that learns a
classifier for a given kernel, and theHedgealgorithm [9] that linearly combines multi-
ple classifiers. Based on the proposed framework, we presenttwo types of approaches
for each setup of OMKL , i.e.,deterministicandstochasticapproaches. The determin-
istic approach updates each kernel classifier for every misclassified example, while the
stochastic approach chooses a subset of classifiers for updating based on certain sam-
pling strategies. Mistake bounds are derived for all the proposed algorithms for online
kernel learning.

The rest of this paper is organized as follows. Section 2 reviews the related work
on both online learning and kernel learning. Section 3 overviews the problem of online
multiple kernel learning. Section 4 presents the algorithms for Online Multiple Ker-
nel Learning by Predictions and their mistake bounds; Section 5 presents algorithms
for Online Multiple Kernel Learning by Outputs and their mistake bounds. Section 6
concludes this study with future work.

2 Related Work

Our work is closely related to bothonline learningand kernel learning. Below we
briefly review the important work in both areas.

Extensive studies have been devoted to online learning for classification. Start-
ing from Perceptron algorithm [1, 25, 23], a number of onlineclassification algorithms
have been proposed including the ROMMA algorithm [21], the ALMA algorithm [11],
the MIRA Algorithm [8], the NORMA algorithm [16, 15], and theonline Passive-
Aggressive algorithms [7]. Several studies extended the Perceptron algorithm into a
nonlinear classifier by the introduction of kernel functions [16, 10]. Although these al-
gorithms are effective for nonlinear classification, they usually assume that appropriate
kernel functions are given apriori, which limits their applications. Besides online clas-
sification, our work is also related to online prediction with expert advices [9, 22, 30].
The most well-known work is probably the Hedge algorithm [9], which was a direct
generalization of Littlestone and Warmuth’s Weighted Majority (WM) algorithm [22].
We refer readers to the book [4] for the in-depth discussion of this subject.

Kernel learning has been actively studied thanks to the great successes of kernel
methods, such as support vector machines (SVM) [29, 26]. Recent studies of kernel
learning focus on learning an effective kernel automatically from training data. Var-
ious algorithms have been proposed to learn parametric or semi-parametric kernels
from labeled and/or unlabeled data. Example techniques include cluster kernels [5],
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diffusion kernels [18], marginalized kernels [14], graph-based spectral kernel learn-
ing approaches [32, 13], non-parameric kernel learning [12, 6], and lower-rank kernel
learning[19]. Among various approaches for kernel learning, Multiple Kernel Learn-
ing(MKL) [20], whose goal is to learn an optimal combinationof multiple kernels,
has emerged as a promising technique. A number of approacheshave been proposed
to solve the optimization problem related to MKL, includingthe conic combination
approach via regular convex optimization [20], the semi-infinite linear program (SILP)
approach [28], the Subgradient Descent approach [24], and the recent level method [31].

We emphasize that although both online learning and kernel learning have been ex-
tensively studied, little work has been done to address online kernel learning, especially
online multiple kernel learning. To the best of our knowledge, this is the first theoretic
study that addresses the OMKL problem.

3 Online Multiple Kernel Learning

Before presenting the algorithms for online multiple kernel learning, we first briefly de-
scribe the Multiple Kernel Learning (MKL) problem. Given a set of training examples
DT = {(xt, yt), t = 1, . . . , T } whereyt ∈ {−1,+1}, t = 1, . . . , T , and a collection of
kernel functionsKm = {κi : X×X → R, i = 1, . . . ,m}, our goal is to identify the op-
timal combination of kernel functions, denoted byu = (u1, · · · , um)⊤, that minimizes
the margin classification error. It is cast as the following optimization problem:

min
u∈∆

min
f∈Hκu

1

2
‖f‖2Hκu

+ C

T∑

t=1

ℓ(f(xt), yt) (1)

whereHκ denotes the reproducing kernel Hilbert space defined by kernelκ, ∆ denotes
a simplex, i.e.∆ = {θ ∈ R

m
+ |∑m

i=1 θi = 1}, and

κu(·, ·) =
m∑

j=1

ujκj(·, ·), ℓ(f(xt), yt) = max(0, 1− ytf(xt))

It can also be cast into the following minimax problem:

min
u∈∆

max
α∈[0,C]T

{
T∑

t=1

αt −
1

2
(α ◦ y)⊤

(
m∑

i=1

uiK
i

)
(α ◦ y)

}
(2)

whereKi ∈ R
n×n with Ki

j,l = κi(xj , xl), y = (y1, · · · , yT )⊤, and◦ is the element-
wise product between two vectors.

