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Nanyang Technological University
Singapore, 639798
{wupe0003,chhoi,zhao0106,yhe}@ntu.edu.sg

ABSTRACT

With the popularity of various social media applications,
massive social images associated with high quality tags have
been made available in many social media web sites nowa-
days. Mining social images on the web has become an emerg-
ing important research topic in web search and data min-
ing. In this paper, we propose a machine learning frame-
work for mining social images and investigate its applica-
tion to automated image tagging. To effectively discover
knowledge from social images that are often associated with
multimodal contents (including visual images and textual
tags), we propose a novel Unified Distance Metric Learning
(UDML) scheme, which not only exploits both visual and
textual contents of social images, but also effectively uni-
fies both inductive and transductive metric learning tech-
niques in a systematic learning framework. We further de-
velop an efficient stochastic gradient descent algorithm for
solving the UDML optimization task and prove the conver-
gence of the algorithm. By applying the proposed technique
to the automated image tagging task in our experiments,
we demonstrate that our technique is empirically effective
and promising for mining social images towards some real
applications.

Categories and Subject Descriptors

H.4 [Information Systems Applications|: Miscellaneous

General Terms

Algorithms, Experimentation

Keywords

Social images, distance metric learning, inductive learning,
transductive learning, automated image tagging

1. INTRODUCTION

Along with the popularity of digital cameras and high
quality mobile devices as well as the advances of internet
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technologies, users can easily upload their images and pho-
tos over the World Wide Web (WWW). Moreover, with the
great success of social networks and social web sites recently,
web users have been highly motivated to share their images
with friends and public that allows other users to tag and
comment on their image collections. Nowadays, web im-
ages, especially social images, which are often of high quality
and rich user-generated contents including good quality user
tags, are playing a more and more important role in WWW.
Mining web and social images thus has become an emerging
popular research topic in web search and data mining area.

In this paper, we investigate a machine learning scheme for
mining social images, and its application to resolve a chal-
lenging task, automated image tagging, which is important
and beneficial to many web and multimedia applications.
The goal of an automated image tagging task is to assign
a set of semantic labels or tags to a novel image with some
pre-trained image recognition models. The traditional ap-
proach typically has two steps: (1) representing images by
extracting visual features [16], and (2) pre-training recog-
nition models by building classification models from a col-
lection of manually-labeled training data [2]. In literature,
numerous studies have been devoted to automated image
annotation and object recognition tasks [15, 20].

Despite being studied extensively, regular image anno-
tation approaches, which usually work well on small-sized
testbeds with high quality labels, often fail to handle large-
scale real photo tagging applications. One major challenge
faced by large-scale photo annotation is primarily due to
the well-known semantic gap between low-level features and
high-level semantic concepts. Besides, it is also expensive
and time-consuming to collect a large set of manually-labeled
training data by conventional methods. Hence, it has be-
come an urgent need to develop new paradigms for auto-
mated image tagging.

In this paper, we investigate an emerging retrieval-based
annotation paradigm [24, 26] for automated photo tagging
by mining massive social images freely available on the web.
Unlike traditional web images, social images often contain
tags and rich user-generated contents, which offer a new op-
portunity to resolve some long-standing challenges in mul-
timedia, for instance the semantic gap. The idea of the
retrieval-based paradigm [24] is to first retrieve a set of k
most similar images for a test photo from the social image
repository, and then to assign the test photo with a set of
t most relevant tags associated with the set of k retrieved
social images. Figure 1 shows an example of tagging a novel
image by the proposed technique in this paper.
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Figure 1: Example of automatically tagging a novel
image by the proposed technique in this paper.

The crux of the retrieval-based photo tagging paradigm
is to effectively identify and retrieve a set of top k similar
photos from social image database, which mainly relies on
two key components: (1) a feature representation scheme to
extract salient visual features, and (2) a distance measure
scheme to compute distances for extracted features. This
paper focuses on techniques to tackle the second challenge.
In particular, by considering features that are represented in
vector space, our goal is to study an effective distance mea-
sure scheme for improving the retrieval performance. To this
end, we propose to apply Distance Metric Learning (DML)
techniques to resolve this challenge.

