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BDUOL: Double Updating Online Learning

on a Fixed Budget

Peilin Zhao and Steven C.H. Hoi

School of Computer Engineering,
Nanyang Technological University, Singapore

E-mail: {zhao0106,chhoi}@ntu.edu.sg

Abstract. Kernel-based online learning often exhibits promising empir-
ical performance for various applications according to previous studies.
However, it often suffers a main shortcoming, that is, the unbounded
number of support vectors, making it unsuitable for handling large-scale
datasets. In this paper, we investigate the problem of budget kernel-based
online learning that aims to constrain the number of support vectors by
a predefined budget when learning the kernel-based prediction function
in the online learning process. Unlike the existing studies, we present
a new framework of budget kernel-based online learning based on a re-
cently proposed online learning method called “Double Updating Online
Learning” (DUOL), which has shown state-of-the-art performance as
compared with the other traditional kernel-based online learning algo-
rithms. We analyze the theoretical underpinning of the proposed Budget
Double Updating Online Learning (BDUOL) framework, and then pro-
pose several BDUOL algorithms by designing different budget mainte-
nance strategies. We evaluate the empirical performance of the proposed
BDUOL algorithms by comparing them with several well-known budget
kernel-based online learning algorithms, in which encouraging results val-
idate the efficacy of the proposed technique.

1 Introduction

The goal of kernel-based online learning is to incrementally learn a nonlinear
kernel-based prediction function from a sequence of training instances [1–4]. Al-
though it often yields significantly better performance than linear online learn-
ing, the main shortcoming of kernel-based online learning is its potentially un-
bounded number of support vectors with the kernel-based prediction function,
which thus requires a large amount of memory for storing support vectors and
a high computational cost of making predictions at each iteration, making it
unsuitable for large-scale applications. In this paper, we aim to tackle this chal-
lenge by studying a framework for kernel-based online learning on a fixed budget
or known as “budget online learning” for short, in which the number of support
vectors for the prediction function is bounded by some predefined budget size.

In literature, several algorithms have been proposed for budget online learn-
ing. Crammer et al. [5] proposed a heuristic approach for budget online learning
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by extending the classical kernel-based perceptron method [6], which was further
improved in [7]. The basic idea of these two algorithms is to remove the support
vector that has the least impact on the classification performance whenever the
budget, i.e., the maximal number of support vectors, is reached. The main short-
coming of these two algorithms is that they are heuristic without solid theoretic
supports (e.g., no any mistake/regret bound was given).

Forgetron [8] is perhaps the first approach for budget online learning that of-
fers a theoretical bound of the total number of mistakes. In particular, at each it-
eration, if the online classifier makes a mistake, it conducts a three-step updating:
(i) it first runs the standard Perceptron [6] for updating the prediction function;
(ii) it then shrinks the weights of support vectors by a carefully chosen scaling
factor; and (iii) it finally removes the support vector with the least weight. An-
other similar approach is the Randomized Budget Perceptron (RBP) [9], which
randomly removes one of existing support vectors when the number of support
vectors exceeds the predefined budget. In general, RBP achieves similar mistake
bound and empirical performance as Forgetron.

Unlike the above strategy that discards one support vector to maintain the
budget, Projectron [10] adopts a projection strategy to bound the number of
support vectors. Specifically, at each iteration where a training example is mis-
classified, it first updates the kernel classifier by applying a standard Perceptron;
it then projects the new classifier into the space spanned by all the support vec-
tors except the new example received at the current iteration, if the difference
between the new classifier and its projection is less than a given threshold, oth-
erwise it will remain unchanged. Empirical studies show that Projectron usu-
ally outperforms Forgetron in classification but with significantly longer running
time. In addition to its high computational cost, another shortcoming of Pro-
jectron is that although the number of support vectors is bounded, it is unclear
the exact number of support vectors achieved by Projectron in theory.

The above budget online learning approaches were designed based on the
Perceptron learning framework [6]. In this paper, we propose a new framework
of Budget Double Updating Online Learning (BDUOL) based on a recently pro-
posed Double Updating Online Learning (DUOL) technique [4], which has shown
state-of-the-art performance for online learning. The key challenge is to develop
an appropriate strategy for maintaining the budget whenever the size of support
vectors overflows. In this paper, following the theory of double updating online
learning, we analyze the theoretical underpinning of the BDUOL framework,
and propose a principled approach to developing three different budget mainte-
nance strategies. We also analyze the mistake bounds of the proposed BDUOL
algorithms and evaluate their empirical performance extensively.

The rest of the paper is organized as follows. Section 2 first introduces the
problem setting and then presents both theoretical and algorithmic framework
of the proposed budget online learning technique. Section 3 presents several
different budget maintenance strategies for BDUOL. Section 4 discusses our
empirical studies. Section 5 concludes this work.
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2 Double Updating Online Learning on A Fixed Budget

In this section, we first introduce the problem setting for online learning and
Double Updating Online Learning (DUOL), and then present the details of the
proposed Budget Double Updating Online Learning framework.