The formulation for batch mode multiple kernel learning in (1) aims to learn a single
function in the space ofHκu

. It is well recognized that solving the optimization problem
in (1) is in general computationally expensive. In this work, we aim to alleviate the
computational difficulty of multiple kernel learning by online learning that only needs
to scan through training examples once.

The following theorem allows us to simplify this problem by decomposing it into
two separate tasks, i.e., learning (i) a classifier for each individual kernel, and (ii)
weights that combine the outputs of individual kernel classifier to form the final pre-
diction.
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Theorem 1 The optimization problem in (1) is equivalent to

min
u∈∆,{fi∈Hκi

}m

i=1

m∑

i=1

ui

2
‖fi‖2Hκi

+ C

T∑

t=1

ℓ

(
m∑

i=1

uifi(xt), yt

)
(3)

Proof. It is important to note that problem in (3) is non-convex, andtherefore we can
not directly deploy the standard approach to convert it intoits dual form. In order to
transform (3) into (1), we rewriteℓ(z, y) = max

α∈[0,1]
α(1− yz), and rewrite (3) as follows

min
u∈∆

min
{fi∈Hκi

}m

i=1

max
α∈[0,C]T

m∑

i=1

ui

2
‖fi‖2Hκi

+

T∑

t=1

αt

(
1− yt

m∑

i=1

uifi(xt)

)

Since the problem is convex infi and concave inα, we can switch the minimization of
fi with the maximization ofα. By taking the minimization offi, we have

fi(·) =
T∑

t=1

αtytκi(xt, ·), i = 1, . . . ,m

and the resulting optimization problem becomes

min
u∈∆

max
α∈[0,C]T

T∑

t=1

αt −
m∑

i=1

ui

2
(α ◦ y)⊤Ki(α ◦ y),

which is identical to the optimization problem of batch modemultiple kernel learning
in (2).

Based on the results of the above theorem, our strategy toward online kernel learning
is to simultaneously learn a set of kernel classifiersfi, i = 1, . . . ,m and their combina-
tion weighsu. We consider two setups for Online Multiple Kernel Learning(OMKL).
In the first setup, termed Online Multiple Kernel Learning byPredictions (OMKL-P),
we simplify the problem by only considering combining the binary predictions from
multiple kernel classifiers, i.e.,̂y =

∑m
i=1 uisign(fi(x)). In the second setup, termed

Online Multiple Kernel Learning by Outputs (OMKL-O), we learn to combine the real-
valued outputs from multiple kernel classifiers, i.e.ŷ =

∑m
i=1 uifi(x). In the next two

sections, we will discuss algorithms and theoretic properties for OMKL-P and OMKL-
O, respectively.

For the convenience of analysis, throughout the paper, we assumeκi(x, x) ≤ 1
for all the kernel functionsκi(·, ·) and for any examplex. Below we summarize the
notations that are used throughout this paper:

– DT = {(xt, yt), t = 1, . . . , T } denotes a sequence ofT training examples.Km =
{κi : X × X → R, i = 1, . . . ,m} denotes a collection ofm kernel functions.

– ft(·) = (f t
1(·), · · · , f t

m(·))⊤ denotes the collection ofm classifiers in roundt,
wheref t

i (·) represents the classifier learned using the kernelκi(·, ·). For the pur-
pose of presentation, we useft, f t

i for short.ft(x) = (f t
1(x), · · · , f t

m(x))⊤ denotes
the real-valued outputs on examplex by them classifiers learned in round t, and
sign(ft(x)) = (sign(f t

1(x)), · · · , sign(f t
m(x)))⊤ denotes the binary predictions by

the corresponding classifiers on examplex.
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– wt = (wt
1, · · · , wt

m)⊤ denotes the weight vector for them classifiers in round t;
Wt =

∑m
i=1 w

t
i represents the sum of weights in roundt; qt = (qt1, . . . , q

t
m)⊤

denotes the normalized weight vector, i.e.qti = wt
i/Wt.

– zt = (zt1, · · · , ztm)⊤ denotes the indicator vector, wherezti = I(ytf
t
i (xt) ≤ 0)

indicates if theith kernel classifier makes a mistake on examplext, whereI(C)
outputs1 whenC is true and zero otherwise.

