Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

11-2011

Software process evaluation: A machine learning approach

Ning CHEN
Nanyang Technological University

Steven C. H. HOI
Singapore Management University, chhoi@smu.edu.sg

Xiaokui XIAO
Nanyang Technological University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation

CHEN, Ning; HOI, Steven C. H.; and XIAOQ, Xiaokui. Software process evaluation: A machine learning
approach. (2011). 2011 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE): 6-10 November, Lawrence, KS: Proceedings. 333-342.

Available at: https://ink.library.smu.edu.sg/sis_research/2348

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Software Process Evaluation: A Machine Learning
Approach

Ning Chen, Steven C. H. Hoi, Xiaokui Xiao
School of Computer Engineering
Nanyang Technological University
Singapore 639798
{nchen]1,chhoi,xkxiao} @ntu.edu.sg

Abstract—Software process evaluation is essential to improve
software development and the quality of software products in
an organization. Conventional approaches based on manual
qualitative evaluations (e.g., artifacts inspection) are deficient
in the sense that (i) they are time-consuming, (ii) they suffer
from the authority constraints, and (iii) they are often subjective.
To overcome these limitations, this paper presents a novel
semi-automated approach to software process evaluation using
machine learning techniques. In particular, we formulate the
problem as a sequence classification task, which is solved by
applying machine learning algorithms. Based on the framework,
we define a new quantitative indicator to objectively evaluate
the quality and performance of a software process. To validate
the efficacy of our approach, we apply it to evaluate the defect
management process performed in four real industrial software
projects. Our empirical results show that our approach is
effective and promising in providing an objective and quantitative
measurement for software process evaluation.

Keywords-software process; defect management process; se-
quence classification; machine learning

I. INTRODUCTION

A software process is a coherent set of policies, orga-
nizational structures, technologies, procedures, and artifacts
that are needed to conceive, develop, deploy, and maintain
a software product [1]. Most software organizations adopt
certain software process methodologies to access, support, and
improve their development activities because empirical studies
have shown that the quality of software processes are directly
related to the productivity of an organization and the quality of
software products [2], [3]. One key challenge faced by many
organizations is how to evaluate a software process performed
in a specified scope (ranging from a project to a department
or an entire organization). This is termed as the “software
process evaluation” task, which is usually done by conducting
questionnaire-based assessment, or interviewing project team
members, or randomly checking artifacts generated by former
software projects (e.g., checking some source codes stored
in software configuration management systems or checking
some bug reports in test management systems, etc.) [4]. The
conventional methods are based on subjective and qualitative
investigations and have been adopted by the Capability Matu-
rity Model Integration (CMMI) assessment [5].

Despite being widely used, the existing software process
evaluation methods often suffer from numerous limitations.

First, they require manual evaluation, which is rather usu-
ally time-consuming, especially for a software development
organization with a large number of projects. For example, it
is inefficient to manually examine all the artifacts produced
by former projects, as the number of such artifacts could be
enormous. Although one may circumvent this issue by examin-
ing only a random sample set of the artifacts, the inaccuracy
incurred by sampling may cause misjudgments. Second, the
existing methods suffer from the authority constraints. For
example, if an external audit agency or a consultation agency
is asked to evaluate the software processes of an organization,
it may not be allowed to access every artifact directly due
to privacy or security concerns. This may lead to inadequate
checking of artifacts, which result in inaccurate evaluation
results. Third, the existing approaches are often based on
subjective evaluation, and hence, they suffer from biased
evaluation results due to human factors in the evaluation
process. Besides, the conventional methods usually have a high
requirement of experienced evaluation experts to understand
the specific software processes and design various questions
for conducting a qualitative evaluation task.

To address the above limitations, this paper presents a novel
semi-automated approach to software process evaluation using
machine learning techniques. Since software processes can
be broadly referred to a variety of concepts,we restrict the
discussion of a software process as a systematic approach to
the accomplishment of some software development tasks in
this paper. The key idea is to model the series of activities or
artifacts’ states in a software process as sequential instances,
and then formulate the evaluation task as a binary classification
of the sequential instances into either “normal” or “abnormal”.
Based on this framework, we present a new quantitative mea-
sure, referred to as the “process execution qualification rate”,
as an objective evaluation of the quality and performance of
a software process.

Our approach aims to overcome the limitations of con-
ventional subjective evaluation methods. First, our approach
is semi-automated, which (i) is more efficient than the con-
ventional manual methods that requires a significant amount
of human efforts, and (ii) alleviates the need of highly ex-
perienced evaluation experts on process evaluation. Second,
our approach requires only the process execution history data
and does not access artifacts directly, which alleviates the

333

978-1-4577-1639-3/11/$26.00 (© 2011 IEEE

ASE 2011, Lawrence, KS, USA

authority constraints as the process execution history data
usually do not contain private contents. Third, by adopting
the process execution qualification rate, our approach avoids
making subjective judgements. To validate the efficacy of
our approach, we apply our technique to evaluate the defect
management process performed in four projects from a large
software development center of a commercial bank in China.
Our empirical results show that the proposed approach is
effective.
In summary,this paper makes the following contributions:

« We propose a novel machine learning approach that may
help practitioners to evaluate their software processes.

« A new quantitative indicator, referred to as process execu-
tion qualification rate, is proposed to evaluate the quality
and performance of software processes objectively.

e We compare and explore different kinds of sequence
classification algorithms for solving this problem.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents the problem
statement. Section IV introduces the proposed machine learn-
ing approach to software process evaluation tasks. Section V
presents the experimental results and discusses the limitations
of validation. Finally, Section VI concludes this paper.

