Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

8-2012

Boosting multi-kernel Locality-Sensitive Hashing for scalable
image retrieval

Hao XIA
Nanyang Technological University

Steven C. H. HOI
Singapore Management University, chhoi@smu.edu.sg

Pengcheng WU
Nanyang Technological University

Rong JIN
Michigan State University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation

XIA, Hao; HOI, Steven C. H.; WU, Pengcheng; and JIN, Rong. Boosting multi-kernel Locality-Sensitive
Hashing for scalable image retrieval. (2012). SIGIR'12: Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval: August 12-16, Portland, OR. 55-64.
Available at: https://ink.library.smu.edu.sg/sis_research/2343

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2343&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2343&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2343&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2343&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Boosting Multi-Kernel Locality-Sensitive Hashing for
Scalable Image Retrieval

Hao Xia, Pengcheng Wu, Steven C.H. Hoi
School of Computer Engineering
Nanyang Technological University

Singapore 639798

{xiah0002,wupe0003,chhoi}@ntu.edu.sg

ABSTRACT

Similarity search is a key challenge for multimedia retaiesp-
plications where data are usually represented in high-dsoeal
space. Among various algorithms proposed for similarigrele in
high-dimensional space, Locality-Sensitive Hashing (L.8Hthe
most popular one, which recently has been extended to Keedel
Locality-Sensitive Hashing (KLSH) by exploiting kernehslarity
for better retrieval efficacy. Typically, KLSH works only thi a
single kernel, which is often limited in real-world multicia ap-
plications, where data may originate from multiple resesrar can
be represented in several different forms. For examplegient-
based multimedia retrieval, a variety of features can bexeted to
represent contents of an image. To overcome the limitatioag
ular KLSH, we propose a novel Boosting Multi-Kernel Locglit
Sensitive Hashing (BMKLSH) scheme that significantly bedke
retrieval performance of KLSH by making use of multiple k&lm
We conduct extensive experiments for large-scale cortased
image retrieval, in which encouraging results show thatpie
posed method outperforms the state-of-the-art techniques

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Retrieval models;
H.2.8 [Database Application§: Image databases

General Terms
Algorithms, Experimentation

Keywords

Image Retrieval, High-dimensional indexing, Localityasitive hash-
ing, Kernel methods

INTRODUCTION

Similarity search, or Nearest Neighbor (NN) search, plagsta
ical role in Content-Based Image Retrieval (CBIR) systefits [
24]. Typically, images in a CBIR system are represented in b-hig
dimensional space, and the size of an image database céyn easi

1.

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGIR'12,August 12-16, 2012, Portland, Oregon, USA.

Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$15.00.

Rong Jin
Computer Science and Engineering Dept.
Michigan State University
East Lansing, MI, 48824

rongjin@cse.msu.edu

be over millions or even billions for large-scale real-vdcapplica-
tions. These two aspects have made CBIR an open grand dmellen
although it has been extensively studied for decades.

A variety of data structures have been proposed for indexitty
searching data points in a low-dimensional spatk [, 2, 29.
These approaches work well for low dimensional data. Bugwh
the number of dimensions grows, they often become lessegffici
a phenomenon known as tharse of dimensionalitySpecifically,
the time or space requirements of these approaches oftenegro
ponentially with the dimensionality.

Since exact NN search is hard to scale for high-dimensicatal, d
recent studies mainly focus @pproximationapproachesZp, 14,

25, 1], which aim to remove the exponential dependence on dimen-
sionality. Instead of finding the nearest pajnto a query poiny,
approximate NN search allows to return any point within tie d
tance of(1 + €) times the distance from to p. Recent studies
have shown that by adopting the approximation, the comiylefi

NN search is reduced from exponential to polynomial in teahs
its dependence on the dimensionality. Several recentestudive
successfully applied the random projection idea for apipnate

NN search over high-dimensional data. One of the most well-
known techniques in this direction is Locality-SensitivagHing
(LSH) [20, 14, 6], which has been actively studied and success-
fully applied to many applications2, 10, 1].