2.1 Problem Setting

We consider the problem of online classification on a fixed budget. Our goal is
to learn a prediction function f : Rd → R from a sequence of training examples
{(x1, y1), . . . , (xT , yT )}, where xt ∈ R

d is a d-dimensional instance and yt ∈
Y = {−1,+1} is the class label assigned to xt. We use sign(f(x)) to predict the
class assignment for any x, and |f(x)| to measure the classification confidence.
Let ℓ(f(x), y) : R× Y → R be the loss function that penalizes the deviation of
estimates f(x) from observed labels y. We refer to the output f of the learning
algorithm as a hypothesis and denote the set of all possible hypotheses by H =
{f |f : Rd → R}.

In this paper, we consider H a Reproducing Kernel Hilbert Space (RKHS)
endowed with a kernel function κ(·, ·) : Rd×R

d → R [11] implementing the inner
product〈·, ·〉 such that: 1) reproducing property 〈f, κ(x, ·)〉 = f(x) for x ∈ R

d;
2) H is the closure of the span of all κ(x, ·) with x ∈ R

d, that is, κ(x, ·) ∈ H
for every x ∈ X . The inner product 〈·, ·〉 induces a norm on f ∈ H in the usual

way: ‖f‖H := 〈f, f〉
1
2 . To make it clear, we use Hκ to denote an RKHS with

explicit dependence on kernel function κ. Throughout the analysis, we assume
κ(x,x) ≤ 1 for any x ∈ R

d.

2.2 Double Updating Online Learning: A Review

Our BDUOL algorithm is designed based on the state-of-the-art Double Up-
dating Online Learning (DUOL) method [4]. Unlike traditional online learning
algorithms that usually perform a single update for each misclassified example,
DUOL not only updates the weight for the newly added Support Vector (SV),
but also updates that of another existing SV, which conflicts most with the new
SV. Furthermore, both theoretical and empirical analysis have demonstrated
the effectiveness of this algorithm. Below we briefly review the basics of double
updating online learning.

Consider an incoming instance xt received at the t-th step of online learning.
The algorithm predicts the class label ŷt = sgn(ft−1(xt)) using the following
kernel-based classifier:

ft−1(·) =
∑

i∈St−1

γ̂iyiκ(xi, ·),

where St−1 is the index set of the SVs for the (t−1)-th step, and γ̂i is the weight of
the i-th existing support vector. After making the prediction, the algorithm will
suffer a loss, defined by a hinge loss as ℓ(ft−1(xt), yt) = max(0, 1− ytft−1(xt)).
If ℓ(ft−1(xt), yt) > 0, the DUOL algorithm will update the prediction function
ft−1 to ft by adding the training example (xt, yt) as a new support vector.
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Specifically, when the new added example (xt, yt) conflicts with (xb, yb), b ∈
St−1, by satisfying conditions: 1)ℓt = 1−ytft−1(xt) > 0; 2) ℓb = 1−ybft−1(xb) >
0; 3) ytybκ(xt,xb) ≤ min(−ρ, ytyaκ(xt,xa)), a ∈ St−1, and a 6= b, where ρ ∈
[0, 1) is a threshold, then the updating strategy referred as double updating will
be adopted as follows:

ft(·) = ft−1(·) + γtytκ(xt, ·) + dγb
ybκ(xb, ·),

where γt and dγb
are computed in the following equations:

(γt, dγb
)=





(C,C − γ̂b) if (ktC + wab(C − γ̂b)− ℓt) < 0 and
(kb(C − γ̂b) + wabC − ℓb) < 0

(C, ℓb−wabC
kb

) if
w2

abC−wabℓb−ktkbC+kbℓt
kb

> 0 and
ℓb−wabC

kb
∈ [−γ̂b, C − γ̂b]

( ℓt−wab(C−γ̂b)
kt

, C − γ̂b) if ℓt−wab(C−γ̂b)
kt

∈ [0, C] and

ℓb − kb(C − γ̂b)− wab
ℓt−wab(C−γ̂b)

kt
> 0

(kbℓt−wabℓb
ktkb−w2

ab

, ktℓb−wabℓt
ktkb−w2

ab

) if kbℓt−wabℓb
ktkb−w2

ab

∈ [0, C] and
ktℓb−wabℓt
ktkb−w2

ab

∈ [−γ̂b, C − γ̂b]

,(1)

where kt = κ(xt,xt), kb = κ(xb,xb), wab = ytybκ(xt,xb) and C > 0; or when no
existing SV conflicts with (xt, yt), the single update strategy will be adopted as
follows:

ft(·) = ft−1(·) + γtytκ(xt, ·), (2)

where γt = min(C, ℓt/k
2
t ). It is not difficult to see that the single update strategy

is reduced to the Passive-Aggressive updating strategy [3].

2.3 Framework of Budget Double Updating Online Learning

Although DUOL outperforms various traditional single updating algorithms, one
major limitation is that it does not bound the number of support vectors, which
could result in high computation and heavy memory cost when being applied
to large-scale applications. In this paper, we aim to overcome this limitation
by proposing a budget double updating online learning framework in which the
number of support vectors is bounded by a predefined budget size.

