
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2012

Boosting multi-kernel Locality-Sensitive Hashing for scalable Boosting multi-kernel Locality-Sensitive Hashing for scalable

image retrieval image retrieval

Hao XIA
Nanyang Technological University

Steven C. H. HOI
Singapore Management University, chhoi@smu.edu.sg

Pengcheng WU
Nanyang Technological University

Rong JIN
Michigan State University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
XIA, Hao; HOI, Steven C. H.; WU, Pengcheng; and JIN, Rong. Boosting multi-kernel Locality-Sensitive
Hashing for scalable image retrieval. (2012). SIGIR'12: Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval: August 12-16, Portland, OR. 55-64.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2343

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2343&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2343&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2343&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2343&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Boosting Multi-Kernel Locality-Sensitive Hashing for
Scalable Image Retrieval

Hao Xia, Pengcheng Wu, Steven C.H. Hoi
School of Computer Engineering
Nanyang Technological University

Singapore 639798
{xiah0002,wupe0003,chhoi}@ntu.edu.sg

Rong Jin
Computer Science and Engineering Dept.

Michigan State University
East Lansing, MI, 48824

rongjin@cse.msu.edu

ABSTRACT
Similarity search is a key challenge for multimedia retrieval ap-
plications where data are usually represented in high-dimensional
space. Among various algorithms proposed for similarity search in
high-dimensional space, Locality-Sensitive Hashing (LSH) is the
most popular one, which recently has been extended to Kernelized
Locality-Sensitive Hashing (KLSH) by exploiting kernel similarity
for better retrieval efficacy. Typically, KLSH works only with a
single kernel, which is often limited in real-world multimedia ap-
plications, where data may originate from multiple resources or can
be represented in several different forms. For example, in content-
based multimedia retrieval, a variety of features can be extracted to
represent contents of an image. To overcome the limitation of reg-
ular KLSH, we propose a novel Boosting Multi-Kernel Locality-
Sensitive Hashing (BMKLSH) scheme that significantly boosts the
retrieval performance of KLSH by making use of multiple kernels.
We conduct extensive experiments for large-scale content-based
image retrieval, in which encouraging results show that thepro-
posed method outperforms the state-of-the-art techniques.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Retrieval models;
H.2.8 [Database Applications]: Image databases

General Terms
Algorithms, Experimentation

Keywords
Image Retrieval, High-dimensional indexing, Locality-sensitive hash-
ing, Kernel methods

1. INTRODUCTION
Similarity search, or Nearest Neighbor (NN) search, plays acrit-

ical role in Content-Based Image Retrieval (CBIR) systems [33,
24]. Typically, images in a CBIR system are represented in a high-
dimensional space, and the size of an image database can easily

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’12,August 12–16, 2012, Portland, Oregon, USA.
Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$15.00.

be over millions or even billions for large-scale real-world applica-
tions. These two aspects have made CBIR an open grand challenge
although it has been extensively studied for decades.

A variety of data structures have been proposed for indexingand
searching data points in a low-dimensional space [31, 7, 2, 29].
These approaches work well for low dimensional data. But, when
the number of dimensions grows, they often become less efficient,
a phenomenon known as thecurse of dimensionality. Specifically,
the time or space requirements of these approaches often grow ex-
ponentially with the dimensionality.

Since exact NN search is hard to scale for high-dimensional data,
recent studies mainly focus onapproximationapproaches [20, 14,
25, 1], which aim to remove the exponential dependence on dimen-
sionality. Instead of finding the nearest pointp to a query pointq,
approximate NN search allows to return any point within the dis-
tance of(1 + ǫ) times the distance fromq to p. Recent studies
have shown that by adopting the approximation, the complexity of
NN search is reduced from exponential to polynomial in termsof
its dependence on the dimensionality. Several recent studies have
successfully applied the random projection idea for approximate
NN search over high-dimensional data. One of the most well-
known techniques in this direction is Locality-Sensitive Hashing
(LSH) [20, 14, 6], which has been actively studied and success-
fully applied to many applications [20, 10, 1].

One limitation of regular LSH is that they require explicit vec-
tor representation of data points. Kernelized LSH (KLSH) [23]
addresses this limitation by employing kernel functions tocapture
similarity between data points without having to know theirexplicit
vector representation. KLSH has been shown effective empirically,
but there is no formal analysis of KLSH in theory. In this paper, we
first analyze the theoretical property of KLSH to better understand
the behavior and capacity of KLSH in similarity search. Second,
we address the limitation of KLSH. Despite the success, mostexist-
ing KLSH techniques only adopt a single kernel function. This sig-
nificantly limits its application to many real-world image retrieval
tasks [40, 18], where images are often analyzed by a variety of
feature descriptors and are measured by a wide class of diverse
similarity functions.

To this end, we propose a novel Boosting Multi-Kernel Locality-
Sensitive Hashing (BMKLSH) framework, which improves KLSH
by learning a combination of multiple kernels. The key challenge of
multi-kernel LSH is to determine an optimal combination of multi-
ple kernels by determining appropriate bit size to each of the mul-
tiple kernels. To overcome the challenge, we propose a boosting
scheme to greedily find a good solution in an efficient approach.
Our extensive experiments show that BMKLSH significantly en-

hances the performance of KLSH in exploring the power of multi-
ple kernels for CBIR.

The rest of this paper is organized as follows. Section2 reviews
related work. Section3 gives our analysis of KLSH, and Section4
presents the proposed BMKLSH method. Section5 discusses our
experiments. Finally Section6 concludes this work.

2. RELATED WORK
This section reviews related work in approximate nearest neigh-

bor (NN) search with the focus on image retrieval applications.
In literature, developing efficient techniques for indexing high

dimensional images has been studied extensively in information
retrieval, multimedia, and database communities [4, 5, 9]. Spatial
data structure approaches (e.g., kd-tree [2, 29] or metric tree [35])
were used to handle the NN search problem; however, they scale
poorly with data dimensionality. In practice, if the numberof di-
mensions is large enough, kd-tree and other similar data structures
require an expensive inspection in the data set, thereby perform
no better than an exhaustive linear search that simply compares a
query to every data point in the database.