One limitation of regular LSH is that they require explicéos
tor representation of data points. Kernelized LSH (KLSHJ] [
addresses this limitation by employing kernel functionsapture
similarity between data points without having to know tteiplicit
vector representation. KLSH has been shown effective écafy,
but there is no formal analysis of KLSH in theory. In this papee
first analyze the theoretical property of KLSH to better ustind
the behavior and capacity of KLSH in similarity search. Seto
we address the limitation of KLSH. Despite the success, mast-
ing KLSH techniques only adopt a single kernel function.sT3ig-
nificantly limits its application to many real-world imagetrieval
tasks [i0, 18], where images are often analyzed by a variety of
feature descriptors and are measured by a wide class ofsdiver
similarity functions.

To this end, we propose a novel Boosting Multi-Kernel Lagali
Sensitive Hashing (BMKLSH) framework, which improves KLSH
by learning a combination of multiple kernels. The key atradje of
multi-kernel LSH is to determine an optimal combination aflti
ple kernels by determining appropriate bit size to each efntiul-
tiple kernels. To overcome the challenge, we propose a ingost
scheme to greedily find a good solution in an efficient apgroac
Our extensive experiments show that BMKLSH significantly en

hances the performance of KLSH in exploring the power of imult
ple kernels for CBIR.

The rest of this paper is organized as follows. Secfioeviews
related work. Sectiofd gives our analysis of KLSH, and Sectién
presents the proposed BMKLSH method. SecBafiscusses our
experiments. Finally Sectiohiconcludes this work.

2. RELATED WORK

This section reviews related work in approximate nearegtne
bor (NN) search with the focus on image retrieval appliaatio

In literature, developing efficient techniques for indexinigh
dimensional images has been studied extensively in infooma
retrieval, multimedia, and database communitigss[9]. Spatial
data structure approaches (e.g., kd-trge?P] or metric tree p5])
were used to handle the NN search problem; however, theg scal
poorly with data dimensionality. In practice, if the numlwérdi-
mensions is large enough, kd-tree and other similar datatsies
require an expensive inspection in the data set, therelfprper
no better than an exhaustive linear search that simply crespa
query to every data point in the database.

Instead of solving the exact similarity search for high dime
sional indexing, recent years have witnessed active stuafiap-
proximate high-dimensional indexing techniqués,[14, 25, 3, 8,

11]. The key of most techniques is to exploit random projectimn
tackle the curse of dimensionality issue, such as Loc&8#mpsitive
Hashing (LSH) p(], a very well-known and highly successful tech-
nique in this area. In general, we can group most of existmg a
proaches into two major categories: linear projection wdshand
kernel-based methods. Below we briefly review the first aateg
and then focus on discussing the second category.

For the first category, one of the most notable techniqueSk[20],
which utilizes a family of locality sensitive hashing fuiwsts which
map similar items to same bucket with high probability, aist d
similar items to same bucket with low probability. With suah
hash function, one can easily search within the bucket ayquer
point belongs to in order to find nearest neighbors of the yquer
LSH efficiently solves the approximate similarity searcbljpem
and achieves query time in the worst casel@(¢). Gionis et
al. [14] improved the techniques and achieved significant query
time O@n'/(**9)). Recently, many studies have attempted to im-
prove upon the regular LSH technique. For examplé] [ntro-
duced multi-probe LSH methods that reduce the space reneie
of the basic LSH method. Tao et ak4] proposed the locality-
sensitive B-tree technique that mainly concerns the peidioce
improvement of I/O disk access. Besides, there are many eiie
isting works that accommodate LSH functions in tacklindedént
issues, including Hamming distanced], inner products §], ¢,-
norms [L0], normalized partial matchind], learned Mahalanobis
metrics P7], and so on. Last but not least, there are also many re-
cent studies of learning compact binary codes inspired bydéa
of LSH [39, 16, 36, 27].