II. RELATED WORK

Our work is closely related to previous works on software
process research. In particular, there exist a variety of software
process methodologies and models which contain a set of
guidelines and practices for assessing and improving the
general software process capability of large and small software
development organizations [5]-[9]. The previous works mainly
focus on high-level, comprehensive and general frameworks
for software process evaluation tasks, while our work aims
to present a concrete method for an important subtask of
software process evaluation, which could be integrated into
those methodologies and models. Formerly, qualitative evalu-
ation methods [10], such as questionnaire-based assessment,
interviewing and artifacts studies, are widely adopted by
some process models, e.g., the Capability Maturity Model
Integration(CMMI) [5]. CMMI was proposed by Software
Engineering Institute (SEI)' and holds a very important po-
sition in software process research. It defines a series of
best practices to guide software process assessment and im-
provement in software development organizations. Practices
cover topics that include techniques, management, support
and more. This model has been broadly used in various
industrial organizations all over the world, and turns out to
be especially effective for large organizations. The Standard
CMMI Appraisal Method for Process Improvement (SCAMPI)
[11] defines a formal framework to provide evaluation results
relative to CMMI models. All the traditional qualitative meth-
ods mentioned above are used by SCAMPI. However, these
methods have the critical drawbacks described in Section I,
which motivates the study of our work. In this paper, we

Thttp://www.sei.cmu.edu/

propose a new quantitative machine learning approach which
could be a strong complementarity for traditional software
process evaluation methods. In software process validation,
Cook et al. [12] proposed a method for detecting difference
between a formal process model and a process execution. In
their work, the correspondence between an execution event
stream (produced by process executing) and a model event
stream (induced by the formal process model) is measured
using string distance metrics. Two metrics, referred to as
Simple String Distance (SSD) and Nonlinear String Distance
(NSD) were developed. Since only one model event stream is
derived from the process model in their approach, it may lead
to big mistakes for process validation results when (i) two or
more formal and reasonable process models exist for a same
software process; (ii) process models are changing rapidly
without updating the model definition in the documents; (iii)
there are a number of non-trivial process branches. Different
from their work, our proposed machine learning approach
can address these limitations. Moreover, we propose a novel
quantitative indicator. Similarly, Moor et al. [13] presented
an approach to software validation that employed conceptual
graph theory to compare differences between defined process
models and actual process models. In summary, our work dif-
fers from the aforementioned software validation approaches
in that we aim to learn some dynamic prediction models from
a collection of updated process executions by machine learning
techniques.

In addition, our work is related to software process studies
that mine event logs stored in some software repositories to
uncover the software process models. For instance, Rubin et
al. [14] gave an overview of applications of process mining
techniques to discover software development processes. Sama-
likova et al. [15] made use of a heuristic mining algorithm
to construct the “real” CCB (Change Control Board) process
model from event logs stored in software configuration man-
agement systems. They compared this mined “real” process
model with the “official” process model and gave feedbacks
to the development team. Although the nature of data studied
in their work is similar to ours, the techniques used are
different. In their approach, the key technique is applying
an off-the-shelf process mining algorithm offered by ProM
framework [16] to construct an explicit, “actual” process
model from event logs, while our approach adopts machine
learning techniques to learn a model to classify process
executions into either “normal” or “abnormal”. The research
purpose of Samalikova et al’s work is to use the analysis
results of mined objective process models to improve the
software processes in the project teams. They did case studies
in a large industrial company in the Netherlands. Different
from their research purpose, we are aiming at developing a
quantitative approach to software process evaluation tasks.
Extensive experiments and case studies are conducted in
our work to validate the effectiveness and efficiency of our
proposed approach. In summary, research on software process
mining mainly focuses on the construction of explicit and
“real” graph-based representation of software process models

334

using process mining algorithms from event logs, while our
work aims at learning dynamic prediction models from event
logs to evaluate the quality and performance of a software
process objectively by using a new quantitative indicator.

Last but not least, our work is in general also related to the
emerging studies that apply data mining and machine learning
techniques in the literature of software engineering [17].
Specifically, the first category of related work in this field
applies sequence mining algorithms to support software engi-
neering tasks. For example, El-Ramly et al. [18] formulated
the problem of recovering user scenarios from user interaction-
traces as an instance of the “sequential pattern mining” prob-
lem, where an interaction trace is initially represented as a
sequence of screen IDs and then a mining algorithm named
IPM2 was developed to mine the qualified patterns. Lo et
al. [19] proposed an efficient algorithm to mine a closed set of
software iterative patterns from program execution traces. In
addition, another category of related work employs classifica-
tion algorithms to support and improve software engineering
activities. For example, Clenland-Huang et al. [20] proposed
the none functional requirements (NFR) classifier, which is
used to classify none functional requirements from both struc-
tured and un-structured documents. Anvik et al. [21] explored
various classification algorithms in solving bug assignment
tasks, where bug reports (text documents) are classified into
different categories defined by the names of developers who
are appropriate to resolve some specific types of reports.
Compared with the previous studies in this area, our work is
common in that we all apply machine learning and data mining
techniques to solve software engineering problems, but differs
in that we present a machine learning approach to address a
different problem in software engineering.

III. PROBLEM STATEMENT

In general, software process evaluation aims to assess
the quality of some software processes performed in some
specified scope (ranging from a project to a department or an
entire organization). Typically, each organization has software
process specifications, which provide explicit representation
and definition of different kinds of software processes using
formalism models, such as Petri nets, finite state machines,
or flow diagrams associated with detailed text descriptions.
Different aspects of processes are addressed in the speci-
fications, such as artifacts, states of the artifacts, activities
and responsible persons. Different software organizations may
adopt different representation methods for software process
specifications, which usually can be found in the quality
manuals of an organization.