Let us denote by B a predefined budget size for the maximal number of sup-
port vectors associated with the prediction function. The key difference of Budget
DUOL over regular DUOL is to develop an appropriate budget maintenance step
to ensure that the number of support vectors with the classifier ft is less than
the budget B at the beginning of each online updating step. In particular, let us
denote by ft−1 the classifier produced by a regular DUOL at the t− 1-th step,
when the support vector size of ft−1 is equal to the B, BDUOL performs the
classifier update towards budget maintenance: ft−1 ← ft−1 − ∆ft−1 such that
the support vector size of the updated ft−1 is smaller than B. The details of
the proposed Budget DUOL (BDUOL) algorithmic framework are summarized
in Algorithm 1.
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Algorithm 1 The Budget Double Updating Online Learning Algorithm (BDUOL)

Procedure

1: Initialize S0 = ∅, f0 = 0;
2: for t=1,2,. . . ,T do

3: Receive a new instance xt;
4: Predict ŷt = sign(ft−1(xt));
5: Receive its label yt;
6: ℓt = max{0, 1− ytft−1(xt)};
7: if ℓt > 0 then

8: if (|St| == B) then
9: ft−1 = ft−1 −∆ft−1; (Budget Maintenance)
10: end if

11: ℓt = max{0, 1− ytft−1(xt)};
12: if ℓt > 0 then

13: wmin =∞;
14: for ∀i ∈ St−1 do

15: if (f i
t−1 ≤ 1) then

16: if (yiytκ(xi,xt) ≤ wmin) then
17: wmin = yiytκ(xi,xt);
18: (xb, yb) = (xi, yi);
19: end if

20: end if

21: end for

22: f t
t−1 = ytft−1(xt);

23: St = St−1 ∪ {t};
24: if (wmin ≤ −ρ) then
25: Compute γt and dγb using equation (1);
26: for ∀i ∈ St do

27: f i
t ← f i

t−1 + yiγtytκ(xi,xt) + yidγbybκ(xi,xb);
28: end for

29: ft = ft−1 + γtytκ(xt, ·) + dγbybκ(xb, ·);
30: else /* no auxiliary example found */
31: γt = min(C, ℓt/κ(xt,xt));
32: for ∀i ∈ St do

33: f i
t ← f i

t−1 + yiγtytκ(xi,xt);
34: end for

35: ft = ft−1 + γtytκ(xt, ·);
36: end if

37: else

38: ft = ft−1; St = St−1;
39: for ∀i ∈ St do

40: f i
t ← f i

t−1;
41: end for

42: end if

43: end if

44: end for

return fT , ST

End

Fig. 1. The Algorithms of Budget Double Updating Online Learning (BDUOL).
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The key challenge of BDUOL is to choose an appropriate reduction term
∆ft−1 by a proper budget maintenance strategy, which can only meet the budget
requirement but also minimize the impact of the reduction on the prediction
performance. Unlike some existing heuristic budget maintenance approaches, in
this paper, we propose a principled approach for developing several different
budget maintenance strategies. Before presenting the detailed strategies, in the
following, we analyze the theoretical underpinning of the proposed budget double
updating online learning scheme, which is the theoretical foundation for the
proposed budget maintenance strategies in Section 3.

2.4 Theoretical Analysis

In this section, we analyze the mistake bound of the proposed BDUOL algorithm.
To simplify the analysis, the primal-dual framework is used to derive the mis-
take bound following the strategy of DUOL algorithm. Through this framework,
we will show that the gap between the mistake bound of DUOL and BDUOL
is bounded by the cumulative dual ascent induced by the function reduction,
i.e., ∆f =

∑
∆γiyiκ(xi, ·). To facilitate the analysis, we firstly introduce the

following lemma, which provides the dual objective function of the SVM.

Lemma 1. The dual objective of Pt(f) =
1
2‖f‖Hκ

+C
∑t

i=1 ℓ(f(xi), yi), C > 0
is

Dt(γ1, . . . , γt) =

t∑

i=1

γi −
1

2
‖

t∑

i=1

γiyiκ(xi, ·)‖
2
Hκ

, γi ∈ [0, C], (3)

where the relation between f and γi, i = 1, . . . , t is f(·) =
∑t

i=1 γiyiκ(xi, ·).

According to the above lemma, after the t-th budget maintenance, the resultant
dual ascent will be computed as follows:

Theorem 1 The Dual Ascent DAt = Dt(γ1−∆γ1, . . . , γt−∆γt)−Dt(γ1, . . . , γt)
for the t-th budget maintenance, i.e., ft = ft −∆ft, is given as follows:

DAt = −
t∑

i=1

∆γi +
t∑

i=1

∆γiyift(xi)−
1

2
‖∆ft‖

2
Hκ

. (4)

Proof.