DML has been actively studied in machine learning and
data mining community, which usually assumes the learn-
ing task is provided with explicit side information given in
the form of either class labels [10] or pairwise constraints [1]
where each pairwise constraint indicates whether two exam-
ples are similar (“must-link”) or dissimilar (“cannot-link”).
Although DML has been extensively studied [10, 1, 13, 4], it
is not straightforward to directly apply regular DML tech-
niques as side information is not explicitly available in our
learning task. Moreover, regular DML techniques may not
be very effective for solving our task, primarily because so-
cial image data are often associated with rich contents (in-
cluding textual and visual contents) that differ from typical
single-view data used in regular DML methods.

To this end, this paper presents a novel unified distance
metric learning (UDML) framework, which aims to learn
effective metrics from implicit side information of social im-
ages towards the application of automated photo tagging.
Unlike the regular DML techniques, the proposed UDML
technique aims to optimize metrics by integrating both tex-
tual and visual contents smoothly in a unified framework.
Besides, this framework also unifies both inductive and trans-
ductive metric learning approaches together in a systematic
approach.

As a summary, the key contributions of this paper include:
(1) a novel unified distance metric learning framework to
learn distance metrics from implicit side information of so-
cial images; (2) an effective algorithm to solve the unified
distance metric learning task; (3) a new solution by apply-
ing the UDML technique to a real application of automated
photo tagging; (4) extensive experiments to compare our
method with a number of state-of-the-art DML algorithms,
in which encouraging results were obtained.

The rest of this paper is organized as follows. Section
2 introduces the retrieval-based annotation framework of
mining social images for automated photo tagging. Sec-
tion 3 presents the proposed unified distance metric learn-
ing framework and an effective algorithm to learn distance

metrics from social images of multi-modal contents. Sec-
tion 4 gives experimental results and discussions. Section 5
briefly reviews some related work, and Section 6 concludes
this work.

2. MINING SOCIAL IMAGES FOR AUTO-
MATED IMAGE TAGGING

We first introduce a generic retrieval-based annotation
framework for mining web/social images for automated im-
age tagging [24], followed by the discussion of some open
challenges in this framework.

2.1 Overview of Retrieval based Annotation

The basic assumption of a retrieval based annotation ap-

proach towards automated photo tagging is that similar/identical

images would share the common/similar tags. Based on
this assumption, one can attack automated photo tagging,
a long-standing challenging in multimedia and computer
vision, by mining a large collection of web/social images.
Specifically, Figure 2 shows a diagram to illustrate the pro-
cess of a retrieval based annotation scheme for mining social
images to tackle the automated photo tagging task.

opk
Similar

Novel Similarity
Image Metric Search

Distance Metric query
Learning

Figure 2: Block diagram for illustrating the process
of a retrieval-based annotation approach by mining
social images with distance metric learning

As shown in the figure, when a novel image is given, we
first conduct a similarity search step to find a subset of top k
images most similar to the novel image from a social image
database. Once obtaining a subset of top k similar images
from the similarity search process, the next step is to sum-
marize the tags associated with these similar images, and
recommend the top relevant tags by some approach (e.g.
ranking the associated tags by majority voting).

2.2 Open Research Challenges

Despite the simplicity for the above retrieval-based anno-
tation framework, there are some open research challenges
that have yet to be solved effectively. One important step
of the whole framework is how to perform the similarity
search process effectively, which is a key process that signifi-
cantly affects the performance of the subsequent annotation
process. In general, the similarity search process requires a
distance metric for distance measure in the retrieval process.
Hence, distance metric learning to find an optimal metric is
an open challenge in this framework. Besides, there are also
some other open issues, such as the efficiency and scalabil-
ity of the retrieval process that often requires an effective
indexing scheme, and an effective tag ranking scheme that
ranks the tags associated with the top k similar images. In



this paper, we focus on addressing the first challenge of dis-
tance metric learning for improving the retrieval process in
this framework.

3. UNIFIED DISTANCE METRIC LEARN-
ING FOR MINING SOCIAL IMAGES

3.1 Overview

In this section, we present a novel machine learning ap-
proach to learn distance metrics from social images to resolve
the automated photo tagging task. Our goal is to attack the
challenge of the similarity search process by optimizing the
distance metrics from social images.

In particular, given a novel image x, € R? that is repre-
sented in a d-dimensional space, for any image x € R? in
the database, we consider a family of Mahalanobis distances
dar(xq,x) to calculate distance between x4 and x as follows:

dar (%q,%) = |[xg = x||3r = (xq = %) "M(xg —%) (1)

where M € R**? is any pre-defined positive semi-definite
matrix that parameterizes the Mahalanobis distance. For
example, if we choose M as an identity matrix, the above
formula reduces to (square) Euclidean distance.

