
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2011

Randomly Projected KD-Trees with Distance Metric Learning for Randomly Projected KD-Trees with Distance Metric Learning for

Image Retrieval Image Retrieval

Pengcheng WU
Nanyang Technological University

Steven HOI
Singapore Management University, chhoi@smu.edu.sg

Duc Dung NGUYEN
Nanyang Technological University

Ying HE
Nanyang Technological University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
WU, Pengcheng; HOI, Steven; NGUYEN, Duc Dung; and HE, Ying. Randomly Projected KD-Trees with
Distance Metric Learning for Image Retrieval. (2011). Advances in Multimedia Modeling: 17th
International Multimedia Modeling Conference, MMM 2011, Taipei, Taiwan, January 5-7, 2011,
Proceedings, Part II. 6524, 371-382.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2356

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Randomly Projected KD-Trees with Distance
Metric Learning for Image Retrieval

Pengcheng Wu, Steven C.H. Hoi, Duc Dung Nguyen, Ying He

School of Computer Engineering, Nanyang Technological University, Singapore
{wupe0003, chhoi, nguy0051, yhe}@ntu.edu.sg

Abstract. Efficient nearest neighbor (NN) search techniques for high-
dimensional data are crucial to content-based image retrieval (CBIR).
Traditional data structures (e.g., kd-tree) usually are only efficient for
low dimensional data, but often perform no better than a simple exhaus-
tive linear search when the number of dimensions is large enough. Re-
cently, approximate NN search techniques have been proposed for high-
dimensional search, such as Locality-Sensitive Hashing (LSH), which
adopts some random projection approach. Motivated by similar idea,
in this paper, we propose a new high dimensional NN search method,
called Randomly Projected kd-Trees (RP-kd-Trees), which is to project
data points into a lower-dimensional space so as to exploit the advantage
of multiple kd-trees over low-dimensional data. Based on the proposed
framework, we present an enhanced RP-kd-Trees scheme by applying
distance metric learning techniques. We conducted extensive empirical
studies on CBIR, which showed that our technique achieved faster search
performance with better retrieval quality than regular LSH algorithms.

1 Introduction

Similarity search plays an important role for content-based image retrieval (CBIR)
systems. The images in CBIR are often represented in high-dimensional space,
and the scale of images can be easily over millions or even billions for web-scale
applications. These challenges have made CBIR an open challenge although it
has been extensively studied for several decades.

The NN search problem for CBIR has been extensively studied in literature.
A variety of data structures have been proposed for indexing data points in a low-
dimensional space [15, 5, 4, 14]. For example, if data points lie in a plane, it can be
shown that traditional data structures, such as kd-tree, can exactly solve the NN
search problem with O(log n) time using only O(n) space [15]. However, when
the number of dimensions grows, these conventional approaches often become
less efficient, a phenomenon known as the curse of dimensionality. Specifically,
the time or space requirements of these approaches often grow exponentially
with the dimensionality. For example, the approach in [5] has a nice query time
of O(dO(1) log n), however, it costs about O(nO(d)) space, making it impractical
for large applications. While there exist some efficient data structures using only
linear or sublinear space [4, 14], the best query time of these approaches is of
O(min(2O(d), dn), which is not better than a simple exhaustive linear search even
for moderate dimension d. Until now, researchers have yet to find an efficient

2 Wu, Hoi, Nguyen, He

solution that can solve the exact high-dimensional NN search problem beyond
the exponential dependence on the dimensionality.

Recently, instead of pursuing the exactNN search, researchers have attempted
to adopt some approximation approaches [10, 8, 13, 2] that remove the exponen-
tial dependence on dimensionality. The basic idea is that: instead of finding the
nearest point p to the query point q, the approximate NN search algorithm al-
lows to return any point within the distance of (1 + ϵ) times the distance from
q to p. Recent studies have shown that by adopting the approximation, the
high-dimensional NN search problem can be efficiently resolved by reducing the
dependence on the dimensionality from exponential to polynomial complexity.
Several recent studies, such as Locality Sensitive Hashing (LSH) [10, 8], have
successfully applied the random projection idea for approximate NN search over
high-dimensional data.