Instead of solving the exact similarity search for high dimen-
sional indexing, recent years have witnessed active studies of ap-
proximate high-dimensional indexing techniques [20, 14, 25, 3, 8,
11]. The key of most techniques is to exploit random projectionto
tackle the curse of dimensionality issue, such as Locality-Sensitive
Hashing (LSH) [20], a very well-known and highly successful tech-
nique in this area. In general, we can group most of existing ap-
proaches into two major categories: linear projection methods and
kernel-based methods. Below we briefly review the first category
and then focus on discussing the second category.

For the first category, one of the most notable techniques is LSH [20],
which utilizes a family of locality sensitive hashing functions which
map similar items to same bucket with high probability, and dis-
similar items to same bucket with low probability. With sucha
hash function, one can easily search within the bucket a query
point belongs to in order to find nearest neighbors of the query.
LSH efficiently solves the approximate similarity search problem
and achieves query time in the worst case O(dn1/ǫ). Gionis et
al. [14] improved the techniques and achieved significant query
time O(dn1/(1+ǫ)). Recently, many studies have attempted to im-
prove upon the regular LSH technique. For example, [25] intro-
duced multi-probe LSH methods that reduce the space requirement
of the basic LSH method. Tao et al. [34] proposed the locality-
sensitive B-tree technique that mainly concerns the performance
improvement of I/O disk access. Besides, there are many other ex-
isting works that accommodate LSH functions in tackling different
issues, including Hamming distance [20], inner products [6], ℓp-
norms [10], normalized partial matching [15], learned Mahalanobis
metrics [27], and so on. Last but not least, there are also many re-
cent studies of learning compact binary codes inspired by the idea
of LSH [39, 16, 36, 22].

Our study is more related to the second category of kernel-based
methods. In particular, kernel-based LSH (KLSH) [23] was re-
cently proposed to overcome the limitation of the regular LSH tech-
nique that often assumes the data come from a multidimensional
vector space and the underlying embedding of the data must beex-
plicitly known and computable. KLSH provides a powerful frame-
work to explore arbitrary kernel/similarity functions where their
underlying embedding only needs to be known implicitly. In [28],
the authors proposed a variant of KLSH which aims to force the
expected Hamming distance between the binary codes of two vec-
tors is related to the value of a shift-invariant kernel. In [17], the
authors proposed an improved algorithm for learning binarycodes

Symbol Meaning
d number of dimensions of input data
n number of image examples in database
X d× n matrix ofn image examples
q query image example
xi i-th image example in database
K kernel matrix
nq number of training query examples
m number of different kernel functions
κl l-th kernel function
b length of a hash key
p number of data points sampled in KLSH
t number of indices selected in KLSH
Dt distribution at thet-th round
T number of boosting rounds

Table 1: Summary of notation used in this paper

with kernel to speed up the KLSH technique. Despite being studied
actively, most existing kernel-based hashing methods [23, 28, 17,
26] only consider a single kernel, which cannot fully explore the
potential of multiple kernel functions in a real CBIR application.

Very recently, some emerging study has attempted to apply KLSH
by exploring multiple kernels. In [37], they proposed a simple so-
lution named MKLSH by applying the existing KLSH algorithm
for each specific kernel individually, and then combining the out-
puts of these KLSH processes. Our work however differs from
their method in several aspects. First of all, their naive approach
to combining multiple kernels simply treats each kernel equally,
which fails to fully explore the power of combining multipledi-
verse kernels in KLSH. Second, their technique is essentially un-
supervised, which does not fully explore the data characteristics
and thus cannot achieve the optimal indexing performance. In con-
trast, our technique is in general supervised and is able to learn
the optimal combination of multiple kernels from training data to
maximize the indexing performance.

3. ANALYSIS OF KERNELIZED LSH
In this section, we first review the algorithm of Kernelized Locality-

Sensitive Hashing (KLSH), and then present our analysis of KLSH.
Let X ∈ R

d×n be the collection of data points to be searched.
Given a queryq ∈ R

d, to efficiently find thek nearest neighbors,
LSH projects each data point into a low-dimensional binary space,
referred to as thehashkey. The hash keys are constructed by ap-
plying b binary-valued hash functionsh1, . . . , hb to the data points
in X. KLSH generalizes LSH by introducing a kernel function
κ(xi,xj) to map a data pointxi to a functional space through a
nonlinear feature mappingφ(xi) that satisfies the conditionκ(xi,xj) =
φ⊤(xi)φ(xj). To build the hash function, KLSH first randomly se-
lects a subset ofp data points fromX, denoted asS = {xs

1, . . . ,x
s
p},

and forms a kernel matrixK over the sampled data points; it then
generatesb random vectorse1

S, . . . , e
b
S and computes a hashing

function for each random vectorek
S as

hk(φ(x)) = sign

(

p
∑

j=1

wk
j κ(x,x

s
j)

)

,

wherewk = (wk
1 , . . . , w

k
p)

⊤ is given bywk = K−1/2ek
S . Al-

gorithm 1 outlines the key steps of KLSH, whereb is a critical
parameter that determines the length of hash key to be constructed
in KLSH.

Although KLSH is proved to be effective empirically, no theo-
retical analysis is provided for the properties of KLSH. To bound
approximation error of KLSH, we introduce a few notations. De-

Algorithm 1 KLSH
INPUT:
• an image database:{xi|i = 1, . . . , n}, xi ∈ R

d

• length of the hash key: b
• a kernel function:κ(·, ·)

1: randomly selectp data pointsS = {xs
j |j = 1, . . . , p}

2: K = [κ(xs
i ,x

s
j)]p×p

3: for k = 1, . . . , b do
4: form e

k
S : selectt indices at random from[1, . . . , p]

5: form w
k = K−1/2

e
k
S

6: construct hash function:
hk(φ(x)) = sign(

∑p
j=1 w

k
j κ(x,x

s
j))

7: end for
OUTPUT: a set ofb hash functionsH = {hk|k = 1, . . . , b}

finehi ∈ R
b as

hi =

(

p
∑

j=1

w1
jκ(xi,x

s
j), . . . ,

p
∑

j=1

wb
jκ(xi,x

s
j)

)⊤

andH = (h1, . . . ,hn). Let Ka = [κ(xi,xj)]n×n be the Gram
matrix for all data points inX, andKb = [κ(xi,x

s
j)]n×p be the

kernel matrix between data points inX and the sampled data points
in S. Let λ1, . . . , λn be the eigenvalues ofKa ranked in the de-
scending order. We first bound the error caused by the random
vectors{ek

S}
b
k=1.