Dt(γ1 −∆γ1, . . . , γt −∆γt)−Dt(γ1, . . . , γt)

=
t∑

i=1

(γi −∆γi)−
1

2
‖

t∑

i=1

(γi −∆γi)yiκ(xi, ·)‖
2
Hκ
− [

t∑

i=1

γi −
1

2
‖

t∑

i=1

γiyiκ(xi, ·)‖
2
Hκ

]

= −

t∑

i=1

∆γi +
1

2
[‖ft‖

2
Hκ
− ‖ft −∆ft‖

2
Hκ

]

= −

t∑

i=1

∆γi +
1

2
[‖ft‖

2
Hκ
− ‖ft‖

2
Hκ

+ 2〈ft, ∆ft〉 − ‖∆ft‖
2
Hκ

]
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= −
t∑

i=1

∆γi + 〈ft, ∆ft〉 −
1

2
‖∆ft‖

2
Hκ

= −

t∑

i=1

∆γi + 〈ft,

t∑

i=1

∆γiyiκ(xi, ·)〉 −
1

2
‖∆ft‖

2
Hκ

= −

t∑

i=1

∆γi +

t∑

i=1

∆γiyift(xi)−
1

2
‖∆ft‖

2
Hκ

.

Based on the above dual ascent for budget maintenance, we can now analyze
the mistake bound of the proposed BDUOL algorithm. To ease our discussion,
we first introduce the following lemma [4] about the mistake bound of DUOL.

Lemma 2. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples, where xt ∈
R

d, yt ∈ {−1,+1} and κ(xt,xt) ≤ 1 for all t, and assume C ≥ 1. Then for

any function f in Hκ, the number of prediction mistakes M made by DUOL on

this sequence of examples is bounded by:

2 min
f∈Hκ

{1

2
‖f‖2Hκ

+ C

T∑

i=1

ℓ(f(xi), yi)
}
−

ρ2

2
Mw

d (ρ)−
1 + ρ

1− ρ
M s

d(ρ),

where ρ ∈ [0, 1), Mw
d (ρ) > 0 and M s

d(ρ) > 0.

Combining the above lemma with Theorem 1, it is not difficult to derive the
following mistake bound for the proposed BDUOL algorithm.

Theorem 2 Let (x1, y1), . . . , (xT , yT ) be a sequence of examples, where xt ∈
R

d, yt ∈ {−1,+1} and κ(xt,xt) ≤ 1 for all t, and assume C ≥ 1. Then for any

function f in Hκ, the number of prediction mistakes M made by BDUOL on

this sequence of examples is bounded by:

2 min
f∈Hκ

{1

2
‖f‖2Hκ

+ C

T∑

i=1

ℓ(f(xi), yi)
}
− 2

T∑

i=1

DAi −
ρ2

2
Mw

d (ρ)−
1 + ρ

1− ρ
M s

d(ρ),

where ρ ∈ [0, 1).

Proof. According to the proof of Lemma 2 [4], we have

1

2
Ms +

1 + ρ2

2
Mw

d (ρ) +
1

1− ρ
M s

d(ρ) ≤ min
f∈Hκ

{1

2
‖f‖2Hκ

+ C
T∑

i=1

ℓ(f(xi), yi)
}
,

and M = Ms + Mw
d (ρ) + M s

d(ρ). Furthermore, by taking the dual ascents of
budget maintenance into consideration, we have

T∑

i=1

DAi +
Ms

2
+

1 + ρ2

2
Mw

d (ρ) +
M s

d(ρ)

1− ρ
≤ min

f∈Hκ

{1

2
‖f‖2Hκ

+ C
T∑

i=1

ℓ(f(xi), yi)
}
.

Rearranging the above inequality will concludes the theorem.
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According to the above theorem, we can see that, if there is no budget main-
tenance step, the mistake bound of BDUOL is reduced to the previous mistake
bound for the regular DUOL algorithm. This theorem indicates that in order
to minimize the mistake bound of BDUOL, one should try to maximize the
cumulative dual ascent, i.e.,

∑T
i=1 DAi, when designing an appropriate budget

maintenance strategy.

3 Budget Maintenance Strategies

In this section, we follow the above theoretical results to develop several different
budget maintenance strategies in a principled approach. In particular, as revealed
by Theorem 2, a key to improving the mistake bound of BDUOL is to maximize
the cumulative dual ascent

∑T
t=1 DAt caused by the budget maintenance. To

achieve this purpose, we propose to maximize the dual ascent caused by budget
maintenance at each online learning step, i.e.,

max
∆γ1,...,∆γt

DAt = −

t∑

i=1

∆γi +

t∑

i=1

∆γiyift(xi)−
1

2
‖∆ft‖

2
Hκ

. (5)

Below, we propose three different budget maintenance strategies, and analyze
the principled approach of achieving the best dual ascent as well as the time
complexity and memory cost for each strategy.

3.1 BDUOL Algorithm by Removal Strategy

The first strategy for budget maintenance is the removal strategy that discards
one of existing support vectors, which is similar to the strategies used by For-
getron [8] and RBP [9]. Unlike the previous heuristic removal strategy, the key
idea of our removal strategy is to discard the support vector which can maximize
the dual ascent by following our previous analysis.