Therefore, the goal of distance metric learning is to learn
an optimal matrix M from training data such as it can ef-
fectively tackle the similarity search process of the retrieval-
based photo annotation paradigm. However, unlike conven-
tional DML tasks where side information is often explicitly
given a prior (in the forms of either pairwise constraints or
class labels), in our problem, side information is only implic-
itly available in the social image collection.

To facilitate the distance metric learning task, in the fol-
lowing, we first present a simple approach to generate ex-
plicit side information from a collection of social images.
With the side information, we further present a unified dis-
tance metric learning approach that can combine both tex-
tual and visual contents smoothly in a systematic learning
framework.

3.2 Generation of Side Information

As no explicit side information is given for our DML task,
the first step before DML is to derive side information from
a collection of N social images S = {s;|i = 1,...,N}. In
general, a social image contains rich user-generated contents,
including visual images, textual tags, comments, rating, etc.
To simplify the discussion, in our approach, we assume each
social image s; consists of two components: visual image and
textual tags, i.e., s; = (x;,t;), where x; denotes the visual
features extracted from the social image, and t; denotes the
tag vector of the social image.

The basic idea of our side information generation approach
is to extract side information in terms of “triplet” format, i.e.,
(x,x4,x_), which indicates that image x and image x are
similar/relevant to each other, while image x and image x_
are dissimilar /irrelevant. To this purpose, we randomly pick
a social image from the collection of social images as a query
image q; = (xg,, tq,), and then generate a subset of triplets
P; with respect to q; as follows:

Pi = {(Xqi,ij-,Xk_—)ka-}— € Rk(t%)vvxkf € 7§'k(tqri)} (2)

where Ry (tq,) denotes the set of top k social images that
are most relevant with respect to a text-based query tg,,

and similarly Ry (tq;) denotes the set of top k least relevant
social images. Finally, we repeat the generation process Ng
times, and form a set of side information {P;,s =1..., Ng},
which will be used as input training data for our distance
metric learning task.

3.3 Formulation

We now present the formulation of the proposed distance
metric learning method. The basic idea of the proposed
unified DML method is to combine the ideas of both induc-
tive and transductive learning principles for DML in order
to fuse both textual and visual contents of social images
smoothly in a systematic optimization framework. Below
we first present two kinds of different objective functions
for our DML tasks, respectively, and then show the final
formulation of the unified distance metric learning method.

3.3.1 Inductive metric learning by maximizing margin

First of all, following the similar idea of large margin learn-
ing principle [25], we consider the following inductive learn-
ing formulation for optimizing distance metric from side in-
formation:

min Ji(M) & —3" >

UM (xq;5 %4, %,-)) (3)
P =1 v(x‘li’xkﬂ"xk,_)epi' '

i

where N, denotes the total number of triplets, and £ is a
typical hinge loss function defined as:

Z(M; (Xlli ’ xk;r ) in* ))
= max{0,1 — [da(xq,, %, - ) — dar(Xq;, %, +)]}(4)

The above loss function indicates that we should optimize
the metric by penalizing (1) large distance between two sim-
ilar images, and (2) small distance between two dissimilar
images. This clearly reflects the intuition of large margin
learning principle.

3.3.2 Transductive fusion of text and visual contents

Second, we also consider a transductive approach to in-
tegrate with both textual tags and visual contents of social
images for learning distance metric as follows:

}g{uﬁr{l} Jo(M) = szjHXi —x; (5)
3
where w;; is the cosine similarity between the two textual
tag vectors of the two social images, i.e., w;; = cos(ts,t;).
The above formulation indicates that if two social images
share similar textual tags, we expect to force their visual
distance to be small.

We can further simplify the above formulation. In partic-
ular, we note that each valid metric M can be decomposed
into a linear mapping A : R* — R” where A = [ai,...,a,] €
RI*"™ such that M = AA'T. With this representation, we
can rewrite the distance measure as:

g = xI[3r = (xq — %) T AAT (xq — %)

IAT (xg = %) (6)

dnm (Xq, %)

As a result, we can rewrite the formulation of the above



objective function as:

T
Jo(M) D wijllxi —x5)13 = _ag X(D— W)X ay
4] k=1

D ai XLX "ap =tr(A'XLX " A)
k=1
= tr(XLXTAAT) =tr(XLX M) (7)

where D is a diagonal matrix whose diagonal elements are
the sums of the row entries of matrix W, and L = D — W
is known as the Laplacian matrix.