THEOREM 1. With a probability at least1− δ, we have
∣

∣

∣

∣

t

p
KbK

−1K⊤
b −

1

b
H⊤H

∣

∣

∣

∣

F

≤

√

2t ln(2/δ)

b
|KbK

−1K⊤
b |F

PROOF. Let us defineA asA = 1
b

∑b
k=1 e

k
S[e

k
S]

⊤. It is easy to
see thatE[A] = t

p
I . According to the concentration inequality of

linear operator [32], we have, with a probability1− δ, that

∣

∣

∣

∣

A−
t

p
I

∣

∣

∣

∣

F

≤

√

2t ln(2/δ)

p

We complete the proof by the using the fact
∣

∣

∣

∣

t

p
KbK

−1K⊤
b −

1

b
H⊤H

∣

∣

∣

∣

F

=

∣

∣

∣

∣

KbK
−1/2

(

t

p
I − A

)

K−1/2K⊤
b

∣

∣

∣

∣

F

≤

∣

∣

∣

∣

t

p
I − A

∣

∣

∣

∣

F

|KbK
−1K⊤

b |F

THEOREM 2. Assumeκ(x,x) ≤ 1 for anyx. Letk ∈ Z and
ǫ ∈ (0, 1) be any two numbers satisfyingk/ǫ4 ≤ p/[64η2], where
η = 1+

√

8 log(1/δ). Then, with a probability at least1− 2δ, we
have

1

n2

n
∑

i,j=1

(

κ(xi,xj)−
p

tb
h
⊤
i hj

)2

≤
3

n

n−k
∑

i=1

λ2
k+i + 3ǫ +

6p2 ln(2/δ)

bt

PROOF. According to Theorem [12], with a probability1 − δ,
for anyǫ ∈ [0, 1] andk ∈ Z that satisfy

k

ǫ4
≤

p

64η2

whereη = 1 +
√

8 log(1/δ), we have

|Ka −KbK
−1K⊤

b |F ≤

√

√

√

√

n−k
∑

i=1

λ2
k+i + ǫn

where| · |F stands for the Frobenius norm. Using the triangle in-
equality of Frobenius norm, we have

∣

∣

∣

∣

t

p
Ka −

1

b
H⊤H

∣

∣

∣

∣

F

≤
t

p

∣

∣

∣
Ka −KbK

−1K⊤
b

∣

∣

∣

F
+

∣

∣

∣

∣

t

p
KbK

−1K⊤
b −

1

b
H⊤H

∣

∣

∣

∣

F

Combining the result from Theorem1, we have, with a probability
1− 2δ,
∣

∣

∣

∣

t

p
Ka −

1

b
H⊤H

∣

∣

∣

∣

F

≤
t

p

n−k
∑

i=1

λk+i +
t

p
ǫn+

√

2t ln(2/δ)

b
|KbK

−1K⊤
b |F

We complete the proof by using the fact|KbK
−1Kb|F ≤ |Ka|F ≤

∑n
i=1 λi ≤ n and the definition of Frobenius.

As indicated by Theorem2, on average, kernel similarityκ(xi,xj)
is well approximated byp

tb
h⊤
i hj , and the approximation error de-

creases as the number of bitsb increases. Furthermore the approx-
imation error is related to the eigenvalues of kernel matrixKa. In
particular, the skewed the eigenvalues ofKa, the smaller the ap-
proximation error.

Theorem2 shows that different types of kernels will lead to very
different approximation errors, depending on their eigenvalue dis-
tributions. Hence, some kernels will have good retrieval accuracy
but rather poor approximation performance while the othersmay
have the opposites. Thus, combining multiple kernels couldpo-
tentially avoid relying too much on a single kernel that could be
of neither poor approximation nor low retrieval accuracy. To make
a good tradeoff between retrieval accuracy and approximation er-
ror, we propose a boosting scheme to combine multiple kernels for
KLSH in order to obtain both high retrieval accuracy and low ap-
proximation error.

4. LEARNING TO COMBINE MULTIPLE
KERNELS FOR KLSH

4.1 Overview
In this section, we propose a framework of learning the combina-

tion of multiple kernels for Kernelized Locality-Sensitive Hashing,
which aims to boost KLSH by making use of a combination of mul-
tiple kernels. One key question is how to determine the weights
for kernel combination. A straightforward approach is to assign
equal weight to each kernel function, and apply KLSH with the
uniformly combined kernel function. Such an approach mightnot
fully explore the power of multiple kernels.

To address this limitation, we propose a scheme to assign each
kernel a different number of bits so as to reflect the importance of
the kernel. The key challenge of this scheme is thus how to op-
timize the bit size allocation with respect to different kernel func-
tions. Figure1 illustrates the proposed framework, which consists
of two key steps: (i) bit allocation optimization, and (ii) the multi-
kernel hashing as shown in Algorithm2.

Figure 1: The proposed framework of learning to combine mul-
tiple kernels for improving kernel LSH

Algorithm 2 The Multi-Kernel Hashing scheme
INPUT:
• an image database:{xi|i = 1, . . . , n}, xi ∈ R

d

• a set ofm different kernels:{κl|l = 1, . . . ,m}
• bits allocation vector[b1, . . . , bm]

1: k = 0
2: randomly selectp data pointsS = {xs

j |j = 1, . . . , p}

3: for l = 1, . . . ,m do
4: Kl = [κl(x

s
i ,x

s
j)]p×p

5: for r = 1, . . . , bl do
6: k = k + 1
7: form e

k
S : selectt indices at random from[1, . . . , p]

8: formw
k = K

−1/2
l e

k
S

9: construct hash function:
hk(φ(x)) = sign(

∑p
j=1 w

k
j κl(x,x

s
j))

10: end for
11: end for
OUTPUT: a set ofb hash functionsH = {hk|k = 1, . . . , b}

Unlike the regular KLSH that adopts a single kernel, BMKLSH
employs a set ofm kernels for the hashing scheme. Besides, a
key difference between BMKLSH and some existing Multi-Kernel
LSH (MKLSH) [37] is the bit allocation optimization step to find
the parameter [b1, . . . , bm] that determines the allocations of bit
sizes for a set ofm kernels. Unlike the existing MKLSH approach [37]
that simply assigns the same number of bits to each kernel, lead-
ing to a uniform combination of multiple kernels, we developtwo
supervised learning algorithms (WMKLSH and BMKLSH), de-
scribed below, that effectively learn the importance of individual
kernels, and consequentially determine the appropriate number of
bits for each kernel.