Specifically, let us assume the j-th SV is selected for removal. We then have
the following function reduction term:

∆ft = γjyjκ(xj , ·). (6)

As a result, the optimal removal solution is to discard the SV which can maximize
the following dual ascent term:

DAt,j = −γj(1 − yjft(xj))−
1

2
(γj)

2κ(xj ,xj). (7)

We note that the above removal strategy is similar with the one in [5], when
the Gaussian kernel is adopted where κ(xj ,xj) = 1. However, our strategy is
strongly theoretically motivated.

Complexity Analysis. Since the BDUOL algorithm will cache the value
yjft(xj) for every SV, the computational complexity of DAt,j is O(1) in practice.
Thus, this BDUOL algorithm requires O(B) time complexity of computing all
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the DAt,j ’s. After removing the SV with the largest DAt,j , the complexity of
updating all the values of yjft(xj) is O(B). Furthermore, combining the above
discussion with the fact that the original DUOL’s time complexity is O(B), we
can conclude that the overall time complexity of this BDUOL algorithm is also
O(B). As for the memory cost, since only B SVs, their weight parameters and
the yjft(xj)s have to be cached, the space complexity is thus also O(B).

3.2 BDUOL Algorithm by Projection Strategy

Although the above removal strategy is optimized to find the best support vector
that maximizes the dual ascent (i.e., minimizes the loss of dual ascent caused
by budget maintenance), it is still unavoidable to result in the loss of the dual
ascent due to the removal of one existing support vector. To minimize such loss,
we propose a projection strategy for budget maintenance.

Specifically, in the projection strategy, the selected j-th SV for removal will
be projected to the space spanned by the rest SVs. The objective is to find the
function closest to γjyjκ(xj , ·) in the space spanned by the remaining SVs, or
formally:

min
βi∈[−γi,C−γi],i6=j

‖γjyjκ(xj , ·)−
∑

i6=j

βiyiκ(xi, ·)‖
2
Hκ

. (8)

which is essentially a Quadratic Programming (QP) problem. So, we can exploit
the existing efficient QP solvers to find the optimal solution.

However, solving the above QP problem directly may not be efficient enough
for online learning purpose. To further improve the efficiency, we also proposed
an approximate solution by firstly solving the unconstrained optimization prob-
lem and then projecting the solution into the feasible region of the constraints.
Specifically, setting the gradient of the above equation with respect to β = [βi]

⊤,
i 6= j as zero, one can obtain the optimal solution as

β = γjyjK
−1kj ./y, (9)

where K is the kernel matrix for xi, i 6= j, kj = [κ(xi,xj)]
⊤, i 6= j, ./ is element-

wise division and y = [yi]
⊤, i 6= j. In the above, inverting K can be efficiently

realized by using Woodbury formula [12]. As a result, we should set

∆ft(·) = γjyjκ(xj , ·)−
∑

i6=j

βiyiκ(xi, ·). (10)

However, the resultant ft −∆ft’s SV weights may not fall into the range [0, C].
To fix this problem, we will project each βi as follows:

β = Π[−γ,C−γ](γjyjK
−1kj ./y), (11)

where Π[a,b](x) = max(a,min(b, x)) and γ = [γi]
⊤, i 6= j.
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Now the key problem is to find the best SV among B + 1 candidates for
projection. Since after the projection of γjyjκ(xj , ·), the resultant dual ascent is

DAt,j = −
∑

i

∆γi +
∑

i

∆γiyift(xi)−
1

2
‖∆ft‖

2
Hκ

. (12)

So the best SV is the one which can achieve the largest value DAt,j .
Complexity Analysis. The time complexity for BDUOL is dominated by

the computation K−1. Computing K−1 using K will cost O(B3) time, however
using Woodbury formula, we can efficiently compute it using only O(B2) time.
In addition, we need to compute B times projections for every SV, so the total
time complexity for one step of updating is O(B3). Finally, the memory burden
for the BDUOL algorithm is O(B2), since the storage of kernel matrix K and
inverse kernel matrix K−1 dominated the main memory cost.

3.3 BDUOL Algorithm by Nearest Neighbor Strategy
The above projection strategy is able to achieve a better improvement of dual
ascent than the removal strategy, it is however much more computationally ex-
pensive. To balance the tradeoff between efficiency and effectiveness, we propose
an efficient nearest neighbor strategy which approximates the projection strategy
by projecting the removed SV to its nearest neighbor SV, based on the distance
in the mapped feature space. This strategy is motivated by the fact that the
nearest neighbor SV usually could be a good representative of the removed SV.
Using this strategy, we can significantly improve the time efficiency. In particular,
as we use only the nearest neighbor for projection, the corresponding solution
according to equation 11 can be expressed:

βNj
= Π[−γNj

,C−γNj
](γjyjκ(xNj

,xNj
)−1κ(xNj

,xj)/yNj
), (13)

where κ(xNj
, ·) is the nearest neighbor of κ(xj , ·). As a result, the corresponding