Motivated by the above results, in this papper, we propose a new method for
approximate NN search in high-dimensional space using the random projection
principle, called the Randomly Projected kd-trees (RP-kd-Trees). The basic idea
is to project the high-dimensional data points into a lower dimensional space
and integrate multiple kd-trees by utilizing the advantage of kd-trees for low-
dimensional NN search. Besides, to further improve the performance, we also
present a machine learning approach to enhancing RP-kd-Trees by applying
distance metric learning techniques.

The rest of this paper is organized as follows. Section 2 presents the proposed
RP-kd-Trees method, which integrates the Random Projection technique and kd-
tree structures in the unified framework to efficiently resolve approximate nearest
neighbor search problem. Section 3 discusses the enhanced RP-kd-Trees scheme
by applying distance metric learning techniques. Section 4 discusses the experi-
mental results of applying the proposed RP-kd-Trees technique for content-based
image retrieval application. Section 5 sets out the conclusion of this work.

2 Randomly Projected KD-Trees
We now present a framework of Randomly Projected KD-trees (RP-kd-Trees) for
approximate NN search on high-dimensional data. We will first introduce some
relevant techniques, including the basic concept of Random Projection, and the
kd-tree data structure, followed by presenting the proposed indexing algorithms.

2.1 Random Projection
Random Projection is a technique to reduce the curse of dimensionality with
little lost information of distances between pairs of points in a high-dimensional
vector space. In order to project the given points onto a lower dimensional space,
we multiple X by a random matrix M ∈ Rd′×d, where M often consists of mul-
tiple elements in normal distribution N(0, 1). By doing this, we speed up the
computation and make it possible to use existing data structures to handle the
image similarity search problem. We expect that random projection approxi-
mately preserves pair-wise distances. We will describe the technique to overcome
the accuracy loss caused by random projections in later part of this paper.

Achlioptas [1] proposed sparse random projections by not using the N (0, 1)
elements in M but elements in {+1, 0,−1} with probabilities { 1

6 ,
2
3 ,

1
6}, attaining

The 17th International Conference on MultiMedia Modeling (MMM2011) 3

a threefold speedup in projection processing time. It shows the following theorem
for performance assurance [1].

Theorem 1. Let X be an arbitrary set of n data points in Rd, represented as a
matrix X ∈ Rd×n. Given ϵ, β > 0 let d0 = 4+2β

ϵ2/2−ϵ3/3 log n, for integer d
′ ≥ d0, let

M be a d′ × d random matrix with M(i, j) = Mij, where {Mij} are independent
random variables from the following probability distribution:

Mij =
√
3

+1, with probability 1/6
0, with probability 2/3
−1, with probability 1/6

Let us define E = 1√
d′MX, and define f : Rd → Rd′

that maps the ith column

of X to the ith column of E. With probability at least (1 − n−β), for all u, v ∈
X, we then have

(1− ϵ)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ϵ)||u− v||2 (1)

Remark. In [12], the authors recommended the use of probabilities { 1
2
√
d
, 1−

1√
d
, 1
2
√
d
} for a significant

√
d-fold speedup, with slight loss of accuracy.

2.2 The kd-Tree Data Structure

Kd-tree [14] is a binary tree structure for storing a finite set of points in k-
dimensional space. Every internal node of kd-tree has a splitting hyper-plane
that divides the space into two subspaces. The points left to the hyper-plane are
represented by the left sub-tree of that node, while the points right to the hyper-
plane are represented by the right sub-tree. Thus, each node contains information
about all its descendants in a hyper-rectangle. The details of building a kd-tree
structure can be found in [14].

The NN search process for kd-tree is conducted in a recursive manner. It
starts from the root node, and moves down the tree recursively. The idea is trying
to prune the candidate hyper-rectangles that definitely do not contain nearest
neighbors of the query point. A candidate hyper-rectangle is inspected only if
there are some parts of it within the current best distance to the query point.
The number of points inspected appears to be reasonable in low-dimensional
space, but usually grows rapidly when the dimensionality of the data points
increases. This is the reason that prohibits the use of traditional kd-tree for
indexing high-dimensional data.

2.3 Algorithm

We now proceed to introduce our algorithm, Randomly Projected (RP) kd-trees
(RP-kd-Trees) for solving the approximate k-NN problem, which takes advantage
of random projection for efficient dimension reduction and kd-tree data struc-
ture for efficient low-dimensional data indexing. First, we generate m projection
matrices using Achlioptas’s technique [1]. These projection matrices are used to
generate m different copies of projected data set in lower dimensional space d′.
These projected data sets are then stored in m corresponding d′-dimensional

4 Wu, Hoi, Nguyen, He

kd-trees. By performing projections, we make it possible for kd-tree to handle
our data points.