3.3.3 Unified distance metric learning

Finally, by unifying both the inductive formulation and
the transductive formulation together, we can achieve the
following formulation of unified distance metric learning;:

min J(M) £ %tr(MTM) + CI (M) + A2 (M) (8)
where C and A are parameters to trade off between inductive
and transductive objective functions, and the first regular-
ization term is introduced to penalize the norm of the metric
to prevent some values of the metric dominating all the other
elements.

Since each part of the objective function is convex, the
above formulation of the unified distance metric learning
(UDML) problem is a convex optimization task. More ex-
actly, it belongs to semi-definite programming (SDP), which
in general can be resolved by some existing convex optimiza-
tion techniques. Since it is often highly intensive to solve an
SDP task by a generic SDP solver, it is not efficient and
scalable to directly apply existing SDP solvers for our appli-
cation. To develop an efficient and scalable solution, below
we present an efficient algorithm to resolve the optimization
of the unified distance metric learning.

3.4 Algorithm

The key challenge of the UDML optimization is to opti-
mize the metric with respect to the inductive maximal mar-
gin learning term, which is related to a large set of triplets
that can be potentially huge since a large amount of side
information is available in practice. To overcome this chal-
lenge, we propose a stochastic gradient descent algorithm
that resolves the optimization iteratively by randomly sam-
pling a subset of active triplets at every optimization itera-
tion.

Formally, for a particular iteration, we randomly choose a
subset of triplets from the whole set of triplets:

A = {(xqzvxkz'vxki—)' (&S [Q]} (9)
which satisfies |A:] = No < Np. Further, from A;, we
can derive an active set of triplets whose values of the loss
function are nonzero, i.e.,

Af = {(xqi,xkj7xk;) € A L(M; (xqi,xkj,xk:)) > 0}.(10)
Based on the set of triplets A;, we can rewrite the objective
function as follows:

J(M; Ay) = %tr(MTM)—F)\tr(XLXTM)

C
+N7 Z E(Mv (X(Ii7xk:'7xki_)) (11)

(xq; %, +,%x _)EAL
K k7 ki

Algorithm 1: The Stochastic Gradient Descent Algorithm for
Unified Distance Metric Learning. (UDML)

INPUT: parameter C, A and the number of iterations T’
PROCEDURE

1:  Choose M s.t. |[Mi| < v2C

2: fort=1,2,...,7 do
3: Randomly choose a set A¢, s.t. |A¢| = Ng
5: Set Af = {(x,+,%,-) € A| €(My; (xg;, %, +,%,—)) > 0}
6 Set a learning rate n; = *
7 Set Mt+]_/2:Mt—’r]t[aJ(Mt;At)/aM]
. o NoTe]
8: Set Mt+1 = mm{l, m}Mt+1/2
9: end for )
10: Project M%%Y = PSD(Mr1)
Ourpur: ME7Y
END

Figure 3: The Stochastic Gradient Descent Algo-
rithm for Unified Distance Metric Learning.

To minimize the objective function, we adopt the gradient
descent approach, which needs to compute the sub-gradient
of the above objective function as follows:

OJ(M; As)

oM
=M+ AXLX"
D D L L e
(xq; Xy X, — )EA?'
We repeat the above stochastic gradient descent approach
until the algorithm converges. Figure 3 summarizes the de-
tails of the proposed stochastic gradient descent algorithm
for UDML. In the algorithm, at the end of each gradient
descent step, we perform a scaling process by forcing the
solution M;41 < V2C below:

Vac

M,.1 = min {1, Ve
|Mit1/2llF

}Mt+1 /2 (12)
The detailed reason for the above scaling step will be dis-
cussed in the subsequent analysis section (referred to Lemma
1 and 2). Besides, to further improve efficiency, we do not
force the PSD constraint at every gradient descent step. At
the end of the entire algorithm, to ensure that the final solu-
tion M is a valid metric, we perform a projection of the final
matrix Mr41 onto the PSD domain: Mé’«idl = PSD(Mr741).

3.5 Convergence Analysis

Below we theoretically analyze the convergence of the pro-
posed algorithm. Our proofs and analysis mainly follow the
principles and theory of online convex optimization [11, 18].

Firstly, we present a lemma, which provides an upper
bound for the norm of the optimal solution M, and explains
why performing the scaling step in the algorithm.