∆ft = γjyjκ(xj , ·)− βNj
yNj

κ(xNj
, ·). Since after the projection of γjyjκ(xj , ·),

the resultant dual ascent is

DAt,j = −
∑

i

∆γi +
∑

i

∆γiyift(xi)−
1

2
‖∆ft‖

2
Hκ

. (14)

Thus, the best SV is the one that has the largest value DAt,j .
Complexity Analysis. All the computation steps except looking for the

nearest neighbor have constant time complexity of O(1). For improving nearest
neighbor searching, we can cache the indexes and the distances about the nearest
neighbors of the SVs, making finding the nearest neighbor in O(1). After remove
the best SV, we should also update the caches. The time complexity for this
updating is at most O(B). In summary, the time complexity for the overall
strategy is O(B), and the overall memory cost is also O(B).

Remark: To improve the efficiencies of the projection and nearest neighbor
strategies, we could use the projection or the nearest neighbor strategy to keep
the information from the SV selected by the removal strategy and then remove
it, since the search cost of the removal strategy is quite lower than the other two
strategies.
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4 Experimental Results

In this section, we evaluate the empirical performance of the proposed algorithms
for Budget Double Updating Online Learning (BDUOL) by comparing them with
the state-of-the-art algorithms for budget online learning.

4.1 Algorithms for Comparison

In our experiments, we implement the proposed BDUOL algorithms as follows:

– “BDUOLremo”: the BDUOL algorithm by the removal strategy for budget
maintenance described in section 3.1,

– “BDUOLproj”: the BDUOL algorithm by the exact projection strategy by
a standard QP solver for budget maintenance described in section 3.2,

– “BDUOLappr”: the BDUOL algorithm by the approximate projection strat-
egy for budget maintenance described in section 3.2,

– “BDUOLnear”: the BDUOL algorithm by the nearest neighbor strategy for
budget maintenance described in section 3.3,

For comparison, we include the following state-of-the-art algorithms for budget
online learning:

– “RBP”: the Random Budget Perceptron algorithm [9],
– “Forgetron”: the Forgetron algorithm [8],
– “Projectron”: the Projectron algorithm [10], and
– “Projectron++”: the aggressive version of Projectron algorithm [10].

Besides, we also include two non-budget online learning algorithms as yardstick:

– “Perceptron”: the classical Perceptron algorithm [6], and
– “DUOL”: the Double Updating Online Learning algorithm [4].

4.2 Experimental Testbed and Setup

Table 1. Details of the datasets in our experiments.

Dataset # instances # features

german 1000 24
MITface 6977 361
mushrooms 8124 112
spambase 4601 57
splice 3175 60
w7a 24692 300

We test all the algorithms on six benchmark data sets from web machine
learning repositories listed in Table 1. These data sets can be downloaded from
LIBSVM website1, UCI machine learning repository2, and MIT CBCL face

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
2 http://www.ics.uci.edu/~mlearn/MLRepository.html.
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data sets3. These datasets were chosen fairly randomly to cover various sizes
of datasets.

To make a fair comparison, all the algorithms in our comparison adopt the
same experimental setup. A gaussian kernel is adopted in our study, for which
the kernel width is set to 8 for all the algorithms and datasets. To make the
number of support vectors fixed for Projectron and Projectron++ algorithms, we
simply store the received SVs before the budget overflows, and then project the
subsequent ones into the space spanned by the stored SVs afterward. The penalty
parameter C in the DUOL algorithm was selected by 5-fold cross validation for
all the datasets from range 2[−10:10]. Due to the cross-validation, we randomly
divide every dataset into two equal subsets: cross validation (CV) dataset and
online learning dataset. And C is set as the same value with DUOL. Furthermore,
the value ρ for the DUOL and its budget variants is set as 0, according to the
previous study on the effect of ρ.

The budget sizes B for different datasets are set as proper fractions of the
support vector size of Perceptron, which are shown in Table 3. All the exper-
iments were conducted 20 times, each with a different random permutation of
data points. All the results were reported by averaging over the 20 runs. For
performance metrics, we evaluate the online classification performance by eval-
uating online cumulative mistake rates and running time cost.

4.3 Performance Evaluation of Non-budget Algorithms

Table 2 summarizes the average performance of the two non-budget algorithms
for kernel-based online learning. First of all, similar to the previous study [4],
we found that DUOL outperforms Perceptron significantly for all the datasets
according to t-test results, which validates our motivation of choosing DUOL
as the basic online learning algorithm for budget online learning. Second, we
noticed that the support vector size of DUOL is in general much larger than
that of Perceptron. Finally, the time cost of DUOL is much higher than that of
Perceptron, mostly due to the larger number of support vectors. Both the large
number of support vectors and high computational time motivate the need of
studying budget DUOL algorithms in this work.