4.2 WMKLSH by Weighted Bit Allocation
We first propose a Weighted Multi-Kernel Locality-Sensitive Hash-

ing (WMKLSH) scheme by a supervised learning approach to de-
termine the allocation of bit size, where a kernel is assigned a larger
size of bits if it better captures the similarity between data points.

In order to learn the importance weights of different kernels for
the retrieval tasks, we assume a small training data set is available
for our learning task. The training set consists of a small set of
queries and their relevance judgements, which usually can be eas-
ily collected in a real-life CBIR system via the relevance feedback
mechanism [30, 19].

For the WMKLSH algorithm, we begin by testing the retrieval
performance of KLSH with a set ofm kernels on the given training
set. After that, we can obtain the retrieval performance in terms
of mean Average Precision (mAP), As a result, we can compute
the weights based on the retrieval performance of each kernel, i.e.,
αl = emAPl , l = 1, . . . ,m. Finally, the bit sizes of the kernels are
allocated proportionally according to their importance weights.

4.3 BMKLSH for Optimizing Bit Allocation
To further improve the above learning scheme, we propose a

boosting scheme, referred to as BMKLSH, to learn the optimal
allocation of bit sizes, which adopts the similar idea of boosting
algorithms for classification [13]. Let us denote bynq the number
of queries, andAPl(i), l ∈ [m], i ∈ [nq], be the Average Precision
performance of applying thel-th kernelκl(·, ·) to retrieve vectors
for thei-th query. In order to find the optimal allocation of bit sizes,
we cast it into the following optimization problem:

max
b1,...,bm∈[b]

nq
∑

i=1

exp

(

m
∑

l=1

APl(i)

)

subject to
∑

l

bl = b (1)

Since eachbl is an integer variable, the above problem is essen-
tially an integer programming task, which is NP-hard. To findan
efficient solution, we approximate the above optimization problem
by introducing a set of combination weightsαl, l ∈ [m], each of
which represents the importance of each kernel so as to determine
each bit sizebi. In order to learn the optimal weights, we turn the
above optimization into the following optimization problem

max
α∈Rm

+
,α⊤1=1

nq
∑

i=1

exp

(

m
∑

l=1

αlAPl(i)

)

(2)

Given the learned weightsα, we assign to thel-th kernelbαl bits,
whereb is the total number of bits.

To efficiently solve the problem in (2), we adopt a boosting based
strategy. Following the similar procedure of Adaboost algorithm [13],
we introduce a distribution of weightsDt to indicate the retrieval
difficulty of the instances in the training data set. At each boosting
round, we measure the retrieval performance (e.g. average preci-
sion) of each kernel based on the existing KLSH algorithm (shown
in Algorithm 1), and select the best kernel with the largest weighted
Average Precision (wAP) performance over the current distribution
Dt, which is defined as:

wAPl =

nq
∑

i=1

Dt(i)APl(i) (3)

At the end of each boosting round, an importance weight is com-
puted for the selected kernel based on its retrieval performance,
and the weights of each poorly retrieved query example will be in-
creased such that the next selected kernel will focus more onthose
hardly retrieved examples. The boosting procedure will be repeated
T times. Finally, we allocate a bit size to each kernel based onits
cumulative weight in all theT boosting rounds. The details of the
proposed algorithm are given in Algorithm3.

4.4 Time Complexity Analysis
First of all, assume the length of hash keyb is fixed, both WMKLSH

and BMKLSH algorithms have the same querying time cost as that
of KLSH and MKLSH. Next we focus on discussing training and
indexing time cost.

As supervised methods, WMKLSH and BMKLSH algorithms
need to test the performance for all training instances withall kinds
of kernels once. For BMKLSH, at each boosting round, it only up-
dates the distribution of training instances and computes the weight
for each round based on the distribution. The updating step is in
general linear. Thus, the main time cost consumed mostly falls into
the process of validating the performance of training instances.

5. EXPERIMENTS
We conduct extensive experiments to examine the efficacy of the

proposed algorithms for scalable content-based image retrieval.

5.1 Experimental Testbed
We perform experiments on two well-known public image databases

which have been widely used for benchmark image retrieval tasks.
Besides, we downloaded 1,000,000 social images from Flickrto
form a background class and combine it with the second database
to form a large scale data set. We briefly introduce some details of
the two data sets below.

The first data set is the INRIA Holidays data set1, which has
been widely used for benchmark evaluation of image retrieval per-
formance [21]. It contains 500 image groups, each of which repre-
1http://lear.inrialpes.fr/~jegou/data.php

http://lear.inrialpes.fr/~jegou/data.php

Algorithm 3 BMKLSH: Boosting Multi-Kernel LSH algorithm for
optimizing the bit size allocation
INPUT:
• an image database:{xi|i = 1, . . . , n}, xi ∈ R

d

• length of the hash key:b
• a set ofm different kernels,{κl|l = 1, . . . ,m}
• a set ofnq training instances{xt

i|i = 1, . . . , nq} with additional
feedback info (positive and negative lists)

• number of boosting rounds:T
• initial distribution:D1(i) = 1/nq , i = 1, . . . , nq

1: for t = 1, . . . , T do
2: for l = 1, . . . , m do
3: obtainAPl(i), l = 1, . . . ,m, i = 1, . . . , nq by testing on the

training set based on Algorithm1
4: wAPl =

∑nq

i=1 Dt(i)APl(i)

5: αl
t = ewAPl

6: end for

7: αl
t ←

αl
t∑

m
i=1

αi
t

, l = 1, . . . , m

8: l∗ = arg max
l∈{1,2,...,m}

αl
t

9: αt ← αl∗

t , APt ← APl∗ , wAPt ← wAPl∗

10: update the distribution of the training instances:

Dt+1(i) =
Dt(i)

Zt
×

{

e−αt if APt(i) ≥ wAPt

eαt if APt(i) < wAPt

Zt is a normalization factor to makeDt+1 a distribution
11: end for
12: αl =

∑T
t=1 α

l
t, l = 1, . . . ,m

13: allocate bits to m kernels[b1, . . . , bm] based on the weightsαl

14: Multi-Kernel Hashing([b1, . . . , bm])

sents a distinct scene or object. The first image of each groupis the
query image and the correct retrieval results are the other images
of the group. There are 1491 images in total, including 500 queries
and 991 corresponding relevant images.