For each projection process, we choose matrix M ∈ Rd′×d where Mij is:

Mij =
√
3

+1, with probability 1/6
0, with probability 2/3
−1, with probability 1/6

The matrix M represents some random projection from Rd to Rd′
. Then,

multiplying X consisting of n vectors in d-dimensions with matrix M leads
to the set of projected points X ′ ∈ Rd′×n. Note that the scale factor 1√

d′ in

projection from Theorem 1 could be ignored because we only need to compare
among pairwise distances.

Algorithm 1 Preprocessing and Indexing of RP-kd-Trees

Input: X - A set of data points, m - number of kd-trees used
Output: RP-kd-Trees Tu, u = 1, ...,m
procedure Preprocessing Indexing

for u← 1,m do
Initialize kd-tree Tu

Generate projection matrix Mu

end for
for u← 1,m do

for i← 1, n do
Compute the projected point of xi with matrix Mu

Store it into kd-tree Tu

end for
end for

end procedure

To find k nearest neighbors of a given query point q ∈ Rd, we iterate each
of m structures and process as follows: First the query point is projected into
d′ dimensional subspace corresponding to the kd-tree. We use this projected
query point and standard nearest neighbors search in kd-tree to find k nearest
neighbors. The answer provided by each kd-tree is only an approximate result to
the NN problem, and alone may not be very accurate. To improve the accuracy,
we try to integrate answers from all the kd-trees by ranking the union set by the
distance to the query point q ∈ Rd, and return the top k nearest neighbors.

The preprocessing, indexing and querying algorithms are summarized in Al-
gorithm 1 and 2. To attain the final result, one priority queue is maintained. It
keeps k current best candidate neighbors and will be updated whenever a nearer
candidate is found. The insert and update operations in the priority queue are
very fast, with complexity of O(log k). The querying operation over kd-tree in
low dimensional space is very efficient, with complexity of logarithm of the num-
ber of points. Besides, our method is also easy to be parallelized by querying
multiple kd-trees simultaneously using emerging parallel computing techniques.

By performing random projection, we will lose some information of the data
set. However, with m projection matrices and kd-trees we expect the accuracy
will be highly boosted. From Theorem 1, the Achlioptas’s random projection

The 17th International Conference on MultiMedia Modeling (MMM2011) 5

Algorithm 2 Approximate Nearest Neighbor Query in RP-kd-Trees

Input: q - a query point, k - number of nearest neighbors
Access: RP-kd-Trees Tu, u = 1, ...,m
Output: k (or less) approximate nearest neighbors
procedure ANN-Query

S ← ∅
for u← 1,m do

Let q′ ←Muq the projection of the point q onto the d′-dimensional
subspace given by Mu

Let S ← S∪ {k neighbors returned from Tu with query q’}
end for
Rank points in S by the distance to the query point q
Return the top k nearest neighbors.

end procedure

method preserves pairwise distances approximately at (1 ± ϵ) with probability
at least γ = 1 − n−β . That means the failure probability of each structure
is (1 − γ) = n−β . Then by integrating results from m structures, we lower
this probability to n−βm. Hence, to achieve the desired probability (1− δ), the
following inequality must hold: 1−n−βm ≥ 1−δ. In other words, one can choose

β by: β ≥ − log δ
m log n . Therefore, choosing the value of d′ as: d′ ≥ 4+2 − log δ

m log n

ϵ2/2−ϵ3/3 logn,

should suffice to provide quality guarantee.

2.4 Complexity Analysis

Empirically RP-kd-Trees could provide its best performance with relatively small
value of projected dimension d′ (d′=10 when original dimension d = 297 in our
experiments). The projection time complexity O(dd′) is not significant because
both d and d′ are not very large. Similarly ranking objects in the result sets is
very quick because there are usually a small number of candidates. Thus time
consumed mostly falls into the process of querying kd-trees, and is expected as
O(d′ log n) for one kd-tree. Besides, it needs space complexity O(nd′) to store
one kd-tree.