– mt = (mt
1, · · · ,mt

m)⊤ denotes the 0-1 random variable vector, wheremt
i ∈ {0, 1}

indicates if theith kernel classifier is chosen for updating in round t.
– pt = (pt1, · · · , ptm)⊤ denotes a probability vector, i.e.pti ∈ [0, 1].
– a · b denotes the dot-product between vectora and vectorb, 1 denotes a vector

with all elements equal to 1, and0 denotes a vector with all elements equal to 0.
– Multi Sample(pt) denotes a multinomial sampling process following the probabil-

ity distributionpt ∈ ∆ that outputsit ∈ {1, . . . ,m}. Bern Sample(pti) denotes a
Bernoulli sampling process following the probabilitypti that outputs a binary vari-
ablemt

i ∈ {1, 0}.

4 Algorithms for Online Kernel Learning by Predictions
(OMKL-P)

4.1 Deterministic Approaches(DA)

As already pointed out, the main challenge of OMKL is that both the kernel classifiers
and their combination are unknown. The most straightforward approach is to learn a
classifier for each individual kernel function and decide its combination weight based
on the number of mistakes made by the kernel classifier. To this end, we combine the
Perceptron algorithm and the Hedge algorithm together. In particular, for each kernel,
the Perceptron algorithm is employed to learn a classifier, and the Hedge algorithm is
used to update its weight. Algorithm 1 shows the deterministic algorithm for OMKL-P.

The theorem below shows the mistake bound for Algorithm 1. For the convenience
of presentation, we define the optimal margin error for kernel κi(·, ·) with respect to a
collection of training examplesDT as:

g(κi, ℓ) = min
f∈Hκi

(
‖f‖2Hκi

+ 2
T∑

t=1

ℓ(f(xt), yt)

)

Theorem 2 After receiving a sequence ofT training examplesDT , the number of mis-
takes made by running Algorithm 1 is bounded as follows

M =

T∑

t=1

I (qt · zt ≥ 0.5) ≤ 2 ln(1/β)

1− β
min

1≤i≤m
g(κi, ℓ) +

2 lnm

1 − β
(4)

The proof for the theorem as well as the following theorems issketched in the Ap-
pendix.

Note that in Algorithm 1 the weight for each individual kernel classifier is based on
whether they classify the training example correctly. An alternative approach for up-
dating the weights is to take into account the output values of {f t

i }mi=1 by penalizing a
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Algorithm 1 DA for OMKL-P (1)
1: INPUT :

– Kernels:Km

– Discount weight:β ∈ (0, 1)
2: Initialization : f1 = 0, w1 = 1

3: for t = 1, 2, . . . do
4: Receive an instancext

5: Predict:ŷt = sign (qt · sign(ft(xt)))
6: Receive the class labelyt
7: for i = 1, 2, . . . , m do
8: Setzti = I(ytf

t
i (xt) ≤ 0)

9: Updatewt+1
i = wt

iβ
zt
i

10: Updatef t+1
i = f t

i + ztiytκi(xt, ·)
11: end for
12: end for

Algorithm 2 DA for OMKL-P (2)
1: INPUT :

– Kernels:Km

– Discount weight:β ∈ (0, 1)
– Max-misclassification level:γ > 0

2: Initialization : f1 = 0,w1 = 1

3: for t = 1, 2, . . . do
4: Receive an instancext

5: Predict:ŷt = sign (qt · sign(ft(xt)))
6: Receive the class labelyt
7: for i = 1, 2, . . . ,m do
8: Set zti = I(ytf

t
i (xt) ≤ 0), νt

i =
zti(1/2 + min(γ,−ytf

t
i (xt)))

9: Updatewt+1
i = wt

iβ
νi(t)

10: Updatef t+1
i = f t

i + ztiytκi(xt, ·)
11: end for
12: end for

kernel classifier more if its degree of misclassification, measured by−ytf
t
i (xt), is large.

To this end, we present the second version of the deterministic approach for OMKL-
P in Algorithm 2 that takes into account the value of{f t

i }mi=1 when updating weights
{wi}mi=1. In this alternate algorithm, we introduce the parameterγ, which can be inter-
preted as the maximum level of misclassification. The key quantity introduced in Algo-
rithm 2 isνti that measures the degree of misclassification by1/2+min(γ,−ytf

t
i (x)).

Note that we did not directly use−ytf
t
i (x) for updating weights{wi}mi=1 because it is

unbounded.