LEMMA 1. The optimal solution of optimization problem (8)
is in the convex close set By = {M|||M||r < V2C}, where
|| - ||F denotes the Frobenius norm.

PROOF. Let us denote by M™ the optimal solution. Using
the fact that J(M*; X) < J(0; X), we thus have

SN[ = Sor((M*)T M) < J(MT3X) < J(0;X) = ©



The second inequality is guaranteed by tr(XLX' M) =
Zi,j winxi_xjH%\/I > 0 and Z(M7 (xkj'kai—)) >0. 0O

Before presenting the theorem, we first introduce an im-
portant lemma that generalizes a result from [11].

LEMMA 2. Let g1,...,97 be a sequence of o-strongly con-
vex functions w.r.t the function || - ||%. Let B be a closed
convex set and define lig(M) = argminyep |[M — M'||F.
Let My, ..., Mri+1 be a sequence of matrices such that My €
B and for t > 1, Myt1 = Up(My — n:Ve), where Vi is a
subgradient of g+ at My and n: = 1/(ot). Assume that for
all t, |Ve|| < G. Then for all M € B we have

T T
1 1 G*(14In(T
23 a0 < > gy + FEEIRTD g
t=1 t=1
Based on Lemma 2, we are now ready to bound the aver-
age of the stochastic objective function J(M;;.A:).

THEOREM 1. Assume that ||xgq,]] < R1 Vi € [Q], ||zj]l2 <

Ry Vj € [N], and W is normalized such that 3, ; Wi; = 1.
Let M™ be the optimal solution. Then, for T > 3 we have

T T 2
1 1 . R2In(T
TE J(My; Ar) < TE J(M ;At)+7;( ) (14)
t=1 t=1

where R = v/2C + (4\ + 8C)R}.

Proor. To simplify our notation we use the shorthand
Ji(M) = J(M;A;). The update of the algorithm can be
rewritten as M1 = I, (My —n:V:), where By is defined
in Lemma 1 and V; = 0J(M,; A;)/OM. Thus, we only need
to prove the conditions in Lemma 2 are satisfied.

Since g; is the sum of a 1-strongly convex function (3 || M%)
and a convex function, it is also 1-strongly convex.

Next we would bound the norm of the sub-gradient:

IVellr < |Millp + MNIXLX T || p
c
N, > .
(s %) 4%, —)EA,
c
N, >

(xq; XK+, — )EA:r
K K

.

H(xk; _qu')(xki* —xq;) |F
T

16+ = %a,) (%, + = xq;) lIF

Firstly, ||M:||r < v2C according to the design of the al-
gorithm. And then, we would provide an upper bound on
|IXLXT|r. Before proving the bound, we note that
o' XLX o = Zwu(a—rxi —a'x;)? > 0Va e R™!

ij
Thus, XLX " is positive semi-definite. We thus have
IXLX T ||F

= \Jtr(XLXTXLXT) < \/tr(XLXT)? = tr(XLX )
= > wijlle — > <D wi(llwall + |z 0)* <D wij4R]
(%] ij (%)

=4R?

where the first inequality holds because tr(AB) < tr(A)tr(B),
when A and B are positive semi-definite matrices of the same
order. Furthermore, we have

10x = %4) (x = %) " [l = (x = xg) " (x = %) = [|x = x|

< (Ixll2 + [Ixqll2)* < 4RZ (15)

As a result,

[Villr < V2C 4+ 4AR? +8CR} := R (16)
In addition, it is easy to see that, when T" > 3
1+ In(T) In(T")
<
2T - T (17)

Combining all of these results, the proof is done. []

Since Theorem 1 only provides a comparison for the func-
tions J(M; A:), now the following theorem will provide a
comparison between J(M). For convenience, we denote
Al = (A, ..., A;). Then we have the following theorem:

THEOREM 2. Assume that the conditions stated in Theo-
rem 1 hold and for all t, A is chosen i.i.d from the set of
all triplets. Let r be an integer picked uniformly at random
from [T]. Then

R?In(T)
T
The proof of Theorem 2 can be found in the Appendix.
Theorem 2 states that, in expectation, the SGD algorithm
will converge quickly. The next theorem will provide a bound
of the objective function in probability.