In our approach, the first step towards software process
evaluation is to obtain raw data recording the detailed ac-
tivities or artifacts’ state of a software process. Most soft-
ware development organizations are equipped with commercial
or open-source computer-aided software engineering (CASE)
tools for the whole software development life cycle (SDLC).
For instance, software configuration management systems are
designed to monitor and control changes in the software

development; requirement management systems are used to
trace, manage and control user requirements, etc. As an
important part of CASE tools, software repositories store the
data generated by all activities via SDLC. In our work, we
obtain raw data contain software process execution history
extracted from software repositories.

In software repositories, a key element is process execution,
which is a sequence of snapshots of the actions executed by
different roles or artifacts’ states of the observed software
process. As mentioned in Section I, software processes can
be broadly defined as various concepts, to simplify our dis-
cussion, we restrict the discussion of a software process as
a collection of process executions in this work. Accordingly,
the goal of a software process evaluation task in our study is
to assess the quality of some collection of process executions
specified in some particular scope. For example, in this study,
our goal is to evaluate a software defect management process
from some collection of process executions stored in defect
management repositories. By using process executions, we
intend to apply machine learning techniques together with a
quantitative indicator to evaluate the quality and performance
of a software process objectively.

IV. APPROACH

In this section, we first give an overview of the proposed
machine learning approach to software process evaluation, and
then discuss each step of our approach in detail.

A. Overview

Given a collection of process executions, the key idea of our
machine learning approach is to employ supervised sequence
classification techniques to classify each process execution
into “normal” or “abnormal”. Here “normal” means that a
process execution is qualified or is able to meet the organiza-
tion’s standards/criteria. We also propose a novel quantitative
indicator named process execution qualification rate, which
is calculated to evaluate the quality and performance of the
software process. Fig. 1 illustrates the proposed framework of
our machine learning approach to software process evaluation.

In a nutshell, the proposed approach consists of four major
steps. The first step extracts raw data stored in software
repositories. The raw data that we are interested in contain
process execution history (e.g., defect state change history).
The second step preprocesses the data by transforming relevant
data to a set of sequences. The third step builds different
sequence classifiers through a set of labeled training data and
conducts classifier evaluation. The last step applies the best
sequence classifier to classify all the rest sequences into either
“normal” or “abnormal”; as a result, the process execution
qualification rate can be calculated to evaluate the quality and
performance of the specified software process.

B. Collecting Data

As mentioned before, there are various kinds of data stored
in software repositories. For example, we can find technical
documents in software configuration management systems;

335

C > Unlabelled S ol Classification
v X
R—"—"—" Rawdata Data sequences amples algorithms
Softa s EEEEE—— —————p»| Label training =
k= preprocess set Training set
(_ repositories
Step 1 | Step 2 Build different
—_— —_— P classifiers
M Predicted - B
easti sequences Apply the Best classifier| Eyaluate the Classifiers
quantitativessi« classifier classifiers :
indicator Metrics
—_— —_— —_—
Step 4 Step 3
Fig. 1. The framework of the proposed machine learning approach to software process evaluation

bug reports can be extracted from test management systems;
requirement change reports can be collected from requirement
management systems, etc. We refer to these data that have not
been processed as raw data, which can be either structured
or non-structured, and usually can be exported through some
functionality provided by CASE tools.

Fig. 3 shows an instance of raw data (i.e., an RC) extracted
from a certain requirement management system that contains
process execution history (see the “Status Log” column). In
general, for some particular software processes, we only need
to extract raw data from one software repository. For some
other types of processes, we may need to extract raw data
from multiple different software repositories.

[NEW » ASSESSED [—»{ ASSIGNED C. Data Preprocessing
¥ J ¢ This step preprocesses the collected raw data into well-
N (N (structured format to facilitate subsequent machine learning
[CLOSED |« VERIFIED [« RESOLVED] tasks. Specifically, the idea is to convert every process execu-

Fig. 2. Example of a simple requirement change process

Requirement Change: RC00001 -- Closed

Details Status log | Attachment
ID Status Owner When Description
1 NEW Tom 2008-04-25 12:02:00

2 ASSESSED Neil 2008-04-25 13:15:50

3 ASSIGNED Neil 2008-04-25 13:16:03 | Please fix it.
4 | RESOLVED Jerry 2008-04-25 17:44:28

5 VERIFIED Tom 2008-04-26 08:02:40

6 CLOSED Tom 2008-04-26 08:05:58 | Done.

Fig. 3. Example of some raw data from a software repository

The first step of our approach extracts the raw data from
related software repositories according to the characteristics
of the software process that we intend to evaluate. In this
work, we are only interested in raw data that contain process
execution history. The process execution history captures the
evolutions of artifacts or activities of various tasks in the
process. To better describe our approach in an intuitive way,
Fig. 2 shows an example of a simple requirement change
process we intend to evaluate. This process represents the
state flow of requirement changes (RC); each node in the flow
diagram represents a status of RC. To evaluate this process
in a specified scope, in our approach, we should collect all
the raw data needed from requirement management systems.

tion from the raw data into a sequence-based instance. For ease
of representation, we introduce an “alphabet” that consists of
a set of symbolic values, each of which represents a status of
some artifact or an action of some task in the software process.
Such an alphabet comprises all the possible values/states that
can appear in the process executions. Thus, each process
execution can be represented as a sequence of symbolic values
from the alphabet. Consider the example of the requirement
change process shown in Fig. 2, we can determine an alphabet
as “(N, S, A, R, V, C)”, where each letter of “N, S, A,
R, V, C” represents “NEW”, “ASSESSED”, “ASSIGNED”,
“RESOLVED”, “VERIFIED”, and “CLOSED”, respectively.