Theorem 3 After receiving a sequence ofT training examplesDT , the number of mis-
takes made by Algorithm 2 is bounded as follows

M =

T∑

t=1

I (qt · zt ≥ 0.5) ≤ 2(1/2 + γ) ln(1/β)

1− β1/2+γ
min

1≤i≤m
g(κi, ℓ) +

4(1/2 + γ) lnm

1− β1/2+γ

The proof is essentially similar to that of Theorem 2 with themodification that addresses
variableνi(t) introduced in Algorithm 2.

One problem with Algorithm 1 is how to decide an appropriate value for β. A
straightforward approach is to chooseβ that minimizes the mistake bound, leading to
the following corollary.

Corollary 4 By choosingβ =

√
min

1≤i≤m

∑
T

t=1 zt

i

√
min

1≤i≤m

∑
T

t=1 zt

i
+
√
lnm

, we have the following mistake

bound

M ≤ 2

(
min

1≤i≤m
g(κi, ℓ) + lnm+ 2

√
min

1≤i≤m
g(κi, ℓ) lnm

)
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Proof. Followed by inequality in (4), we have

M ≤ 2

β
min

1≤i≤m

T∑

t=1

zti +
2 lnm

1− β

where we useln(1/β) ≤ 1/β − 1. By setting the derivative of the above upper bound
with respect toβ to zero, and using the inequality

∑T
t=1 z

t
i ≤ g(κi, ℓ) as shown in the

appendix, we have the result.

Directly using the result in Corollary 4 is unpractical because it requires foreseeing
the future to compute the quantitymin

1≤i≤m

∑T
t=1 z

t
i . We resolve this problem by ex-

ploiting the doubling trick [4]. In particular, we divide the sequence1, 2, . . . , T into s
segments:

[T0 + 1 = 1, T1], [T1 + 1, T2], . . . , [Ts−1 + 1, Ts = T ]

such that (a)min
1≤i≤m

∑Tk+1

t=Tk+1 z
t
i = 2k for k = 0, . . . , s−2, and (b) min

1≤i≤m

∑Ts

t=Ts−1+1 z
t
i

≤ 2s−1. Now, for each segment[Tk + 1, Tk+1], we introduce a differentβ, denote by
βk, and set its value as

βk =
2k/2√

lnm+ 2k/2
, k = 0, . . . , s− 1 (5)

The following theorem shows the mistake bound of Algorithm 1with suchβ.

Theorem 5 By running Algorithm 1 withβk specified in (5), we have the following
mistake bound

M ≤2

(
min

1≤i≤m
g(κi, ℓ) + lnm+

2√
2− 1

√
min

1≤i≤m
g(κi, ℓ) lnm

)

+ 2

⌈
log2

(
min

1≤i≤m
g(κi, ℓ)

)⌉
lnm

where⌈x⌉ computes the smallest integer that is larger than or equal tox.

4.2 Stochastic Approaches

The analysis in the previous section allows us to bound the mistakes when classifying
examples with a mixture of kernels. The main shortcoming with the deterministic ap-
proach is that in each round, all the kernel classifiers have to be checked and potentially
updated if the training example is classified incorrectly. This could lead to a high com-
putational cost when the number of kernels is large. In this section, we present stochastic
approaches for online multiple kernel learning that explicitly address this challenge.
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Single Update Approach(SUA)Algorithm 3 shows a stochastic algorithm for OMKL-
P. In each round, instead of checking every kernel classifier, we sample a single kernel
classifier according to the weights that are computed based on the number of mistakes
made by individual kernel classifiers. However, it is important to note that rather than
using qti directly to sample one classifier to update, we add a smoothing term δ/m
to the sampling probabilitypti, This smoothing term guarantees a low bound forpti,
which ensures that each kernel classifier will be explored with at least certain amount
of probability, which is similar to methods for the multi-arm bandit problem [2] to
ensure the tradeoff between exploration and exploitation.The theorem below shows the
mistake bound of Algorithm 3.

Theorem 6 After receiving a sequence ofT training examplesDT , the expected num-
ber of mistakes made by Algorithm 3 is bounded as follows

E[M ] = E

[
T∑

t=1

I (qt · zt ≥ 0.5)

]
≤ 2m ln(1/β)

δ(1− β)
min

1≤i≤m
g(κi, ℓ) +

2m lnm

δ(1− β)

Remark Comparing to the mistake bound in Theorem 2 by Algorithm 1, the mistake
bound by Algorithm 3 is amplified by a factor ofm/δ due to the stochastic procedure of
updating one out ofm kernel classifiers. The smoothing parameterδ essentially controls
the tradeoff between efficacy and efficiency. To see this, we note that the bound for
the expected number of mistakes is inversely proportional to δ; in contrast, the bound

for the expected number of updatesE
[∑T

t=1

∑m
i=1 m

t
iz

t
i

]
= E

[∑T
t=1

∑m
i=1 p

t
iz

t
i

]
≤

(1 − δ)E
[∑T

t=1

∑m
i=1 q

t
iz

t
i

]
+ δT has a leading termδT whenδ is large, which is

proportional toδ.