The second data set is a large-scale data set, which consistsof
both the ImageCLEF database2 and the collection of 1,000,000 im-
ages crawled from Flickr (named as “Flickr1M"). ImageCLEF is a
medical image database, which was also used in [38]. For all the
categories, we randomly select10% images as the query pool, the
other images as database pool. For the Flickr photos, we treat all
of them as the background noisy photos, which are mainly usedto
test the scalability of our algorithms. We denote this data set as
the “ImageCLEF + Flickr1M" data set or “ImageCLEFFlickr" for
short.

5.2 Experimental Setup
We present our experimental results by showing the percentage

of database items searched with the hashing function instead of
measuring the exact search time in order to avoid the unfairness
from different implementations of the codes. To achieve this pur-
pose, we have to set a parameter for the LSH search, i.e.,ρ, which
is used to control the fraction of nearest neighbors to be linearly
scanned.

For performance metric, we evaluate the retrieval performance
based on mean Average Precision (mAP) and top-n (n = 1, 2, . . . , 5)
retrieval accuracy. The Average Precision (AP) value is thearea un-
der precision-recall curve for a query. The mAP value is calculated
based on the average AP value of all the queries. The precision
value is the ratio of relevant examples over the total retrieved ex-
amples, while recall is the ratio of the relevant examples retrieved
over the total relevant examples in the database.

2http://www.imageclef.org

Our objective is to achieve fast and accurate image retrieval. As
LSH can only return a portion of images, only the top returned
images (Hit Items) are needed to be evaluated. Based on this con-
cern, the mAP performance reported in our experiments is based on
the mAP over all the returned items (except for the experiments of
parameter sensitivity evaluation, where we adopt the top-10 mAP
performance to enable a fair evaluation of different parameter set-
tings). It is worth mentioning that in some previous works they
usually reported mAP values for the whole data set. As we know,
the more the image examples retrieved the higher the mAP value
obtained. Thus, it is not totally fair to directly compare the ex-
act value of our results with the results of the previous works. In
our experiments, we have implemented all the compared methods
including our algorithms under the same evaluation criterion to en-
able fair comparisons. Nonetheless, from the experimentalresults,
we found that the mAP results we achieved are higher than some
of the others’s reported results, although we are actually based on
a criterion that generates relatively lower mAP values.

As the proposed algorithms need some training data, we splitthe
original query set into two parts, each time we select one part for
query, and the other part for training. The final result is obtained by
computing the average of the results over the two splits. Finally, we
conduct the evaluations of all the algorithms 10 times and average
the results over these 10 runs to obtain a stable result.

5.3 Image Descriptors and Kernel Functions

5.3.1 Image Descriptors
We adopt both global and local feature descriptors for represent-

ing images in our experiments. We have some preprocessing by
resizing all images to500 × 500 pixels while keeping the aspect
ratio unchanged. For global features, we extract five kinds of fea-
tures, including (1) Color histogram and color moments, (2)Edge
direction histogram, (3) Gabor wavelets transform, (4) Local Bi-
nary Pattern, and (5) GIST. For local features, we extract the bag
of visual words features based on two types of descriptors: SIFT
and SURF. In particular, for SIFT: we adopt the Hessian-Affine in-
terest region detector with threshold 500 and the SIFT descriptor;
for SURF: we use SURF detector with threshold 500 and SURF
descriptor. For the clustering, we adopt a forest of 16 kd-trees
and search 2048 neighbor to speed up the clustering task. Finally,
we use TF-IDF to generate the bag of visual words to represent
the local features. In total, with different vocabulary sizes, we ex-
tracted four kinds of local features, including SIFT200, SIFT1000,
SURF200 and SURF1000.

5.3.2 Kernel Functions
From the above, we represent each image by 9 types of differ-

ent features. We then build kernel functions for these 9 types of
features. Before we compute the kernels, we normalize the feature
vectors to zero mean (each dimension) and unit length (each point).
We adopt the RBF kernel:

κ(x,x′) = exp(−γ−1d(x,x′)) (4)

whered(·, ·) is the distance andγ is selected as the mean of the
pairwise distance where the distance is computed using L2 dis-
tance. In total, we have a set of 9 kernels for our retrieval tasks.
Finally, we note that all kernel matrices are normalized to unit trace
to balance different kernels.

5.4 Comparison Algorithms
To extensively examine the efficacy of the proposed algorithms,

we have implemented several different solutions for adopting KLSH

http://www.imageclef.org

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

to
p−

n
pr

ec
is

io
n

Holiday

KLSH−Uniform
KLSH−Best
KLSH−Weight
MKLSH
WMKLSH
BMKLSH

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

n

to
p−

n
pr

ec
is

io
n

ImageCLEFFlickr

KLSH−Uniform
KLSH−Best
KLSH−Weight
MKLSH
WMKLSH
BMKLSH

(a) “Holiday" data set (b) “ImageCLEFFlickr" data set

Figure 2: Evaluation of average top-n precision of retrieval results by different algorithms.

with multiple kernels. In particular, we have implemented the fol-
lowing algorithms:

• KLSH-Uniform: a baseline method that uniformly combines
them kernels, i.e.,κ =

∑m
l=1

1
m
κl, and adopts this com-

bined kernel for KLSH.

• KLSH-Best: We test the retrieval performance of all kernels,
evaluate their mAP values on the training set, and then select
the best kernel (with the highest mAP value). We adopt this
best kernel for KLSH.

• KLSH-Weight: We evaluate the mAP performance of all ker-
nels on the training set, calculate the weight of each kernel
w.r.t. their mAP values:αl = emAPl (the same weight func-
tion as WMKLSH and BMKLSH), and finally normalize the
weights (sum to be 1). Finally, we adopt the weighted com-
bination of them kernels:κ =

∑m
l=1 αlκl for KLSH.

• MKLSH [37]: an existing KLSH approach that uses multiple
kernels by a uniform bit size allocation.

• WMKLSH: the proposed algorithm by using a weighted bit
size allocation for multiple kernels, as described in Section4.2.

• BMKLSH: the proposed BMKLSH algorithm by optimizing
bit size allocation via boosting as shown in Algorithm3.