TABLE I
EXAMPLE OF A SEQUENCE DATABASE

RC ID | sequence ID sequences
1 Sl <N) S) A’ C>
2 SQ <N7 S7A7 R7V7C>
N SN

Once the alphabet is chosen, the next is to convert each
process execution from the raw data into a sequence of
symbolic values. Consider the example in Fig. 3, the process
execution history are contained in the “Status log” field.
For this example, we first extract a sequence of statuses

336

(NEW, ASSESSED, ASSIGNED, RESOLVED, VERIFIED,
CLOSED) according to the temporal order, and then convert
it to a sequence of symbolic values (N, S, A, R, V, C)
by following the alphabet. After processing all the process
executions, we obtain a sequence database which contains a
set of (unlabeled) sequences S= {Si, So... Sy}, where each
sequence S; is an ordered list of symbolic values from the
alphabet. Table I shows an example of sequence database with
N sequences.

D. Building Sequence Classifiers

The data preprocessing step generates a sequence database
that consists of NV unlabeled sequences whose class labels are
unknown. Our goal is to learn some classification model by
machine learning algorithms to automatically predict the class
labels of these sequences. Sequence classification has been
extensively studied in the literature of machine learning and
data mining [22]-[24]. In general, we must address three key
issues of a sequence classification task: (i) create a training
set of labeled sequences, (ii) represent each sequence of
varied length into a fixed-dimension vector, and (iii) choose a
machine learning algorithm to build a classifier on the training
data. We discuss our approach to addressing each of these
issues in detail below.

1) Sampling and Labeling A Training Data Set: This task
is to form a training data set by sampling a subset of unlabeled
sequences from the entire database, and then manually label
the sampled sequences. There are several issues in this task.
First of all, we need to decide a class label set to label
the sequences. Since we formulate this problem as a binary
classification task, we have two unique class labels, {Normal,
Abnormal}, where “Normal” implies that the process exe-
cution represented by this sequence is reasonable or meets
the organization’s standards, and “Abnormal” implies that the
process execution represented by this sequence is irrational or
violates the organization’s standards and could cause potential
negative impacts.

The second issue of this task is to choose an appropriate
size of the training data set, denoted as V¢, which is smaller
than the database size N. If Ny is too large, it would be
time-consuming for performing the manual labeling task; on
the other hand, if Ny, is too small, the training data may not
be enough to build a good classifier. Typically, this size is
determined empirically. We will discuss this issue further in
our empirical study.

The third issue is to assign an appropriate class label
to an unlabeled sequence manually. One common approach
is to simply request an evaluation staff to examine if the
process execution represented by the sequence has correctly
followed the software process specifications given by the
organization and adhered to the principles of the process
methodology adopted by the organization. However, it is often
not enough. One reason has to do with some ambiguous cases
in the software process specifications. Another reason is that,
software processes in an organization are usually changing
rapidly; therefore, the given software process specifications

may be outdated. Besides, typically in a large organization,
some departments or project teams may not always adopt
the standard processes of the organization due to various
reasons [25]; these specific processes are usually not recorded
in the organizational software process specifications. Due to
the above reasons, sometimes it is not easy to assign a label
clearly. For such cases, it would be necessary for the evaluation
staff to consult and discuss with some experienced domain
experts in the organization.

2) Feature Representation: Classical classification algo-
rithms in machine learning and data mining often work on data
represented in vector space, while the sequence examples in
the database are not represented in vector space, in which they
have varied lengths and the order concern of their elements.
To apply the existing classification algorithms, we need to
find some appropriate feature representation technique to map
each of the sequence example into an example in some vector
space of fixed dimensions. To this purpose, we adopt the well-
known k-grams feature technique in our approach, which has
been widely used in other domains [26]-[28].

Specifically, given a long sequence, a short sequence seg-
ment of any k consecutive symbols is called a k-gram, which is
selected as a feature in order to keep the order of the elements
in the sequence. After determining a set of k-grams, each
sequence can be represented as a fixed-dimension vector of
the presence and the absence of the k-grams (or as a vector of
the frequencies of the k-grams appeared in the sequence). Let
us illustrate the idea by the example in Fig. 2. The alphabet
representing the statuses is “(N, S, A, R, V, C)”, i.e., the
number of unique symbols m = 6. Assuming that £k = 2
is chosen for the k-grams model, we have 62 = 36 unique k-
grams. These k-grams include “{NN, NS,..., CV, CC}”. Now
consider a sequence S;= (N, S, A, R, V, C). We slide a window
of size k = 2 across the sequence to obtain the set of all the
short sequences of length k = 2, i.e., {NS,SA,AR,RV,VC}; as
a result, we get the feature vector corresponding to sequence
S;, as shown in Table II.

TABLE II
FEATURE VECTOR OF A SEQUENCE S;= (N, S, A, R, V, C) BASED ON A
2-GRAM MAPPING METHOD

NN | NS SA | ... AR | ... RV | ... vC
S 0 1 0 1 0 1 0 1 0 1 0

3) Training Classifiers by Machine Learning Algorithms:
After obtaining a training data set of [V, examples in a vector
space, the next step is to apply a machine learning algorithm to
build classifiers on the training data. In our approach, we adopt
three well-known and representative classification algorithms
in machine learning, i.e., decision trees (C4.5) [29], Naive
Bayes (NB) algorithm [30], and Support Vector Machines
(SVM) [31], all of which have been widely used in a variety
of real-world classification tasks. We will discuss the detailed
comparison of these three classification algorithms in our
experiments.

337

E. Evaluating Different Classifiers

After training a set of classifiers by different machine learn-
ing algorithms, the next step is to evaluate the performance of
these classifiers in order to find the best classifier. To achieve
this purpose, we first need to choose some performance met-
rics for comparisons. The first set of metrics include precision,
recall, and F-measure, which are defined as follows:

TP

TP+ FP’
2 x Precision * Recall

TP

Recall = m

Precision

F — measure =
Precision + Recall

where TP, FP, FN represent the numbers of true positives,
false positives, and false negatives, respectively. In addition,
we also adopt the well-known “Area Under ROC Curve”
(AUC) [32] as another metric for evaluation. Finally, we also
adopt the “Root Mean Square Error” (RMSE), a widely-used

measure of the differences between values predicated and the
actual truth values.