The RP-kd-Trees method makes use of m trees, so it has the expected time
complexity of O(md′ log n) and space complexity of O(mnd′). For the enhanced
RP-kd-Trees by distance metric learning to be discussed in the subsequent sec-
tion, the distance metric learning process (when used, see below for details) usu-
ally can be performed quite efficiently because the number of items in training
data set is often not large. The only additional computation for the enhanced
RP-kd-tress with distance metric learning approach would be projecting the
original data set only once by the linear transformation W ∈ Rd×d learnt from
training data set, which is O(nd2).

3 Enhancing RP-kd-Trees by Distance Metric Learning

In this section, we consider a machine learning approach to enhancing the in-
dexing performance of RP-kd-Trees for CBIR. In particular, given a training

6 Wu, Hoi, Nguyen, He

set with side information (pairwise constraints indicate if image pairs are sim-
ilar/dissimilar), a well-known technique to improve the distance measure is to
explore Distance Metric Learning (DML) techniques, which can improve the
performance of RP-kd-Trees by finding more effective distance metrics.

Considering a DML task, we are given a set of n data points in a d-dimensional
vector space C = {xi}ni=1 ⊆ Rd, and some side information which is typically
provided in the forms of two sets of pairwise constraints among the data points.
Each pairwise constraint (xi,xj) indicates if two images xi and xj are similar
(“must-link”) or dissimilar (“cannot-link”) judged by users. For image retrieval,
such information can be easily collected from real-world systems, such as users’
relevance feedback logs in CBIR systems.

One key issue of CBIR is to define appropriate distance measure f(xi,xj) to
calculate distance/dissimilarity between any two images xi and xj . Specifically,
assume images are represented in a vector space, by specifying a distance metric
A ∈ Rd×d, we can express the formula of general Mahalanobis distance below:

fA(xi,xj) = ∥xi − xj∥2A = (xi − xj)
⊤A(xi − xj) = tr(A(xi − xj)(xi − xj)

⊤) (2)

where A is a symmetric matrix of sizem×m, and tr stands for the trace operator.
In general, A is a valid metric if and only if it satisfies the non-negativity and
triangle inequality properties. In other words, matrix A must be positive semi-
definite (PSD), i.e., A ≽ 0. In general, A parameterizes a family of Mahalanobis
distances on the vector space Rd. As a special case, setting A to an identity
matrix Id×d, Eqn. (2) reduces to regular Euclidean distance.

Despite its simplicity, Euclidean distance has some critical limitations. By
Euclidean, all variables are assumed independent, the variance across all dimen-
sions is 1, and the covariances among all variables are 0. Such a scenario is seldom
satisfied in practice. Instead of using Euclidean, it is more desirable to learn an
optimal metric from real data. This motivates us to study DML to optimize the
matrix/metric A for distance measure in real applications.

In this paper, our goal is to apply DML techniques to improve the perfor-
mance of RP-kd-Trees. The structure of the proposed RP-kd-Trees enables the
feasibility of exploiting DML techniques in a simple and effective way. In particu-
lar, different distance metrics can be learned separately from different projected
data sets in d′ dimensional space. The learned metrics can be applied to the RP-
kd-Trees by a simple projection. Specifically, each Mahalanobis matrix A can be
decomposed as A = W⊤W . As a result, the distance d(x1,x2) is computed:

f(x1,x2) = (x1 − x2)
⊤A(x1 − x2) = (x1 − x2)

⊤W⊤W (x1 − x2)

= (W (x1 − x2))
⊤(W (x1 − x2)) (3)

Thus, applying a metric A to RP-kd-Trees is equivalent to conducting a projec-
tion with the matrix W . It is important to note that the above approach does
not increase the time cost of online query or any additional memory cost.

In this paper, we apply several popular DML algorithms, including relevant
component analysis [3], discriminative component analysis [9], neighbourhood
components analysis [11], and large margin nearest neighbor metric learning [16].
For limited space, we skip the discussions on their details.

The 17th International Conference on MultiMedia Modeling (MMM2011) 7

4 EXPERIMENTS
This section evaluates the performance of the proposed RP-kd-Trees to identify
the advantages and limitations of the proposed method from different aspects.

4.1 Data Sets and Experimental Settings
We experimented with real-world image data sets: (1) The COREL data set
consists of 5,000 images, which are classified into 50 categories based on their
semantic concepts; each category has 100 images; and (2) the Flickr data set
contains 500,000 photos, which were crawled from www.Flickr.com.