Multiple Updates Approach(MUA) Compared with the deterministic approaches, the
stochastic approach, i.e. the single update algorithm, does significantly improve the
computational efficiency. However, one major problem with the single update algorithm
is that in any round, only one single kernel classifier is selected for updating. As a
result, the unselected but possibly effective kernel classifiers lose their opportunity for
updating. This issue is particularly critical at the beginning of an online multiple kernel
learning task where most individual kernel classifiers could perform poorly.

In order to make a better tradeoff between efficacy and efficiency, we develop an-
other stochastic algorithm for online multiple kernel learning. The main idea of this new
algorithm is to randomly choose multiple kernel classifiersfor updating and predictions.
Instead of choosing a kernel classifier from a multinomial distribution, the updating of
each individual kernel classifier is determined by a separate Bernoulli distribution gov-
erned bypti for each classifier. The detailed procedure is shown in Algorithm 4. The
theorem below shows the mistake bound of the multiple updates algorithm.

Theorem 7 After receiving a sequence ofT training examplesDT , the expected num-
ber of mistakes made by Algorithm 4 is bounded as follows

E[M ] = E

[
T∑

t=1

I (qt · zt ≥ 0.5)

]
≤ 2 ln(1/β)

δ(1− β)
min

1≤i≤m
g(κi, ℓ) +

2 lnm

δ(1 − β)
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Algorithm 3 SUA for OMKL-P
1: INPUT :

– Kernels:Km

– Discount weight:β ∈ (0, 1)
– Smoothing parameter:δ ∈ (0, 1)

2: Initialization : f1 = 0,w1 = 1, p1 = 1/m
3: for t = 1, 2, . . . do
4: Receive an instancext

5: Predict:ŷt = sign
(
qt · sign(ft(xt))

)

6: Receive the class labelyt
7: it=Multi Sample(pt)
8: for i = 1, 2, . . . , m do
9: Setmt

i = I(i = it)
10: Setzti = I(ytf

t
i (xt) ≤ 0)

11: Updatewt+1
i = wt

iβ
mt

i
zt
i

12: Updatef t+1
i = f t

i +mt
iz

t
iytκi(xt, ·)

13: end for
14: Updatept+1 = (1− δ)qt+1 + δ1/m
15: end for

Algorithm 4 MUA for OMKL-P
1: INPUT :

– Kernels:Km

– Discount weight:β ∈ (0, 1)
– Smoothing parameter:δ ∈ (0, 1)

2: Initialization : f1 = 0,w1 = 1,p1 = 1

3: for t = 1, 2, . . . do
4: Receive an instancext

5: Predict:ŷt = sign
(
qt · sign(ft(xt))

)

6: Receive the class labelyt
7: for i = 1, 2, . . . ,m do
8: Samplemt

i = Bern Sample(pti)
9: Setzti = I(ytf

t
i (xt) ≤ 0)

10: Updatewt+1
i = wt

iβ
mt

i
zt
i

11: Updatef t+1
i = f t

i +mt
iz

t
iytκi(xt, ·)

12: end for
13: Updatept+1 = (1− δ)qt+1 + δ1
14: end for

Remark Compared to the mistake bound in Theorem 2 by Algorithm 1, themistake
bound by Algorithm 4 is amplified by a factor of1/δ due to the stochastic procedure.
On the other hand, compared to the mistake bound of single update in Theorem 6,
the mistake bound by Algorithm 4 is improved by a factor ofm, mainly due to si-
multaneously updating multiple kernel classifiers in each round. The expected num-

ber of updates for multiple updates approach is bounded byE
[∑T

t=1

∑m
i=1 m

t
iz

t
i

]
=

E
[∑T

t=1

∑m
i=1 p

t
iz

t
i

]
≤ (1 − δ)E

[∑T
t=1

∑m
i=1 q

t
iz

t
i

]
+ δmT , where the first term is

discounted by a factor ofm and the second term is amplified by a factor ofm compared
to that of single update approach.