Algorithm Perceptron DUOL

Datasets Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

german 35.760 %± 1.149 178.800 ± 5.745 0.007 29.820 %± 1.243 381.750 ± 5.866 0.044

MITface 6.246 %± 0.252 217.85 ± 8.774 0.04 2.418 %± 0.156 408.5 ± 9.339 0.114

mushrooms 3.175 %± 0.463 128.950 ± 18.805 0.040 0.591 %± 0.086 247.050 ± 14.084 0.099

spambase 27.354 %± 0.561 629.150 ± 12.906 0.050 22.680 %± 0.557 1385.800 ± 17.519 0.317

splice 21.808 %± 0.709 346.100 ± 11.257 0.026 15.633 %± 0.461 777.450 ± 11.551 0.130

w7a 4.366 %± 0.093 539.000 ± 11.530 0.272 3.068 %± 0.114 1171.600 ± 30.396 0.728

Table 2. Evaluation of non-budget algorithms on the the data sets.

3 http://cbcl.mit.edu/software-datasets.
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4.4 Performance Evaluation of Budget Algorithms

Table 3 summarizes the results of different budget online learning algorithms.
We can draw several observations.

First of all, we observe that RBP and Forgetron achieve very similar per-
formance for most cases. In addition, we also find that Projectron++ achieves
a lower mistake rate than Projectron for almost all the datasets and for varied
budget sizes, which is similar to the previous results reported in [10]. More-
over, compared with the baseline algorithms RBP and Forgetron, the proposed
BDUOLremo algorithm using a simple removal strategy achieves comparable or
better mistake rate when the budget size is large, but fails to improve when the
budget size is very small, which indicates a simple removal strategy may not be
always effective and a better budget maintenance strategy is needed.

Second, among all the algorithms in comparison for budget online learn-
ing, we find that BDUOLproj always achieves the lowest mistake rates for most
cases. These promising results indicate the projection strategy can effectively
reduce the information loss. However, we also notice that the time cost of the
BDUOLproj is among the highest ones, which indicates it is important to find
some more efficient strategy.

Third, by comparing two approximate strategies, we find that BDUOLappr

achieves better mistake rates than BDUOLnear only on the german and mush-
rooms datasets, while it consumes too much time than the proposed BDUOLnear

algorithms, which indicates BDUOLnear achieves better trade off between mis-
take rates and time complexity than BDUOLappr. In addition, when the number
of budget is large, BDUOLnear always achieves similar performance with the
BDUOLproj , while consumes significantly less time, which indicates the pro-
posed nearest neighbor strategy is a good alternative of the projection strategy.

Finally, Figure 2 and Figure 3 show the detailed online evaluation processes
of the several budget online learning algorithms. Similar observations from these
figures further verified the efficacy of the proposed BDUOL technique.

5 Conclusions

This paper presented a new framework of budget double updating online learn-
ing for kernel-based online learning on a fixed budget, which requires the number
of support vectors associated with the prediction function is always bounded by
a predefined budget. We theoretically analyzed its performance, which reveals
that its effectiveness is tightly connected with the dual ascent achieved by the
model reduction for budget maintenance. Based on the theoretical analysis, we
proposed three budget maintenance strategies: removal, projection, and near-
est neighbor. We evaluate the proposed algorithms extensively on benchmark
datasets. The promising empirical results show that the proposed algorithms
outperform the state-of-the-art budget online learning algorithms in terms of
mistake rates. Future work will exploit different budget maintenance strategies
and extend the proposed work to multi-class budgeted online learning.
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Budget Size B=50 B=100 B=150
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

german RBP 39.140 %± 1.338 0.010 36.940 %± 1.837 0.009 36.080 %± 1.392 0.008

Fogetron 38.840 %± 1.551 0.014 37.250 %± 1.399 0.013 36.570 %± 1.641 0.013

Projectron 36.990 %± 1.652 0.020 36.310 %± 1.441 0.027 35.870 %± 1.149 0.063

Projectron++ 35.370 %± 1.413 0.036 35.620 %± 1.251 0.046 35.680 %± 1.380 0.103

BDUOLremo 39.970 %± 3.150 0.068 37.180 %± 2.297 0.077 33.330 %± 2.264 0.088

BDUOLnear 37.090 %± 1.763 0.098 33.330 %± 1.697 0.112 31.360 %± 1.511 0.129

BDUOLappr 35.540 %± 2.010 0.160 32.340 %± 1.570 0.381 30.450 %± 1.338 0.941

BDUOLproj 34.030 %± 1.104 0.214 30.710 %± 1.261 0.624 30.330 %± 1.221 1.341

Budget Size B=50 B=100 B=150
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