E 7 Er[J(My)] < J(M7) + (18)

THEOREM 3. Assume that the conditions stated in Theo-
rem 2 holds. Let 6 € (0,1). Then, with probability of at least
1— 48 over the choices of Ai, ..., A1 and the index r, we have
the following bound:

R*In(T)
T

PrROOF. Let Z := J(M,) — J(M"*) > 0 be a random vari-
able. Thus, from Markov inequality P(Z > a) < E[Z]/a and
P(Z<a)+P(Z>a)=1,wehave P(Z<a)=1-P(Z >
a)>1-— @. As a result, we have

J(M,) < J(M™) (19)

2
R*In(T) E(Z) i
P(Z < T) 21 = oy 21~ REwmy = 1 9(20)
3T 3T

In the above, we apply Theorem 2, i.e., E(Z) < m. O

‘We now use the above theorem to analyze the convergence
of the last matrix Mp41. We can treat T + 1 as a random
index drawn from {1,...,T}, where T' > T+ 1. Since M1
does not depend on Mr,2,...,M;, we can terminate the
algorithm after T iterations and return Mr41. Using Theo-
rem 3, we know that

« _ RIn(T) _ RIn(T)

J(M- —J(M") < 2 <

(Mr41) = J(M7) < 57 S T

In(T)
T

(21)

where the last inequality holds as decreases in [3, +00).

3.6 Tagging Images with Optimized Metrics

Finally, we briefly describe the process of automated im-
age tagging by applying the optimized metric M learned by
applying distance metric learning techniques.

In particular, given a novel unlabeled image x, for tag-
ging, the first step is to conduct similarity search to re-
trieve a subset of similar images with tags from social image
database. In our approach, we retrieve a set of k-nearest
neighbors of the query image, i.e.,

Ni(xq) ={i €[1,...,n]|x; € kNN — List(xq)}, (22)



where n is the total number of images in the social image
repository, and the kNN — List is found by measuring the
distances with the optimized metric M, i.e., ||xq — Xi||3;-
With the set of similar social images N} (x4), the next step
is to perform a tag ranking by adapting the idea of majority
voting. Specifically, we define a set of candidate tags 7., as:

Tw= U T (23)
1€ENE (xq)

where 7; represents the set of tags associated with social im-
age s;. Further, we calculate the frequency of each candidate
tag w € Ty, denoted as f(w), which indicates the number
of times the tag is associated with the k social images. Fi-
nally, we conduct the automated image tagging by following
the intuition: to assign the query image with a tag of high
frequency and small average distance. Specifically, we tag
the novel image x, by incrementally adding a tag using the
following approach:

: J(w) o

w = argmax
wWETw Awg Ty avg,dM(Xq, w) + K

where avg_dy (x4, w) represents the average distance (with
optimized metric M) between the query image and those
candidate social images that have tag w, and & is a smooth-
ing parameter fixed to 1 in our experiments.

4. EXPERIMENTS

In this section we discuss our experiments for evaluating
the performance of our unified distance metric learning ap-
proach for automated photo tagging.

4.1 Experimental Testbed

We conducted our experiments on a real-world social im-
ages testbed, which consists of 200,000 images crawled from
Flickr website. These social images contain rich information,
including user-generated tags and other metadata.

To simplify the experiments, we employed tags and visual
features to represent a social image. For text information,
we sorted all tags in the dataset by their frequencies, the
top 100,000 of which were used to construct a dictionary,
and the others were abandoned. To improve the quality of
annotation, we manually removed some clearly noisy tags
from the dictionary by applying a list of stopwords. We
adopted each image’s associated tags in this dictionary as its
text features. For visual features, we extracted four kinds
of effective and compact visual features, including grid color
moment, local binary pattern, Gabor wavelet texture, and
edge direction histogram. In total, a 297-dimensional feature
vector was used to represent each image. The set of features
had been used in some previous CBIR studies [30, 12, 26].

We randomly split the 200,000 images data set into 3 sets:
training set, test set and database set.

e The training set is used as input training data for dis-
tance metric learning. We randomly sampled 15,000
images with their associated metadata from the whole
dataset. These social images were used to generate
side information for DML.

e The test set is adopted to test the tagging performance.
In particular, we randomly chose 2,000 images as query
images and treated their associated tags in the dictio-
nary as the annotation ground truth directly.

e The database set consists of the rest 183,000 images.
It is used as social image repository for the retrieval-
based tagging process.