F. A New Quantitative Indicator

Based on the proposed classification framework, we pro-
pose a new quantitative indicator named as process execution
qualification rate as an objective measure for software process
evaluation, which is able to overcome the limitations of
conventional evaluation methods.

Specifically, in the above classification scheme, we build a
set of classifiers on a training data set, and choose the best
classifier of the highest classification performance to label the
remaining unlabeled sequences in the database. After obtaining
the predicted class labels of all the sequences in the database,
we define the process execution qualification rate, denoted as
P €10,1], as follows:

_ #predicted normal sequences

precision
P =

ey

total#sequences recall

The above definition indicates that P represents the percentage
of actual “normal” sequences among all the sequences in the
database. The larger the value of P, the better the quality and
performance of a software process. This quantitative indicator
provides an objective measure to evaluate the quality and
performance of a software process.

Remark. In the above definition, it is important to note that
both true “precision” and “recall” on the test set are unknown
during the software process evaluation phase for a real-world
application (unless we manually label all the test sequences).
In order to calculate an estimated process execution qualifi-
cation rate without manually labeling the test sequences, we
adopt the precision and recall values on the training set as the
estimated precision and recall values to calculate the value of
P. In our experiments, we will evaluate the difference between
the estimated qualification rate and the true qualification rate
under different classification settings.

V. EXPERIMENTS

To evaluate the effectiveness of the proposed approach, we
conduct an extensive set of experiments by applying our tech-
nique to evaluate the defect management process performed
in four real-life software projects. First, we briefly describe
the profiles of these four projects and introduce the defect
management process to be evaluated. We then describe the
experimental setup followed by presenting our experimental
results and discussions as well as some case studies in detail.

A. Experimental Testbed

We adopt an experimental testbed that consists of four
software projects of a large software development center
of a commercial bank in China. These four projects were
developed by different project teams from the same department
of the organization. The organization is assessed at CMMI
level-2, which means this organization has a certain level in
process management. Besides, we intend to evaluate the defect
management process conducted in this department and in each
individual project. Table III summarizes the characteristics of
these four projects, where the last column shows the number
of bugs/defects found in each project.

Fig. 4 shows the defect management process flow defined
in the defect management process specification used in this
organization. For simplicity, we only show the state flow of
defect management process by different roles, and omit some
detailed descriptions and explanations due to space limitation.
As shown in this flow diagram, there are two kinds of nodes:
“Status” node which represents the possible status of defect
and the responsible role, and “Decision” node which represents
the possible decisions that can affect the state change of a
defect. The status of a defect starts from ‘“New” and evolutes
along with different decisions.

TABLE III
SUMMARY OF THE FOUR PROJECTS IN OUR EXPERIMENTS

’ Project ID Description No. of defects
1 Electronic Commercial Draft System 1019
2 Wealth Management System(Phasel) 478
3 Wealth Management System(Phase2) 665
4 Financial Leasing System(Phase2) 460

B. Experimental Setup

To perform the evaluation of the defect management process
of the projects shown in Table III, we collect the raw data
of the defect status change history from the repository of
test management system adopted by this organization, which
was based on the HP Quality Center (HQC) version 9.0. Fig.
5 shows an example of the raw data of the defect history
log collected in our experiments, from which we can extract
the sequence of statuses (NEW, OPEN, ASSIGNED, FIXED,
CLOSED) to represent this particular defect process execution.
Further, we generate an alphabet based on the process flow
diagram as shown in Fig. 4, which consists of a total of 10

338

[Y
Tester Developer] f Developer] Tester f Tester]
New l Assigned J_ lPostponedJ Canceled l Finished
I -
Developer Developer
Open Rejected
—
f Developer] (Tester) f Tester
D Status NodeQ Decision Node l J—> _>[
Fixed Closed Reopen

Fig. 4. The defect management process flow extracted from a software process specification(Detailed explanations were omitted).

Defect ID: 2722 Summary: Error Project Name: Electronic Commercial Draft System
History Log:

Field name Date of update Modificator Old value New value

Defect status 2009-08-27 17:52:48 Fixed Closed

Closed data 2009-08-27 17:52:48 Song 2009-08-27 17:52:48
Defect status | 2009-08-27 09:32:11 | Wang Assigned Fixed

Defect status 2009-08-26 18:15:30 Lin Open Assigned

Developer 2009-08-26 18:15:30 | Lin Wang

Defect status 2009-08-26 17:52:48 Song New Open

Developer 2009-08-26 17:52:48 Song Lin

Fig. 5.

symbols. Based on this alphabet, we then convert the sequence
of statuses into a sequence of symbols. Further, we adopt
the k-grams model (For simplicity, we choose k=2 in our
experiments. We will discuss the problem of appropriate k
values in Section V.G), as described in Section IV, to represent
each sequence by a 100-dimensional vector. As a result,
we form a sequence database of 2622 unlabeled examples
represented in a 100-dimensional vector space. To facilitate
the classification experiments, we collect the ground truth
labels by manually labeling these unlabeled sequences into
“normal” or “abnormal” based on the standards adopted by
the organization (1985 sequences are labeled as “normal” and
637 sequences are labeled as “abnormal”), in which we had
resolved some ambiguous cases by consulting the experts from
this organization (For example, we label sequences contain
“REOPEN” more than 2 times as “abnormal” in this context).
In all the experiments, we take “normal” as positive class and
“abnormal” as negative class.

Based on the above processed data and the ground truth la-
bels, we conduct extensive experiments to evaluate the efficacy
of our technique. In particular, we aim to answer the following
questions: (1) What would be the best classification algorithm
for sequence classification in our problem? (2) How does the
amount of training data affect the classification performance
in our task? (3) What is the accuracy of the estimated process
execution qualification rate based on the proposed framework?