5 Algorithms for Online Multiple Kernel Learning by Outputs
(OMKL-O)

5.1 A Deterministic Approach

In the following analysis, we assume the functional norm of any classifierfi(·) is
bounded byR, i.e., ‖fi‖Hκi

≤ R. We define domainΩκi
asΩκi

= {f ∈ Hκi
:

‖f‖Hκi
≤ R}. Algorithm 5 shows the deterministic algorithm for OMKL-O.Com-

pared to Algorithm 1, there are three key features of Algorithm 5. First, in step 11,
the updated kernel classifierfi(·) is projected into domainΩκi

to ensure its norm is
no more thanR. This projection step is important for the proof of the mistake bound
that will be shown later. Second, each individual kernel classifier is updated only when
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the prediction of the combined classifier is incorrect i.e.,ytŷt ≤ 0. This is in contrast
to the Algorithm 1, where each kernel classifierf t

i (·) is updated when it misclassifies
the training examplext. This feature will make the proposed algorithm significantly
more efficient than Algorithm 1. Finally, in step 9 of Algorithm 5, we update weights
wt+1

i based on the outputf t
i (xt). This is in contrast to Algorithm 1 where weights are

updated only based on if the individual classifiers classifythe example correctly.

Theorem 8 After receiving a sequence ofT training examplesDT , the number of mis-
takes made by Algorithm 5 is bounded as follows ifR2 ln(1/β) < 1

M ≤ 1

1−R2 ln(1/β)
min

u∈∆,{fi∈Ωκi
}m

i=1

g (u, {fi}mi=1) +
2 lnm

(1 −R2 ln(1/β)) ln(1/β)

whereg (u, {fi}mi=1) =
∑m

i=1 ui‖fi‖2Hκi

+ 2
∑T

t=1 ℓ (u · f(xt), yt).

Using the result in Theorem 1, we have the following corollary that bounds the
number of mistakes of online kernel learning by the objective function used in the batch
mode multiple kernel learning.

Corollary 9 We have the following mistake bound for running Algorithm 5 ifR2 ln(1/β) <
1

M ≤ 1

1−R2 ln(1/β)
min

u∈∆,f∈Ωκ(u)

g (κ(u), ℓ) +
2 lnm

(1 −R2 ln(1/β)) ln(1/β)

whereg (κ(u), ℓ) = ‖f‖2Hκ(u)
+ 2

∑T
t=1 ℓ (f(xt), yt).

5.2 A Stochastic Approach

Finally, we present a stochastic strategy in Algorithm 6 forOMKL-O. In each round,
we randomly sample one classifier to update by following the probability distribution
pt. Similar to Algorithm 3, the probability distributionpt is a mixture of the normalized
weights for classifiers and a smoothing termδ/m. Different from Algorithm 5, the up-
dating rule for Algorithm 6 has two additional factors, i.e.m̃t

i which is non-zero for the
chosen classifier and has expectation equal to 1, and the stepsizeη which is essentially
introduced to ensure a good mistake bound as shown in the following theorem.

Theorem 10 After receiving a sequence ofT training examplesDT , the expected num-
ber of mistakes made by Algorithm 6 is bounded as follows

E[M ] ≤ min
u∈∆,{fi∈Ωκi

}m

i=1

T∑

t=1

ℓ (u · f(xt), yt) + 2
√
a(R, β, δ)b(R, β, δ)T

wherea(R, β, δ) =
R2

2
+

lnm

ln(1/β)
, b(R, β, δ) =

ln(1/β)R2m2

2δ2
+

m

2δ
, andη is set to

η =

√
a(R, β, δ)

b(R, β, δ)
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Algorithm 5 DA for OMKL-O
1: INPUT :

– Kernels:Km

– Discount weight:β ∈ (0, 1)
– Maximum functional norm:R

2: Initilization : f1 = 0,w1 = 1

3: for t = 1, 2, . . . do
4: Receive an instancext

5: Predict:ŷt = sign
(
qt · ft(xt)

)

6: Receive the class labelyt
7: if ŷtyt ≤ 0 then
8: for i = 1, 2, . . . , m do
9: Updatewt+1

i = wt
iβ

−ytf
t

i
(xt)

10: Updatef̃ t+1
i = f t

i + ytκi(xt, ·)
11: Projectf̃ t+1

i intoΩκi
by

f t+1
i = f̃ t+1

i /max(1, ‖f̃ t+1
i ‖Hκi

/R)