MITface RBP 18.964 %± 1.330 0.063 9.557 %± 0.615 0.053 7.463 %± 0.609 0.050

Fogetron 18.038 %± 1.470 0.081 10.707 %± 0.883 0.077 8.373 %± 0.546 0.076

Projectron 7.137 %± 0.384 0.086 6.461 %± 0.288 0.098 6.316 %± 0.304 0.142

Projectron++ 6.135 %± 0.312 0.149 5.973 %± 0.215 0.197 5.978 %± 0.219 0.373

BDUOLremo 17.516 %± 2.264 0.225 8.096 %± 0.811 0.208 4.700 %± 0.449 0.194

BDUOLnear 4.435 %± 0.396 0.179 3.078 %± 0.304 0.187 2.701 %± 0.277 0.205

BDUOLappr 3.632 %± 0.277 0.249 2.618 %± 0.221 0.429 2.501 %± 0.258 0.836

BDUOLproj 3.611 %± 0.319 0.273 2.645 %± 0.228 0.492 2.481 %± 0.168 0.755

Budget Size B=50 B=75 B=100
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

mushrooms RBP 6.551 %± 1.056 0.054 17.841 %± 1.539 0.073 3.488 %± 0.713 0.049

Fogetron 11.273 %± 1.750 0.085 14.154 %± 2.748 0.094 3.895 %± 1.141 0.079

Projectron 4.264 %± 0.613 0.095 3.703 %± 0.731 0.099 3.207 %± 0.473 0.107

Projectron++ 3.986 %± 0.297 0.161 3.557 %± 0.174 0.178 3.484 %± 0.117 0.197

BDUOLremo 8.754 %± 2.438 0.210 2.547 %± 0.865 0.181 0.891 %± 0.152 0.162

BDUOLnear 1.329 %± 0.198 0.141 0.710 %± 0.095 0.132 0.618 %± 0.081 0.131

BDUOLappr 1.065 %± 0.218 0.193 0.667 %± 0.092 0.194 0.623 %± 0.080 0.248

BDUOLproj 0.729 %± 0.060 0.230 0.604 %± 0.080 0.266 0.577 %± 0.071 0.290

Budget Size B=200 B=400 B=600
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

spambase RBP 31.826 %± 0.924 0.065 29.220 %± 0.550 0.069 27.417 %± 0.598 0.059

Fogetron 32.461 %± 0.971 0.077 29.641 %± 0.742 0.084 27.424 %± 0.644 0.082

Projectron 29.237 %± 0.750 0.238 27.480 %± 0.484 0.929 27.750 %± 2.134 2.776

Projectron++ 28.822 %± 0.725 0.819 28.693 %± 6.781 3.874 27.559 %± 1.572 7.277

BDUOLremo 34.559 %± 1.308 0.522 28.989 %± 0.927 2.013 25.661 %± 0.709 4.541

BDUOLnear 28.180 %± 1.084 0.756 25.607 %± 0.748 3.874 24.187 %± 0.584 8.570

BDUOLappr 28.950 %± 2.001 5.555 26.843 %± 0.948 16.396 24.846 %± 0.695 30.186

BDUOLproj 27.448 %± 0.961 8.837 25.307 %± 0.793 53.987 23.780 %± 0.640 197.199

Budget Size B=100 B=200 B=300
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

splice RBP 30.003 %± 1.318 0.035 25.126 %± 0.900 0.033 22.530 %± 0.967 0.028

Fogetron 29.912 %± 1.483 0.044 25.545 %± 0.582 0.043 22.457 %± 0.734 0.041

Projectron 22.851 %± 0.756 0.061 22.007 %± 1.023 0.146 21.830 %± 0.811 0.356

Projectron++ 22.628 %± 0.649 0.163 21.843 %± 1.002 0.445 21.919 %± 1.188 0.922

BDUOLremo 26.150 %± 1.279 0.238 22.117 %± 1.321 0.409 18.299 %± 0.797 0.641

BDUOLnear 23.125 %± 1.161 0.435 18.847 %± 0.866 0.458 16.991 %± 0.600 1.201

BDUOLappr 19.779 %± 0.754 1.110 18.062 %± 2.000 2.596 17.927 %± 2.065 3.905

BDUOLproj 20.243 %± 0.667 1.041 17.190 %± 0.734 2.685 16.191 %± 0.517 5.475

Budget Size B=300 B=400 B=500
Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

w7a RBP 4.681 %± 0.257 0.291 4.597 %± 0.227 0.316 4.434 %± 0.108 0.332

Fogetron 4.697 %± 0.102 0.367 4.584 %± 0.180 0.390 4.466 %± 0.137 0.398

Projectron 4.680 %± 0.290 0.727 4.625 %± 0.456 1.174 4.406 %± 0.130 1.929

Projectron++ 3.880 %± 0.526 4.366 3.672 %± 0.214 7.763 3.666 %± 0.152 8.796

BDUOLremo 3.832 %± 0.170 0.995 3.361 %± 0.145 1.824 3.175 %± 0.133 2.401

BDUOLnear 3.572 %± 0.114 1.241 3.269 %± 0.133 3.324 3.183 %± 0.087 4.859

BDUOLappr 4.126 %± 0.502 4.553 4.001 %± 0.153 6.794 3.775 %± 0.121 9.646

BDUOLproj 3.367 %± 0.096 11.306 3.227 %± 0.126 18.965 3.254 %± 0.332 29.807

Table 3. Evaluation of several budgeted algorithms with varied budget sizes.
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Fig. 2. Evaluation of online mistake rates against the number of samples on three
datasets. The plotted curves are averaged over 20 random permutations.
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