Example of a defect history log from an industrial project in our empirical study.

Next we discuss each of our experiments to address these
issues in detail.

TABLE IV
EVALUATION RESULTS

’ ‘ Precision ‘ Recall ‘ F-measure ‘ AUC ‘ RMSE ‘

C4.5 0.929 0.947 0.938 0.850 | 0.284
NB 0.929 0.911 0.920 0.945 | 0.291
SVM 0.976 0.996 0.986 0.961 | 0.143

C. Comparison of Classification Algorithms

The first experiment is to compare the performance of three
different classification algorithms for our defect management
process evaluation task, including decision tree, Naive Bayes
(NB) classifier, and Support Vector Machine (SVM). We adopt
the C4.5 implementation for decision tree, and employ a linear
kernel for SVM with the penalty parameter C' = 10. We adopt
the standard 10-fold cross validation setting on the whole
database of 2622 sequences to evaluate the performance of
different classifiers. Table IV presents the experimental results
of comparison with respect to the metrics of precision, recall,
F-measure, AUC, and Root Mean Square Error (RMSE).

From the results in Table IV, we can see that among the
three algorithms, SVM achieves the best performance for all
the performance metrics, while C4.5 and NB perform diversely

339

== SVM

=¥=C4.5

(1]
o 0.88 NB
>

5% 10% 15% 20% 25%
Amount of training data

30%

Fig. 6. Effect of training data size on F-measure

=the— SVM

—¥=CA4.5
0.80

Average AUC

NB
0.75

0.70

5% 10% 15% 20% 25%
Amount of training data

30%

Fig. 7. Effect of training data size on AUC

under different metrics (C4.5 performs slightly better in terms
of F-measure and RMSE, while NB performs better in terms of
AUC score). By looking into the results achieved by SVM, we
find that the F-measure and AUC values attained 98.6% and
96.1% respectively, which indicates that the proposed scheme
is able to learn an effective classifier for the classification
task. The very positive result is partly derived from the nature
of the data: a large portion of the sequences are repetitive.
We further informally investigate the classification result for
unusual sequences (sequences that appear less than 5 times in
the database), and find that the classification performance is
also fairly good.

D. Classification Performance with Varying Amount of Train-
ing Data

The second experiment is to examine how the amount of
training data affects the classification performance. To this
purpose, for each experimental trial, we randomly sample 30%
sequences from the database as the candidate training data,
and the remaining 70% sequences as the test set; among the
candidate training examples, we randomly choose a subset of
training data to build the classifiers by varying the percentage
of training data from 5% to 30%. We repeat the above exper-
imental trial 20 times and calculate the average performance
over these 20 trials. Fig. 6 and Fig. 7 summarize the results
of average F-measure and AUC under varying amounts of
training data, respectively.

From the experimental results, we can draw some observa-
tions. First, among the three algorithms, similar to the previous
results, SVM achieves significantly better F-measure perfor-
mance than the other two algorithm; while NB achieves the

better AUC performance than both SVM and C4.5, especially
under small amount of training data. When the size of training
data is large enough, SVM can achieve a comparable or better
AUC performance than that of NB. Second, we found that,
for all the three classifiers, increasing the size of training
data generally leads to an improvement of the classification
performance. But the improvement becomes minor when the
size of training data is larger than some threshold (e.g. 25%).
Since it is often time-consuming and expensive to label the
training data manually, in practice, we should empirically
determine an appropriate amount of training data to trade off
between the labeling cost and the classification performance.

E. Estimated Indicator with Varying Amount of Training Data

The third experiment is to evaluate the accuracy of the
quantitative indicator of the estimated process execution qual-
ification rate, i.e., the P indicator. Following the same setup
as the second experiment, we evaluate the accuracy of the
estimated P values by randomly choosing a subset of can-
didate training data (ranging from 5% to 30%) to build the
classifiers. P is calculated according to formula (1) defined in
Section IV, where the estimated precision and recall values are
obtained on the training set. We adopt the Root Mean Square
Error (RMSE) to measure the difference between the actual
P* values and the estimated P values of the process execution
qualification rate. Fig. 8 shows the experimental results.

Some observations can be drawn from the results. First
of all, similar to the previous experiment, for all the three
algorithms, increasing the amount of training data generally
leads to the decrease of the RMSE value, indicating a more
accurate estimation of the P value. Second, among the three
classification algorithms, SVM achieves considerably better
performance than the other two algorithms, especially when
the amount of training data is small. Finally, by examining
the results achieved by SVM, we found that the proposed
classification based indicator is able to estimate a fairly
accurate value of P (i.e., with a very small RMSE value)
when the amount of training data is sufficient.

5.50%

4.50%

3.50% =—=SVM

=»&=NB
2.50%
Cca4.5
1.50%

Root Mean Square Error of P

0.50%

5% 10% 15% 20% 25%
Amount of training data

30%

Fig. 8. Effect of training size on predicted P

F. Case Studies

We conduct case studies to examine the efficacy of the
proposed indicator by (1) examining if the estimated value
of the indicator is close to the true value, and (2) exploring

340

if the proposed indicator is able to differentiate the quality of
process among different projects in the same organization.
First, we show some case studies to examine the differ-
ence between the estimated P and the actual P* values by
inspecting different amounts of training data in detail. In
particular, we study two cases of different settings: (i) case
of small-sized training data (sampling 10% of all data for
training), and (ii) case of medium-sized training data (sampling
20% of all data for training). For each of the two cases,
we adopt SVM as the classification algorithm, repeat each
experiment 20 times, and summarize the average results in
Table V, where #5S denotes the total number of sequences,
#TN denotes the actual number of normal sequences, P*
denotes the actual value of process execution qualification rate,
#PN1 denotes the predicted number of normal sequences
in case (1), and P1 denotes the predicted process execution
qualification rate in case (1), while #PN2 and P2 denote
the predicted number of normal sequences and the predicted
process execution qualification rate in case (2), respectively.