5.5 Experimental Results
We now present the performance evaluation results on the data

sets. We measure the performance in terms of top-n (n = 1, 2, . . . , 5)
precision and the mAP value of all returned Hit items. For this ex-
periment, we fix the parameters as follows:ρ = 0.1, b = 300,p =
300, t = 30, andT = 20. We will evaluate the sensitivity of these
parameters in the subsequent section. We summarize the experi-
mental results of mAP performance of the compared algorithms on
the two data sets in Table2, and illustrate the details of the top-
n precision results in Figure2. Below we discuss the empirical
observations from these results.

To examine statistical significance of the comparisons, forthe
experimental results reported below, we highlight the bestresult
in each group in bold font by conducting student t-tests withthe
significance levelα = 0.05.

Table 2: Experimental results of mAP performance.
Algorithm Metric Holiday ImageCLEFFlickr

KLSH-Uniform mean 0.58506 0.16902
std ± 0.00258 ± 0.00100

KLSH-Best mean 0.50361 0.09813
std ± 0.00364 ± 0.00018

KLSH-Weight mean 0.59986 0.17823
std ± 0.00321 ± 0.00156

MKLSH mean 0.58994 0.16761
std ± 0.00110 ± 0.00086

WKLSH mean 0.60562 0.17621
std ± 0.00037 ± 0.00064

BKLSH mean 0.66867 0.20460
std ± 0.00337 ± 0.00400

5.5.1 On the “Holiday" Data Set
From the experimental result shown in Table2 and Figure2, we

can draw several observations. First of all, by comparing the three
different KLSH algorithms with different kernels, it seemsa bit sur-
prising to find that KLSH-Uniform, a simple uniform combination
of all kernels, outperformed KLSH-Best, which is based on the best
kernel chosen from the training set. But when thinking further, it
is not difficult to explain the result as KLSH-best only explores a
single kernel, while KLSH-Uniform jointly exploits multiple ker-
nels. This result is further verified when we examine the result
of KLSH-Weight, which outperform both KLSH-Best and KLSH-
Uniform. These observations show that it is very important to ex-
plore the power of multiple kernels for KLSH in some real-world
applications.

Second, by comparing the proposed WMKLSH and BMKLSH
algorithms against the KLSH and MKLSH algorithms, we found
that the proposed algorithms generally perform better thanthe KLSH
and MKLSH algorithms, and the proposed BMKLSH algorithm at-
tained the best result among all the compared algorithms, which
was significantly better than the other algorithms. These promising
results showed that the proposed BMKLSH technique is more ef-
fective to explore the power of multiple kernels for enhancing the
image retrieval performance.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

ρ

to
p−

10
 m

A
P

ρ

KLSH−Uniform
KLSH−Best
KLSH−Weight
MKLSH
WMKLSH
BMKLSH

100 150 200 250 300 350 400 450 500
0.45

0.5

0.55

0.6

0.65

0.7

0.75

b

to
p−

10
 m

A
P

b

KLSH−Uniform
KLSH−Best
KLSH−Weight
MKLSH
WMKLSH
BMKLSH

(a) parameterρ (b) parameterb

Figure 3: Evaluation of parameter ρ and b on the “Holiday" data set

5.5.2 On the “ImageCLEF+Flickr1M" Data Set
The experimental results of this data set are shown in the last col-

umn of Table2 and the right of Figure2. By examining the results
of the three KLSH algorithms, i.e., KLSH-Uniform, KLSH-Best,
KLSH-Weight, we found that the situation is the same as that on the
“Holiday" data set. Further, by comparing the proposed WMKLSH
and BMKLSH algorithms with the KLSH and MKLSH algorithms,
we found the similar observation where the proposed BMKLSH
achieved the best result among all the compared schemes. This re-
sult indicates that by the proposed boosting scheme, the BMKLSH
algorithm is to effectively identify the best kernel and achieve a
good tradeoff between the best kernel and the optimal combination
of multiple kernels.

5.6 Parameter Sensitivity Evaluation
In this section, we aim to examine the parameter sensitivityof

the proposed BMKLSH scheme for image retrieval tasks. Specif-
ically, there are several important parameters, including(1) ρ, the
parameter that controls the fraction of nearest neighbors to be lin-
early scanned, (2)b, the bit length of hash key, (3) the parametert
used in KLSH, which is to chooset indices for forming vectoreS ,
(4) the parameterp used in KLSH, which is to choose a subset of
p examples for computing the kernel matrix in KLSH, and (5) the
number of roundsT used in the boosting algorithm.

For the rest of the experiments, when varying one of the param-
eters for evaluation, the others will remain fixed at the following
default settings:ρ = 0.1,b = 300,t = 30,p = 300, andT = 20. We
adopt the top-10 mAP performance for evaluation in this section.

5.6.1 Evaluation ofρ andb

Theρ andb are two key parameters for the LSH algorithm. Fig-
ure 3 (a) and (b) show the evaluation of two parametersρ andb,
respectively. From the experimental results, it is not difficult to
see that increasing the value ofρ in general leads to increase of
the top-10 mAP performance. This is not difficult to understand as
the larger theρ value, the more examples in the database will be in-
spected, thus more relevant image examples can be likely retrieved.
Similarly, we also observe that increasing the value of hashkey
lengthb also leads to the increase of the top-10 mAP performance.

This is easy to understand as the larger the hash key length, the
more information can be encoded, which thus could lead to more
accurate results. Finally, similar to the previous observations, for
all different values of these two parameters, BMKLSH consistently
outperformed the other algorithms.

5.6.2 Evaluation of parameterp andt in KLSH
The parameterp and t are two parameters in the KLSH algo-

rithm. Figure4 (a) and (b) show the evaluation of two parameters
p and t, respectively. From the results, we can see that increas-
ing the p value in general leads to better performance of all the
algorithms. This is reasonable as more examples are sampledwe
are able to obtain a more accurate estimate of the distribution for
KLSH. However, whenp is large enough (e.g.,p > 200), the im-
provement of increasingp becomes not significant. In practice, to
trade off the performance and efficacy, we can choose any value
between 200 and 400 for this situation. On the other hand, forthe
parametert, we found that increasing the value oft does not always
lead to improvement of the performance. In some cases, a large t
value could slightly degrade the performance. Nonetheless, all the
algorithms are generally not very sensitive to this parameter.