12: end for
13: end if
14: end for

Algorithm 6 SUA for OMKL-O
1: INPUT :

– Km, β,R as in Algoirthm 5
– Smoothing parameterδ ∈ (0, 1), and

Step size:η > 0
2: Initialization : f1 = 0,w1 = 1,p1 = 1/m
3: for t = 1, 2, . . . do
4: Receive an instancext

5: Predict:ŷt = sign
(
qt · ft(xt)

)

6: Receive the class labelyt
7: if ŷtyt ≤ 0 then
8: it=Multi Sample(pt)
9: for i = 1, 2, . . . ,m do

10: Setmt
i = I(i = it), m̃t

i = mt
i/p

t
i

11: Updatewt+1
i = wt

iβ
−ηm̃t

i
ytf

t

i
(xt)

12: Updatef̃ t+1
i = f t

i + ηm̃t
iytκi(xt, ·)

13: Projectf̃ t+1
i (x) intoΩκi

.
14: end for
15: Updatept = (1− δ)qt + δ1/m
16: end if
17: end for

6 Conclusions

This paper investigates a new research problem, online multiple kernel learning (OMKL),
which aims to attack an online learning task by learning a kernel based prediction func-
tion from a pool of predefined kernels. We consider two setupsfor online kernel learn-
ing, online kernel learning by predictions that combines the binary predictions from
multiple kernel classifiers and online kernel learning by outputs that combines the real-
valued outputs from kernel classifiers. We proposed a framework for OMKL by learning
a combination of multiple kernel classifiers from a pool of given kernel functions. We
emphasize that OMKL is generally more challenging than typical online learning be-
cause both the kernel classifiers and their linear combination are unknown. To solve
this challenge, we propose to combine two online learning algorithms, i.e., the Percep-
tron algorithm that learns a classifier for a given kernel, and the Hedge algorithm that
combines classifiers by linear weighting. Based on this idea, we present two types of
algorithms for OMKL, i.e., deterministic approaches and stochastic approaches. Theo-
retical bounds were derived for the proposed OMKL algorithms.
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Appendix

Proof of Theorem 2

Proof. The proof essentially combines the proofs of the Perceptronalgorithm [25] and
the Hedge algorithm [9]. First, following the analysis in [9], we can easily have

T∑

t=1

qt · zt ≤
ln(1/β)

1− β
min

1≤i≤m

T∑

t=1

zti +
lnm

1− β

Second, due to the convexity ofℓ and the updating rule forfi, whenzti = 1 we have

ℓ(f t
i (xt), yt)− ℓ(f(xt), yt) ≤ −yt〈f t

i − f, ztiκi(xt, ·)〉Hκi
= −〈f t

i − f, f t+1
i − f t

i 〉Hκi

≤ 1

2

(
‖f t

i − f‖2Hκi

− ‖f t+1
i − f‖2Hκi

+ zti

)

Sinceℓ(f t
i (xt), yt) ≥ zti , thenzti ≤ ‖f t

i − f‖2Hκi

− ‖f t+1
i − f‖2Hκi

+ 2ℓ(f(xt), yt).
Taking summation on both sides, we have

T∑

t=1

zti ≤ min
f∈Hκi

T∑

t=1

(
‖f t

i − f‖2Hκi

− ‖f t+1
i − f‖2Hki

)
+ 2

T∑

t=1

ℓ(f(xt), yt) ≤ g(κi, ℓ)

Using the above inequality and noting thatM =
∑T

t=1 I (qt · zt ≥ 0.5) ≤ 2
∑T

t=1 qt ·
zt, we have the result in the theorem.

Proof of Theorem 3

Proof. The proof can be constructed similarly to the proof for Theorem 2 by noting the
following three differences. First, the updating rule for the weights can be written as
wt+1

i = wt
i(β

1/2+γ)ν
t

i
/(1/2+γ), whereνti ≤ 1/2 + γ. Second,

∑
i q

t
iν

t
i ≥ ∑i q

t
iz

t
i/2.

Third, we haveℓ(f t
i (xt), yt) ≥ νi(t) + zi(t)/2, and therefore

T∑

t=1

νti ≤ g(κi, ℓ)/2.