In the experiments, we split 5,000 COREL images into 2 sets: 2,000 and
3,000 images (i.e. 20 and 30 categories). The 2000-image set was used to test
the performance of the methods without DML (RP-kd-Trees, LSH [6], Multi-
probe LSH [13]), while the 3000-image set was only used as the training set
for the enhanced RP-kd-Trees with DML. Finally, the query set was created
by randomly choosing 100 query images from the 2,000 classified images. The
image data set to be queried was the combined set of 500k Flickr images and
2000 COREL images, total of 502,000 images, referred as FlickrCOREL.

Low-level features were extracted from images, including grid color moment,
local binary pattern, Gabor wavelets texture, and edge direction histogram fea-
tures. All together, a 297-dimensional feature vector was used to represent an
image. Practically, storing the FlickrCOREL data set in this way took about
1,137 MB (using double-precision floating point data type or 8 bytes for one
coordinate). One trick was exploited to speed up RP-kd-Trees algorthm with
little loss on the accuracy that we terminated search process after performing
distance checking for a certain number of points. Finally, all experiments were
conducted in a Linux machine with 2.8GHz CPU and 16GB memory.

For performance assessment, we adopted a fairly standard metric widely
used in multimedia retrieval, i.e., Average Precision metric on top returned
images, defined as: AveragePrecision(t) =

∑n
i=1 precision(i)∆recall(i), where

precision(i) is the precision of the first i returned images and ∆recall(i) is the
change in the recall from i− 1 to i returned images. A returned image was con-
sidered a hit if it belonged to the same category as the query image. All methods
were required to retrieve 100 relevant images in later experiments.

4.2 Performance Evaluation of RP-kd-Trees
RP-kd-Trees is expected to provide high accuracy search result by using multiple
kd-trees. This experiment is to understand the behaviors of RP-kd-Trees with
different parameters. Through this experiment, we also want to find out what
value the projected dimension should be for RP-kd-Trees. We varied the number
of trees m from 1 to 20 and reported the Average Precision, querying time (s)
and memory consumed (MB) when projected dimension d′ = 5, 10, and 15. The
experiments were done against FlickrCOREL data set (d = 297, N = 502,000).

Figure 1 shows a comparison between basic kd-tree and RP-kd-trees. Specif-
ically, Figure 1(b) illustrates how accurate the returned images are for different
d′. As reflected from the figure, Average Precision increased significantly when
the number of trees m increased. When m = 20, the returned average precision
of RP-kd-Trees with d′ = 10 was 0.123, close to the optimal result by the exact

8 Wu, Hoi, Nguyen, He

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Dimensions of d’

A
ve

ra
ge

 P
re

ci
si

on

FlickrCOREL(d=297,n=502,000)

Basic kd Tree

Linear Search

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Trees

A
ve

ra
ge

 P
re

ci
si

on

FlickrCOREL(d=297,n=502,000)

Linear Search

RP−KD−Trees d’=5

RP−KD−Trees d’=10

RP−KD−Trees d’=15

(a) Basic kd-tree (b) # RP-kd-Trees

Fig. 1. Evaluation of Average Precision: Basic kd-tree vs. RP-kd-Trees

linear search. In contrast, the accuracy in Figure 1(a) by basic kd-tree was much
lower than the exact linear search. This result indicates that by employing mul-
tiple kd-trees the accuracy is highly boosted even though the trick introduced
in the preceding section decreases the accuracy slightly.

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Number of Trees

T
im

e
(s

)

FlickrCOREL (d=297, n=502,000)

RP k−d Trees d’=5

RP k−d Trees d’=10

RP k−d Trees d’=15

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

Number of Trees

M
em

or
y

(M
B

)

FlickrCOREL (d=297, n=502,000)

RP k−d Trees d’=5

RP k−d Trees d’=10

RP k−d Trees d’=15

(a) # trees vs. query time (b) # trees vs. memory

Fig. 2. Evaluation of RP-kd-trees: number of trees vs. query time/meomry

Figure 2 shows the time and memory evaluation of RP-kd-trees. We found
that the querying time and memory costs increased linearly with m. When m
= 10 and d′ = 10, RP-kd-Trees needed 0.006 seconds on average to answer one
query, which was 67 times faster than linear search. At this configuration, it
also needed 655 MB and achieved Average Precision of 0.11. To provide higher
accuracy, e.g. 0.123, the structures required about 1300 MB and answered a
query in about 0.013 second. Thus, if available memory is large enough, this
method will be able to deliver the desired accuracy for the application.