4.2 Compared Methods

To evaluate the performance of the proposed UDML method,
we compared it extensively with two major categories of
metric learning techniques. One is to learn metrics with ex-
plicit class labels, such as NCA[10], LMNN[25]. The other is
to learn metrics from pairwise constraints, such as RCA[1],
DCAJ13],0ASIS[4]. Specifically, the compared schemes in-
clude:

e Euclidean: the baseline method.

e DCAJ13]: Discriminative Component Analysis, which
leans a linear projection using only equivalent con-
straints.

e RCAJ1]: Relevance Component Analysis that learns
a linear projection using only equivalent constraints.

e ITML[5]: Information Theoretic Metric Learning which
trains the metric with the goal that minimizes the
differential relative entropy between two multivariate
Gaussians under constraints on the distance function.

e RDML[19]: Regularized Distance Metric Learning that
adopts the correlation between users’ relevance feed-
back and low-level image features.

e LMINN]25]: Large Margin Nearest Neighbor whose
goal is that k-nearest neighbors always belong to the
same class while examples from different classes are
separated by a large margin.

e NCAJ10]: Neighbourhood Components Analysis which
maximizes a stochastic variant of the leave-one-out
kNN score.

e OASIS[4]: Online Algorithm for Scalable Image Simi-
larity learning, which is an online dual approach based
on the passive-aggressive algorithm and is to learn a
bilinear similarity measure over sparse representations.

e LRML[12]: Laplacian Regularized Metric Learning
whose goal is to leverage the unlabeled data informa-
tion and to ensure metric learning smoothness through
a regularization learning framework.

e pRCA|26]: probabilistic Relevant Component Analy-
sis, which learns an optimal metric from probabilistic
side information.

e UDML: the proposed Unified Distance Metric Learn-
ing method.

4.3 Experimental Setup

As no explicit side information is available in the exper-
iments, in order to apply DML techniques, we applied the
proposed side information generation approach described in
Section 3.2 to derive side information from the training set
of social images. In particular, we randomly chose one so-
cial image as query from the dataset, and generated a set
of 100 triplets for each query. We ran the random sampling
process 1000 times, and totally generated 100,000 triplets
as side information for our experiments. The same set of



side information was used/converted to other appropriate
formats (e.g. chunklets) for other DML methods. Regard-
ing parameter settings, we simply fixed tradeoff parameters
A =1, C' = 10000, the size of active set N, = 100, and the
total number of iterations 7' = 1000 for the proposed UDML
algorithm.

To evaluate the performance of DML approaches for auto-
mated image tagging, we applied the retrieval-based tagging
procedure as described in Section 3.6. Specifically, a query
image was chosen from the test set, and then used to search
similar images from the database set by applying the opti-
mized distance metrics. In particular, a set of top k (we set
k = 30 in default) images were retrieved, and then top ¢ tags
ranked by equation (24) were suggested to tag the query im-
age. The annotation performance was then evaluated based
on the relevance of the top ranked tags ranging from top 1
to top 10 tags. The standard average precision (AP) and
average recall (AR) were employed as the performance met-
rics.

4.4 Experimental Results

Figures 4 and 5 show the average precision and recall re-
sults achieved by different DML methods, where the hori-
zontal axis denotes the number of the top t tags annotated.
Figure 5 shows a comparison of the precision-recall curves
by different DML methods. For all these comparisons, we
fixed the number of similar images k = 30 in the annotation
procedure. From these experimental results, we can draw
several observations as follows.
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Figure 5: Average recall at top ¢ annotated tags

the difficulty of retrieving the similar social images without
a very large-scale database; (2) the associated tags of some
social image are quite noisy that could degrade the tagging
performance; and (3) the optimized distance measure may
be still not perfect to return the most similar social images
relevant to the query image, which shows that there might
be still a large room to study more effective distance metric
learning techniques in the future.
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First of all, we found that all the DML based approaches
performed significantly better than the baseline tagging ap-
proach that simply adopts Euclidean distance. This shows
that the approach of applying DML to optimize the metrics
is beneficial and important for the retrieval-based image tag-
ging task.

Second, among all the compared methods, we observed
that the proposed UDML method considerably surpassed all
the other approaches for most cases. For instance, in terms
of the average precision performance, UDML achieved about
29.6%, while the baseline approach only had 23.2% and the
results of other DML methods ranged from 26.0% to 27.8%.