5.6.3 Evaluation of the number of boosting roundsT

We now examine how the number of boosting rounds affects the
performance of the proposed BMKLSH algorithm. Figure5 shows
the evaluation results. From the results, we can see that theper-
formance of BMKLSH algorithm in general increases with respect
to the increase ofT . The performance of the BMKLSH algorithm
becomes saturated whenT is sufficiently large, e.g.,T >= 20.

5.7 Analysis of Bit Allocation Weights
Figure6 illustrates the bit allocation weights by three algorithms

on the two data sets. The x, y, z-axis denotes the index of kernel
used, the algorithm, and the weight assigned to each kernel,re-
spectively. From this figure, we can see that MKLSH assigns equal
weights to all the kernels, WMKLSH assigns different weights ac-
cording to their performance and the weights are non-zero, while
the weights assigned by BMKLSH are sparse, i.e., it focuses on
those kernels which are more beneficial to the retrieval tasks. Specif-
ically, for the “Holiday" dataset, the weights learned by BMKLSH

100 150 200 250 300 350 400 450 500
0.45

0.5

0.55

0.6

0.65

0.7

0.75

p

to
p−

10
 m

A
P

p

KLSH−Uniform
KLSH−Best
KLSH−Weight
MKLSH
WMKLSH
BMKLSH

10 15 20 25 30 35 40 45 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

t

to
p−

10
 m

A
P

t

KLSH−Uniform
KLSH−Best
KLSH−Weight
MKLSH
WMKLSH
BMKLSH

(a) parameterp (b) parametert

Figure 4: Evaluation of two parametersp and t used in the KLSH algorithm

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

to
p−

10
 m

A
P

T

Figure 5: Evaluation of the number of boosting rounds (T) in
the proposed BMKLSH algorithm.

are mainly assigned to Color, GIST, SIFT1000 and SURF1000;
while for the “ImageCLEFFlickr" dataset, BMKLSH allocatesall
the weights to only GIST and SURF1000. This is reasonable as
most of the medical images in the "ImageCLEF" dataset are gray-
level images and contain rich texture contents, which thus favor
GIST features instead of color features. Moreover, it is interest-
ing to observe that for the “Holiday" data set, the weight of Color
is less than SIFT200 and SURF200 assigned with WMKLSH, but
BMKLSH filters SIFT200 and SURF200 while keeps Color. This
is also quite reasonable as SIFT1000 and SURF1000 are somewhat
redundant with SIFT200 and SURF200, but they are complemen-
tary to Color. These observations indicate that BMKLSH can learn
an effective and sparse combination of multiple kernels.

5.8 Evaluation of Time Efficiency
Finally, we evaluate the efficiency of all the six algorithmson

the “Holiday" data set. The experiments were running in Matlab
on a Linux machine with 3GHz Intel CPU and 16GB RAM. As

we analyzed before, all the compared algorithms share the same
querying time given a fixed bit sizeb. In our experiments, typically
for b = 300, the average retrieval time per query is about 0.65ms
for all the compared algorithms. In the following, we focus on the
evaluation of training and indexing time efficiency.

Figure7 shows the evaluation results of the total amount of train-
ing and indexing time cost on the holiday data set, which were
averaged over 10 runs. Among all the algorithms, it is not surpris-
ing that WMKLSH and BMKLSH took more time cost for training
and indexing because of the nature of their supervised learning pro-
cesses. Such additional overhead is however acceptable since the
training process typically is done in an offline manner. To further
examine if the training and indexing process is scalable, weexam-
ine the relationship of their time cost with respect to the bit sizeb,
and found that they generally follow a linear relationship.Besides,
we also vary the number of boosting roundsT for the BMKLSH
algorithm. From the results, we can see that the time cost only in-
creases slightly w.r.t. the increase ofT , which is almost neglected.

100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10

b

tim
e

(s
ec

on
d)

efficiency

KLSH−Uniform
KLSH−Best
KLSH−Weight
MKLSH
WMKLSH
BMKLSH@T=20
BMKLSH@T=100

Figure 7: Evaluation of training and indexing time efficiency.

1
2

3
4

5
6

7
8

9

MKLSH
WMKLSH

BMKLSH

0

0.5

1

Kernel ID

Holiday

K
er

ne
l W

ei
gh

t (
α)

Color
Edge
Gabor
LBP
GIST
SIFT200
SIFT1000
SURF200
SURF1000

1
2

3
4

5
6

7
8

9

MKLSH
WMKLSH

BMKLSH

0

0.5

1

Kernel ID

ImageCLEFFlickr

K
er

ne
l W

ei
gh

t (
α)

Figure 6: Visualization of bit allocation weights obtainedby three different algorithms.

5.9 Evaluation of Qualitative Performance
Finally, we illustrate the qualitative retrieval performance by ran-

domly choosing some query images from the database. Figure8
shows the retrieval results by different algorithms. This figure in-
cludes four retrieval cases of different queries, each of which shows
the top-3 retrieved results by three representative algorithms: KLSH-
Best, MKLSH, and BMKLSH. From the qualitative results, we can
see that the proposed BMKLSH algorithm in general is able to re-
turn more relevant results than the other algorithms.

6. CONCLUSIONS
This paper investigated a framework of Multi-Kernel Locality-

Sensitive Hashing by exploring multiple kernels for efficient and
scalable content-based image retrieval. We first analyzed the the-
oretical property of kernel LSH (KLSH). We further emphasized
that it is of crucial importance to develop a proper combination of
multiple kernels for determining the bit allocation task inKLSH,
although KLSH and MKLSH with naive use of multiple kernels
have been proposed in literature. We thus proposed two new algo-
rithms: (i) WMKLSH that combines multiple kernels via a simple
weighted combination, and (ii) BMKLSH that employs a boosting-
like scheme to optimize the bit allocation of multiple kernels for
KLSH. We have conducted an extensive set of experiments to eval-
uate the performance of the proposed algorithms, in which the en-
couraging results showed that the proposed BMKLSH algorithm
using the boosting approach is able to considerably surpassa num-
ber of baseline methods. Future work will apply our technique to
tackle other problems, such as search-based image annotation.

Acknowledgments
This work was in part supported by Singapore MOE tier 1 project
(RG33/11), Microsoft Research grant (M4060936), and US Army
Research Office (W911NF-11-1-0383).

7. REFERENCES
[1] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for

approximate nearest neighbor searching.J. ACM, 57(1):1–54, 2009.
[2] J. L. Bentley. Multidimensional binary search trees used for

associative searching.Commun. ACM, 18(9):509–517, 1975.