TABLE V
EXPERIMENTAL RESULTS FOR OUR CASE STUDY

l l Projectl | Project2 | Project3 | Project4 | Department ‘
#S 1019 478 665 460 2622
#TN 913 295 499 278 1985
p* 89.5% 61.7% 75.0% 60.4% 75.7%
#PN1 958 333 534 285 2110
+16.3 +59 +7.8 +3.9 +28.2
P1 88.7% 65.9% 76.0% 62.8% 76.1%
+1.2% +1.8% +1.4% +2.3% +1.0%
#PN2 941 307 509 282 2039
+11.9 +5.6 +10.8 +2.8 +18.5
P2 89.6% 61.9% 74.2% 59.4% 75.5%
+0.8% +1.1% +1.5% | + 0.6% + 0.8%

From the results, we found that when providing sufficient
amount of training data (e.g. 20%), we can achieve a highly
accurate prediction of the process execution qualification rate.
For example, considering the whole department, the predicted
P2 = 75.5% is very close to the actual P* = 75.7% value
computed from the ground truth. Even for the case of using
only small-sized training data, we still can achieve a satisfied
prediction, e.g., for the whole department, P2 = 76.1% is still
close to the actual P* = 75.7%. These promising results again
validate the efficacy of the proposed technique for software
process evaluation.

Further, according to the predicted values of the proposed
quantitative indicator, we can also compare the quality of the
defect management process performed in different projects
of the same department. From Table V, we can conclude
that the defect management process performed in Project 1
is significantly better than that performed by the other three
projects. Specifically, we found that Project 2 and Project
4 have relatively low process execution qualification rates,
indicating that these two projects have a high chance of
executing irrational processes or violating some organization

rules/standards. To verify this result, we conduct some further
analysis by checking the labeled sequences of these two
projects, and found that there indeed exist at least three serious
problems in both Project 2 and Project 4: (i) defects were not
closed or closed without fixed; (ii) defects were reopened for
many times; (iii) defects were canceled without analysis.

G. Limitations of Validation

There exist four primary limitations in this work. First,
we validate our approach based on the defect management
process performed in four software projects from a software
development center of a commercial bank in China. Despite
the promising classification and prediction performance, it is
unknown if the approach can also achieve the similar good
performance when being applied to other more complicated
software process evaluation tasks, where much longer and
complex sequences may appear in different organizations.
Furthermore, in our validation, an informal experiment shows
that the k value in feature representation has little effect
on the classification performance. However, for much longer
and complex sequences, the problem of appropriate & value
may arise. Future work will examine the applications of our
approach to other more complicated and challenging software
processes from various organizations. Besides, we will study
the relation between k value and classification performance in
great detail.

The second limitation relates to the question of classification
performance for unusual sequences. As mentioned in Section
V.C, the very positive result is partly result from the nature of
the data. The classification performance for unusual sequences
is not systematically analyzed in our validation. We will
conduct more experiments to address this question in our
future work.

Third, as emphasized in the remark on formula (1) in
Section IV.F, for real-world applications, in order to calculate
the estimated process execution qualification rate, we use the
“precision” and “recall” values on the training set to approxi-
mate both values on the test set. Although the experiments and
case study show that we can estimate a fairly accurate process
execution qualification rate using formula (1), this approximate
assumption may not hold in some real-world situations. This
will be left primarily to our future detailed empirical studies.

Last, different organizations adopt different kinds of CASE
tools, which are either open-source or commercial. However,
there is no standard for the formats and contents of process
execution histories stored in different software repositories of
CASE tools. Many potential problems may occur during the
data preprocess phase [15], which may affect the efficacy of
our approach to some extent. Future work will be needed to
empirically study the impact of different kinds of CASE tools.

VI. CONCLUSION

This paper proposed a semi-automated approach to soft-
ware process evaluation using machine learning techniques,
in which we formulate a software process evaluation task
as a sequence classification problem that can be resolved by

341

machine learning techniques. Based on the proposed frame-
work, we present a new quantitative indicator, i.e., process
execution qualification rate, as an objective evaluation of the
quality of software process. We found encouraging results
from our preliminary empirical studies, which validated the
empirical efficacy of our technique for software process eval-
uation. Compared with the conventional subjective evaluation
methods, the proposed machine learning approach has several
advantages, and potentially opens a new direction of applying
machine learning techniques to facilitate automated software
process evaluation in software engineering. Our future work
will apply our technique to more complicated software process
evaluation tasks and investigate more sophisticated machine
learning techniques. Additionally, we will conduct a com-
prehensive comparative study to analyze the benefits and
drawbacks of prior-art traditional approaches and our proposed
machine learning approach to software process evaluation
tasks.

ACKNOWLEDGMENT

This work was supported by Nanyang Technological Uni-
versity under SUG Grant M58020016 and AcRF Tier 1 Grant
RG 35/09. Special thanks to Quanxi Mi for sharing the raw
data sets. We also thank the anonymous reviewers for their
greatly helpful comments.

REFERENCES

[1] A. Fuggetta, “Software process: a roadmap,” in Proceedings of the
Conference on The Future of Software Engineering, 2000, pp. 25-34.

[2] M. S. Krishnan, C. H. Kriebel, S. Kekre, and T. Mukhopadhyay, “An
empirical analysis of productivity and quality in software products,”
Manage. Sci., vol. 46, pp. 745-759, June 2000.

[3] M. Cataldo and S. Nambiar, “On the relationship between process ma-
turity and geographic distribution: an empirical analysis of their impact
on software quality,” in ESEC/FSE’09, Amsterdam, The Netherlands,
2009, pp. 101-110.