Lastly, despite the above encouraging improvements, we
noticed that the average precision values of all the compared
methods are still quite low. The possible reasons include (1)
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Figure 6: The precision-recall curves

4.5 Evaluation of Varied 1 Values

Figure 7 shows the performance of UDML at top t tags
by varying k, the number of top retrieved similar images
from 10 to 60. From the results, we observed that k affects
the annotation performance. In particular, when k is about
40 to 50, the proposed method achieved the best average
precision. This is reasonable because if k is too small, some
relevant images may not be retrieved, while if k is too large,
lots of irrelevant images could be retrieved, leading to engage
many noisy tags in the list of candidate tags. Both of the
above situations could degrade the annotation performance.
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Figure 7: Comparisons of average precision under
different top k similar images used

4.6 Comparison of Qualitative Performance

Our last experiment is to examine the qualitative tagging
performance achieved by different DML methods for auto-
mated image tagging tasks. To achieve this purpose, we ran-
domly chose several images from the test set, and applied a
number of different DML methods to annotate them using
the proposed retrieval-based annotation approach. Figure
8 shows the top 10 annotated tags under different metrics.
The relevant tags are marked in “blue” font. The results
show that UDML often achieves better quality among all
the 11 approaches.

5. RELATED WORK

Our work is related to several groups of research, including
social image search and mining with applications to auto-
mated image/photo annotation and object recognition [17,
21, 28], and distance metric learning (DML) studies [27, 1,
19, 5], etc. Due to limited space, we briefly review some
most representative and relevant studies below.

5.1 Web/Social Image Mining

Our work is related to web/social image search and mining
as well as automated image annotation. Image annotation
has been actively studied over the past decade in multimedia
community. Conventional approaches often train some clas-
sification models, e.g. SVM [7], from a collection of human-
labeled training data for a set of predefined semantic con-
cept/object categories [2, 3, 6, 23].

Recently, there is a surge of emerging interests in exploring
web photo repositories for image annotation. A promising
approach is the retrieval-based (or termed “search-based”)
paradigm [17, 24, 21, 22]. Russell et al. [17] built a large
collection of web images with ground truth labels for help-
ing object recognition research. Wang et al. [24] proposed
a fast search-based approach for image annotation by some
efficient hashing technique. Torralba et al. [21] proposed
efficient image search and scene matching techniques for ex-
ploring a large-scale web image repository. These work usu-
ally concerned more on fast indexing and search techniques,
while we focus on learning more effective distance metrics.
Finally, our work mainly follow the recent study of explor-
ing social images for automated photo tagging [26], but we
propose a new and empirically more effective method.

5.2 Distance Metric Learning

In literature, DML has been actively studied in two major
domains. One is to learn metrics with explicit class labels,
which are often studied for classification tasks [14, 8, 9, 25,
29]. The other is to learn metrics from pairwise constraints
that are mainly used for clustering and retrieval [1, 13, 27].
Moreover, from machine learning perspective, most existing
DML studies belong to inductive learning methods, although
there are some recent studies that have attempted to explore
transductive learning for DML [12].

Our study is quite different from existing DML approaches
in data mining and machine learning. Unlike most exist-
ing DML methods that assume explicit side information is
provided in the form of either class labels or pairwise con-
straints, in our DML problem, no explicit side information is
directly given for the learning task. Hence, in our study, we
actually learn metrics from implicit side information, which
is hidden in the rich contents of social image data in our ap-
plication. Finally, we unify both inductive and transductive
learning principles in a systematic framework.

6. CONCLUSIONS

This paper investigated a machine learning approach for
mining social images towards automated image tagging ap-
plications. In particular, we proposed a novel unified dis-
tance metric learning (UDML) method, which learns met-
rics from implicit side information hidden in massive social
images on the web. Unlike regular metric learning studies,
the proposed UDML method fully exploits both textual and
visual contents for learning an effective metric in a unified
and systematic learning framework. To handle a real large
scale web mining problem, we proposed an efficient stochas-
tic gradient descent algorithm and showed its convergence
property by providing theoretical proofs. Experimental re-
sults on a real social image testbed show that our UDML
method is effective and promising for mining social images
for solving automated image tagging applications. In fu-
ture work, we plan to enlarge the social image database,
and investigate more sophisticated tag ranking techniques
for improving the annotation performance.
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Appendix: Proof of Theorem 2

Proor. Taking expectation of the inequality of Theorem
1 leads to the following:
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Recall the law of total expectation implies that for any two
random variables X, Y, Ex[J(X)] = EyEx[J(X)|Y], thus
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Putting the above together, we can obtain
1 1
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t=1 t=1

Furthermore, since E,[J(M,)] = + +_, J(M;), combining

all the above leads to complete our proof. [
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