[3] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The x-tree: An index
structure for high-dimensional data. InVLDB, pages 28–39, San
Francisco, CA, USA, 1996.

[4] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for improving the
performance of multimedia databases.ACM Comput. Surv.,
33(3):322–373, 2001.

[5] G.-H. Cha, X. Zhu, P. Petkovic, and C.-W. Chung. An efficient
indexing method for nearest neighbor searches in high-dirnensional
image databases.IEEE Transactions on Multimedia, 4(1):76–87,
2002.

[6] M. Charikar. Similarity estimation techniques from rounding
algorithms. InSTOC, pages 380–388, 2002.

[7] K. L. Clarkson. A randomized algorithm for closest-point queries.
SIAM J. Comput., 17(4):830–847, 1988.

[8] B. Cui, B. C. Ooi, J. Su, and K.-L. Tan. Indexing high-dimensional
data for efficient in-memory similarity search.IEEE Trans. on
Knowl. and Data Eng., 17(3):339–353, 2005.

[9] I. Daoudi, K. Idrissi, S. E. Ouatik, A. Baskurt, and D. Aboutajdine.
An efficient high-dimensional indexing method for content-based
retrieval in large image databases.Image Commun., 24(10):775–790,
2009.

[10] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions. In
Proc. 20th annual symposium on Computational geometry (SCG’04),
pages 253–262. New York, NY, 2004.

[11] W. Dong, M. Charikar, and K. Li. Asymmetric distance estimation
with sketches for similarity search in high-dimensional spaces. In
SIGIR, pages 123–130, 2008.

[12] P. Drineas and M. W. Mahoney. On the nystrom method for
approximating a gram matrix for improved kernel-based learning.
Journal of Machine Learning Research, 6:2005, 2005.

[13] Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting.J. Comput. Syst. Sci.,
55(1):119–139, 1997.

[14] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. InVLDB, 1999.

[15] K. Grauman and T. Darrell. Pyramid match hashing: Sub-linear time
indexing over partial correspondences. InCVPR, 2007.

[16] J. He, S.-F. Chang, R. Radhakrishnan, and C. Bauer. Compact
hashing with joint optimization of search accuracy and time. In
CVPR, pages 753–760, 2011.

[17] J. He, W. Liu, and S.-F. Chang. Scalable similarity search with
optimized kernel hashing. InKDD, pages 1129–1138, 2010.

[18] S. C. H. Hoi and M. R. Lyu. A multimodal and multilevel ranking

Figure 8: Comparison of qualitative retrieval performance on the “Holiday" dataset. This figure shows four examples. For each
query, we show the top-3 retrieved images by three representative methods, i.e., KLSH-Best, MKLSH, and BMKLSH, respectively.

scheme for large-scale video retrieval.IEEE Transactions on
Multimedia, 10(4):607–619, 2008.

[19] S. C. H. Hoi, M. R. Lyu, and R. Jin. A unified log-based relevance
feedback scheme for image retrieval.IEEE Trans. KDE,
18(4):509–204, 2006.

[20] P. Indyk and R. Motwani. Approximate nearest neighbor:Towards
removing the curse of dimensionality. InSTOC, pages 604–613,
1998.

[21] H. Jegou, M. Douze, and C. Schmid. Hamming embedding andweak
geometric consistency for large scale image search. InECCV (1),
pages 304–317, 2008.

[22] A. Joly and O. Buisson. Random maximum margin hashing. In
CVPR, pages 873–880, 2011.

[23] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for
scalable image search. InICCV, 2009.

[24] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based
multimedia information retrieval: State of the art and challenges.
ACM Trans. Multimedia Comput. Commun. Appl., 2(1):1–19, 2006.

[25] Q. Lv, W. Josephson, Z. Wang, M. S. Charikar, and K. Li.
Multi-probe lsh: efficient indexing for high-dimensional similarity
search. InVLDB. Vienna, Austria, 2007.

[26] Y. Mu, J. Shen, and S. Yan. Weakly-supervised hashing inkernel
space. InCVPR, pages 3344–3351, 2010.

[27] B. K. P. Jain and K. Grauman. Fast image search for learned metrics.
In CVPR, 2008.

[28] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from
shift-invariant kernels. InNIPS, pages 1509–1517, 2009.

[29] J. T. Robinson. The k-d-b-tree: A search structure for large
multi-dimensional dynamic indexes.SIGMOD, pages 10–18, 1981.

[30] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. Relevance

feedback: A power tool in interactive content-based image retrieval.
IEEE Trans. CSVT, 8(5):644–655, Sept. 1998.

[31] M. Shamos and D. Hoey. Closest-point problems. InProc. 16th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 151–162, 1975.

[32] S. Smale and D.-X. Zhou. Geometry on probability spaces. Constr
Approx, 30:311–323, 2009.

[33] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, andR. Jain.
Content-based image retrieval at the end of the early years.IEEE
Trans. PAMI, 22(12):1349–1380, 2000.

[34] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. InSIGMOD Conference, pages
563–576, 2009.

[35] J. K. Uhlmann. Satisfying general proximity/similarity queries with
metric trees.Information Processing Letters, 40:175–179, 1991.

[36] J. Wang, O. Kumar, and S.-F. Chang. Semi-supervised hashing for
scalable image retrieval. InCVPR, pages 3424–3431, 2010.

[37] S. Wang, S. Jiang, Q. Huang, and Q. Tian. S3mkl: scalable
semi-supervised multiple kernel learning for image data mining. In
ACM Multimedia, pages 163–172, 2010.

[38] L. Yang, R. Jin, L. B. Mummert, R. Sukthankar, A. Goode, B. Zheng,
S. C. H. Hoi, and M. Satyanarayanan. A boosting framework for
visuality-preserving distance metric learning and its application to
medical image retrieval.IEEE Trans. Pattern Anal. Mach. Intell.,
32(1):30–44, 2010.

[39] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashingfor fast
similarity search. InSIGIR, pages 18–25, 2010.

[40] J. Zhuang, T. Mei, S. C. H. Hoi, X.-S. Hua, and S. Li. Modeling
social strength in social media community via kernel-basedlearning.
In ACM Multimedia, pages 113–122, 2011.

	Boosting multi-kernel Locality-Sensitive Hashing for scalable image retrieval
	Citation

	tmp.1414726759.pdf.mVcxu