Besides, we notice that Average Precision did not improve much when the
projected dimension d′ increased from 10 to 15. Meanwhile, the querying time
and required memory increased considerably. Thus, for this data set, RP-kd-
Trees performed well when the projected dimension d′ was 10. In later experi-
ments, d′ was set to 10 when RP-kd-Trees was compared with other methods.

4.3 Comparison against Other Methods

We compared RP-kd-Trees with two state-of-the-art methods, i.e., LSH and
Multi-Probe LSH. All compared methods were required to return top k = 100
relevant images from dataset FlickrCOREL with respect to each query image.

The 17th International Conference on MultiMedia Modeling (MMM2011) 9

Parameters were selected to reflect the best performance of each method on the
training set. The compared methods are listed below:

– RP-kd-Trees: we set the projected dimension d′ = 10 and varied the number
of kd-trees (m) from 1 to 20.

– LSH [6]: We adopted the E2LSH package1. It has two key parameters: L -
number of hash tables and k - number of elements in LSH functions. In this
experiment, k was set as its typical value 10 while L ranges from 2 to 12.

– Multi-probe LSH [13]: We adopted the LSHKIT library [7]. In the library,
the following parameters must be specified: L - number of hash tables, T -
number of bins probed in each hash table. When using L = 10 and T = 10,
the search accuracy is very good - nearly close to the exact search result,
but the query time is intensive, more than 0.4 second for a query. Thus, in
this experiment we used lower values, i.e., T = 2 and varied L from 1 to 5.

We ran each of the compared methods on the data set 10 times, and reported
their average performance. Figure 3 shows the comparison of different methods
in terms of accuracy, querying time, and memory cost.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.02

0.04

0.06

0.08

0.1

0.12

Average Precision

T
im

e
(s

)

FlickrCOREL (D=297, n=502,000)

RP k−d Trees

LSH

MPLSH

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500

1000

1500

2000

2500

Average Precision

M
em

or
y

(M
B

)
FlickrCOREL (D=297, n=502,000)

RP k−d Trees

LSH

MPLSH

(a) AP vs. query time (b) # AP vs. memory

Fig. 3. Comparison of different approximate NN search methods

From Figure 3(a), in terms of processing time, multi-probe LSH ran almost
as fast as LSH on FlickrCOREL, however, it needed a much smaller number of
hash tables, i.e., only 10 MB to store the indexing structure. Meanwhile, LSH
needed a lot of memory in order to provide good result, i.e. to have average
precision of 0.120, it needed 1588 MB (40% more than the data set itself).

From Figure 3(b), we clearly found that RP-kd-Trees method consistently
outperformed other methods on this FlickrCOREL data set. At the average
precision of 0.114, RP-kd-Trees achieved up to 7 times faster than LSH method
and 10 times faster than multi-probe LSH. The method was still faster when the
average precision was higher, says 0.123. Thus, RP-kd-Trees method requires
less space while returning nearest neighbors much faster than LSH.

In summary, RP-kd-Trees is an efficient approximate NN search method for
high dimensional data, which can return highly accurate results very efficiently

1 http://www.mit.edu/∼andoni/LSH/. The package solves the R-near neighbor prob-
lem (to find the neighbors within a radius R of the query), to find k nearest neighbors,
we follow the suggestion of E2LSH’s manual, i.e., we solve R-near neighbor problem
for several increasing values of R.

10 Wu, Hoi, Nguyen, He

when memory is sufficiently large. The results show that RP-kd-Trees is promis-
ing and more effective than the competing LSH techniques for this challenge.

4.4 Evaluation of Enhanced RP-kd-Trees with DML

This experiment is to evaluate the performance of the enhanced RP-kd-Trees
by applying DML techniques. In particular, we formed a collection of 3,000
COREL images as the training data set for learning distance metrics. In our ex-
periments, we implemented the enhanced RP-kd-Trees by applying four different
DML algorithms, including RCA, DCA, NCA, and LMNN. Figure 4 shows the
performance of the enhanced RP-kd-Trees by the four DML algorithms.