[4] L. J. Osterweil, “Software processes are software too, revisited: an
invited talk on the most influential paper of icse 9,” in Proc. 19th
international conference on Software engineering (ICSE’97), Boston,
Massachusetts, 1997, pp. 540-548.

[S] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI : Guidelines for
Process Integration and Product Improvement, 1st ed. Addison-Wesley
Professional, 2004.

[6] K. El Emam, J.-N. Drouin, and W. Melo, SPICE. The Theory and Prac-
tice of Software Process Improvement and Capability Determination.
IEEE Computer Society, Los Alamitos, 1998.

[7] E.J.Pino, C. Pardo, F. Garcia, and M. Piattini, “Assessment methodology
for software process improvement in small organizations,” Inf. Softw.
Technol., vol. 52, pp. 1044-1061, October 2010.

[8] C.G. von Wangenheim, A. Anacleto, and C. F. Salviano, “Helping small
companies assess software processes,” IEEE Softw., vol. 23, pp. 91-98,
January 2006.

[9] R. C. Martin, Agile Software Development, Principles, Patterns, and

Practices, 1st ed. Prentice Hall, Oct. 2002.

M. Q. Patton, Qualitative Research and Evaluation Methods. Thousand

Oaks, EUA : Sage, 2002.

SCAMPI Upgrade Team, “Standard CMMI Appraisal Method for Pro-

cess Improvement (SCAMPI) A, Version 1.3: Method Definition Doc-

ument,” Software Engineering Institute / Carnegie Mellon University,

HANDBOOK CMU/SEI-2011-HB-001, 2011.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

342

J. E. Cook and A. L. Wolf, “Software process validation: quantitatively
measuring the correspondence of a process to a model,” ACM Trans.

Softw. Eng. Methodol., vol. 8, pp. 147-176, April 1999.
A. d. Moor and H. Delugach, “Software Process Validation: Comparing

Process and Practice Models,” in Proceedings of the Workshop on
Exploring Modeling Methods for Systems Analysis and Design (EMM-
SAD’06), 2006, pp. 533-540.

V. Rubin, C. W. Giinther, W. M. P. Van Der Aalst, E. Kindler, B. F.
Van Dongen, and W. Schifer, “Process mining framework for software
processes,” in Proc. Intl. Conf. on Software Process (ICSP’07), Min-
neapolis, MN, 2007, pp. 169-181.

J. Samalikova, R. Kusters, J. Trienekens, T. Weijters, and P. Siemons,
“Toward objective software process information: experiences from a case
study,” Software Quality Control, vol. 19, pp. 101-120, March 2011.
B. van Dongen, A. de Medeiros, H. Verbeek, A. Weijters, and W. van der
Aalst, “The prom framework: A new era in process mining tool support,”
in Applications and Theory of Petri Nets 2005. Springer Berlin /
Heidelberg, 2005, vol. 3536, pp. 1105-1116.

T. Xie, S. Thummalapenta, D. Lo, and C. Liu, “Data mining for software
engineering,” Computer, vol. 42, pp. 55-62, August 2009.

M. El-Ramly, E. Stroulia, and P. Sorenson, “From run-time behavior
to usage scenarios: an interaction-pattern mining approach,” in ACM
SIGKDD Conf. (KDD’02), Edmonton, Alberta, Canada, 2002, pp. 315-
324.

D. Lo, S.-C. Khoo, and C. Liu, “Efficient mining of iterative patterns
for software specification discovery,” in ACM SIGKDD Conf. (KDD’07),
San Jose, CA, 2007, pp. 460—469.

J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “The detection and
classification of non-functional requirements with application to early
aspects,” in Prof. 14th IEEFE Intl. Requirements Engineering Conference,
2006, pp. 36-45.

J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”
in Proc. 28th International Conference on Software Engineering
(ICSE’06), Shanghai, China, 2006, pp. 361-370.

Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classifica-
tion,” SIGKDD Explor. Newsl., vol. 12, pp. 40-48, November 2010.

G. Dong, Sequence Data Mining. Berlin, Heidelberg: Springer-Verlag,
2009.

S. Bandyopadhyay, U. Maulik, L. B. Holder, D. J. Cook, and
S. Sarawagi, “Sequence data mining,” in Advanced Methods for Knowi-
edge Discovery from Complex Data, ser. Advanced Information and
Knowledge Processing. Springer London, 2005, pp. 153-187.

N. Ramasubbu and R. K. Balan, “The impact of process choice in high
maturity environments: An empirical analysis,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09,
2009, pp. 529-539.

S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” J. Comput. Secur., vol. 6, pp. 151-180,
August 1998.

W. B. Cavnar and J. M. Trenkle, “N-Gram-Based Text Categorization,”
in In Proceedings of SDAIR-94, 3rd Annual Symposium on Document
Analysis and Information Retrieval, 1994, pp. 161-175.

B. Y. Cheng, J. G. Carbonell, and J. Klein-Seetharaman, “Protein clas-
sification based on text document classification techniques,” Proteins:
Structure, Function, and Bioinformatics, vol. 58, no. 4, pp. 955-970,
Mar. 2005.

J. R. Quinlan, C4.5: Programs for machine learning.
CA: Morgan Kaufmann Publishers Inc., 1993.

P. Domingos and M. Pazzani, “On the optimality of the simple bayesian
classifier under zero-one loss,” Mach. Learn., vol. 29, pp. 103-130,
November 1997.

V. N. Vapnik, Statistical Learning Theory.
1998.

J. A. Hanley and B. J. McNeil, “The meaning and use of the area under
a receiver operating characteristic (roc) curve,” Radiology, vol. 143, pp.
29-36, 1982.

San Francisco,

Wiley-Interscience, Sep.

	Software process evaluation: A machine learning approach
	Citation

	Software Process Evaluation: A Machine Learning Approach