Proof of Theorem 5

Proof. We denote byMk the number of mistakes made during the segment[Tk +
1, Tk+1]. It can be shown that the following equality

Mk ≤ 2


 min

1≤i≤m

Tk+1∑

t=Tk+1

zti + lnm+ 2
√
lnm2k/2


 ,
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holds for anyk = 0, . . . , s− 1. Taking summation over allMk

M =

s−1∑

k=0

Mk ≤ 2




s−1∑

k=0



 min
1≤i≤m

Tk+1∑

t=Tk+1

zti + 22k/2
√
lnm







+ 2s lnm

we can obtain the bound in the theorem by noting that
∑s−1

k=0 min
1≤i≤m

∑Tk1

t=Tk+1 z
t
i ≤

min
1≤i≤m

∑T
t=1 z

t
i , and2s−1 − 1 ≤ min

1≤i≤m

∑T
t=1 z

t
i ≤ min

1≤i≤m
g(κi, ℓ).

Proof of Theorem 6

Proof. Similar to the proof for Theorem 2, we can prove

T∑

t=1

m∑

i=1

qtim
t
iz

t
i ≤

ln(1/β)

1− β

T∑

t=1

mt
iz

t
i +

lnm

1− β
, and

T∑

t=1

mt
iz

t
i ≤ g(κi, ℓ)

Taking expectation on both sides, and noting thatE[mt
i] = pti ≥ δ/m, we have

E

(
T∑

t=1

qt · zt
)

≤ m ln(1/β)

δ(1− β)
min

1≤i≤m
g(κi, ℓ) +

m lnm

δ(1− β)

SinceM ≤ 2
∑T

t=1 qt · zt, we have the result stated in the theorem.

Proof of Theorem 7

Proof. The proof can be duplicated similarly to the proof for Theorem 6, except for
pti ≥ δ, i = 1, . . . ,m in this case.

Proof of Theorem 8

Proof. In the following analysis, we only consider the subset of iterations where the
algorithm makes a mistake. By slightly abusing the notation, we denote by1, 2, . . . ,M
the trials where the examples are misclassified by Algorithm5. For any combination
weightu = (u1, · · · , um)⊤ ∈ ∆ and any kernel classification functionfi ∈ Ωκi

, i =
1, . . . ,m, we have

ℓ
(
qt · ft(xt), yt

)
− ℓ
(
u · f(xt), yt

)
≤ gtyt (qt · ft(xt)− u · f(xt))

= gtyt (qt · ft(xt)− u · ft(xt)) + gtyt (u · ft(xt)− u · f(xt))

wheregt = ∂ max(0,1−z)
∂z

∣∣∣
z=ytqt·ft(xt)

= −1 because examples are misclassified in

these trials. For the first term, following the proof for Theorem 11.3 in [4], we can have

gtyt(qt − u) · ft(xt) ≤
ln(1/β)

2
R2 +

1

ln(1/β)
{KL(u‖qt)−KL(u‖qt+1)}
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For the second term, following the analysis in the proof for Theorem 2, we can have

gtyt (u · ft(xt)− u · f(xt)) =

m∑

i=1

ui〈f i
t − f i, gtytκi(xt, ·)〉Hκi

≤ 1

2
+

m∑

i=1

ui

2

(
‖f t

i − fi‖2Hκi

− ‖f t+1
i − fi‖2Hκi

)

Combining the above result together, we arrive at

M∑

t=1

ℓ (qt · ft(xt), yt)−
M∑

t=1

ℓ (u · f(xt), yt) ≤
1

2

m∑

i=1

ui‖fi‖2Hκi

+
lnm

ln(1/β)
+
1

2
(ln(1/β)R2+1)M

Sinceℓ (qt · ft(xt), yt) ≥ 1, we can have the result in the theorem.

Proof of Theorem 10

Proof. Similar to the proof for the Theorem 8, we have the following bound for the two
terms

E [gtyt (qt · ft(xt)− u · ft(xt))] =
1

η
E
[
gtyt(qt − ut) ·

(
ηm̃t ◦ ft(xt)

)]

≤ 1

η ln(1/β)
E [KL(u‖q(t))−KL(u‖q(t+ 1))] +

ln(1/β)R2η2m2

2δ2

E [gtytu · (ft(xt)− f(xt))] = E

m∑

i=1

ui

η

〈
f t
i − fi, ηm̃

t
igtytκi(xt, ·)

〉
Hκi

≤ mη

2δ
+ E

[
m∑

i=1

ui

2η
(‖f t

i − fi‖2Hκi

− ‖f t+1
i − fi‖2Hκi

)

]

Combining the above results together, and settingη as in the theorem, we have the result
in the theorem.
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