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Trees

A
ve

ra
ge

 P
re

ci
si

on

FlickrCOREL(d=297,n=502,000)

RP−KD−Trees

Euclidean Linear Search

RP−KD−Trees + NCA

RP−KD−Trees + RCA

RP−KD−Trees + DCA

RP−KD−Trees + LMNN

Fig. 4. Evaluation of the enhanced RP-kd-Trees by distance metric learning methods

From Figure 4, we can draw several observations. First, we found that all the
enhanced RP-kd-Trees methods by DML achieved consistently better retrieval
accuracy than the original RP-kd-trees without DML. Second, we found that
the performance of the enhanced RP-kd-Trees monotonically improved when
the number of kd-trees increased. In particular, we found that when the num-
ber of kd-trees m was greater than 10, all the enhanced RP-kd-Trees algorithms
achieved a significant improvement, outperforming the exhaustive Euclidean lin-
ear search. All these results show that it is effective and promising for applying
DML techniques for boosting the performance of the RP-kd-Trees technique.

Moreover, by examining different DML techniques, we found that when the
number of kd-trees m is small (m ≤ 10), LMNN tends to achieve consistently
better than the others, both NCA and DCA perform quite comparably, while
RCA seems to be the worst. Further, when m increases, we found that most
algorithms tend to converge to the similar performance. Despite their slight
differences, we can clearly observe the consistent improvements by the enhanced
RP-id-Trees with DML, validating the efficacy of our technique.

5 Conclusions

This paper presented a new approximate NN search method for high dimensional
data, called Randomly Projected kd-Trees (RP-KD-Tree), with application to

The 17th International Conference on MultiMedia Modeling (MMM2011) 11

CBIR. Our results showed that the proposed method requires less memory and
can achieve up to 7 times faster than the original LSH. Further, we showed that
our method can be easily extended by applying distance metric learning tech-
niques. By employing a variety of distance metric learning algorithms, we showed
the extended method can provide consistent improvements of retrieval accuracy,
even exceeding the accuracy of the exhaustive Euclidean based linear search,
with no additional querying time or memory cost. For the merits of efficacy and
being easy to implement, we believe RP-kd-Trees could be a practically effective
technique for high-dimensional indexing in multimedia applications. Future work
will further reduce the space complexity and speed up by parallel techniques.

Acknowledgement
The work was supported by Singapore National Research Foundation Interactive
Digital Media R&D Program under research grant NRF2008IDM-IDM004-006.

References

1. Achlioptas, D.: Database-friendly random projections. In: ACM Symp. on the Prin-
ciples of Database Systems. pp. 274–281 (2001)

2. Arya, S., Malamatos, T., Mount, D.M.: Space-time tradeoffs for approximate near-
est neighbor searching. J. ACM 57(1), 1–54 (2009)

3. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning a mahalanobis metric
from equivalence constraints. JMLR 6, 937–965 (2005)

4. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

5. Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM J. Com-
put. 17(4), 830–847 (1988)

6. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proc. 20th annual symposium on Com-
putational geometry (SCG’04). pp. 253–262. New York, NY (2004)

7. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling lsh for per-
formance tuning. In: ACM CIKM Conference. USA (October 2008)

8. Gionis, A., Indyk, P., Motwani., R.: Similarity search in high dimensions via hash-
ing. In: VLDB (1999)

9. Hoi, S.C., Liu, W., Lyu, M.R., Ma, W.Y.: Learning distance metrics with contex-
tual constraints for image retrieval. In: CVPR (Jun 17–22 2006)

10. Indyk, P., Motwani, R.: Approximate nearest neighbor: Towards removing the
curse of dimensionality. In: STOC. pp. 604–613 (1998)

11. J. Goldberger, S. Roweis, G.H., Salakhutdinov, R.: Neighbourhood components
analysis. In: NIPS17 (2005)

12. Li, P., J., H.T., W., C.K.: Very sparse random projections. In: ACM International
Conference on Knowledge Discovery and Data Mining (KDD) (2006)

13. Lv, Q., Josephson, W., Wang, Z., Charikar, M.S., Li, K.: Multi-probe lsh: efficient
indexing for high-dimensional similarity search. In: VLDB. Vienna, Austria (2007)

14. Robinson, J.T.: The k-d-b-tree: A search structure for large multi-dimensional
dynamic indexes. SIGMOD pp. 10–18 (1981)

15. Shamos, M., Hoey, D.: Closest-point problems. In: Proc. 16th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS). pp. 151–162 (1975)

16. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. JMLR 10, 207–244 (2009)

	Randomly Projected KD-Trees with Distance Metric Learning for Image Retrieval
	Citation

	tmp.1414741743.pdf.OsXJj