Our study is more related to the second category of kernedcha
methods. In particular, kernel-based LSH (KLSHY] was re-
cently proposed to overcome the limitation of the regularlt&ch-
nique that often assumes the data come from a multidimealsion
vector space and the underlying embedding of the data muest-be
plicitly known and computable. KLSH provides a powerfulrfre-
work to explore arbitrary kernel/similarity functions wieetheir
underlying embedding only needs to be known implicitly.][
the authors proposed a variant of KLSH which aims to force the
expected Hamming distance between the binary codes of tero ve
tors is related to the value of a shift-invariant kernel. 1r][the
authors proposed an improved algorithm for learning biraiges

Meaning

d number of dimensions of input data

n number of image examples in database
X d x n matrix of n image examples

q query image example

X i-th image example in database

K kernel matrix

Ng number of training query examples

m number of different kernel functions

K1 I-th kernel function

b length of a hash key

P number of data points sampled in KLSH
t number of indices selected in KLSH

Dy distribution at the-th round

T number of boosting rounds

Table 1: Summary of notation used in this paper

with kernel to speed up the KLSH technique. Despite beingistl
actively, most existing kernel-based hashing methads {8, 17,
26] only consider a single kernel, which cannot fully explone t
potential of multiple kernel functions in a real CBIR appgliion.

Very recently, some emerging study has attempted to app§HKL
by exploring multiple kernels. In37], they proposed a simple so-
lution named MKLSH by applying the existing KLSH algorithm
for each specific kernel individually, and then combining tut-
puts of these KLSH processes. Our work however differs from
their method in several aspects. First of all, their naiveragch
to combining multiple kernels simply treats each kerneladigu
which fails to fully explore the power of combining multipté-
verse kernels in KLSH. Second, their technique is essgntial
supervised, which does not fully explore the data charsties
and thus cannot achieve the optimal indexing performamceon-
trast, our technique is in general supervised and is ableam|
the optimal combination of multiple kernels from trainingtd to
maximize the indexing performance.

3. ANALYSIS OF KERNELIZED LSH

In this section, we first review the algorithm of Kernelizeatiality-
Sensitive Hashing (KLSH), and then present our analysid&H.

Let X € R**™ be the collection of data points to be searched.
Given a queryy € R?, to efficiently find thek nearest neighbors,
LSH projects each data point into a low-dimensional bingace,
referred to as thbashkey. The hash keys are constructed by ap-
plying b binary-valued hash functioris , . . ., h; to the data points
in X. KLSH generalizes LSH by introducing a kernel function
k(x:,x;) to map a data poink; to a functional space through a
nonlinear feature mapping(x;) that satisfies the conditiof(x;, x;)
&' (x:)p(x;). To build the hash function, KLSH first randomly se-
lects a subset gf data points fronX, denoted a$' = {x7,...,x;},
and forms a kernel matriX” over the sampled data points; it then
generates random vectorss, . .., e% and computes a hashing
function for each random vectef as

hi(¢(x)) = sign <Z wff{(x, xj)) ,

wherew” = (wf,...,wk)" is given byw* = K~'/2ek. Al-

gorithm 1 outlines the key steps of KLSH, wheteis a critical
parameter that determines the length of hash key to be cahet
in KLSH.

Although KLSH is proved to be effective empirically, no theo
retical analysis is provided for the properties of KLSH. Tahd
approximation error of KLSH, we introduce a few notationse-D

Algorithm 1 KLSH

INPUT:
e animage databasgx;|i =1, ...
e length of the hash key: b
e akernel functionx (-, -)

,n}, x; € R4

formwh = K~1/2ek

construct hash function:

hio(6(x)) = sign(3P_, whr(x,x2))

7: end for

OUTPUT: a set ob hash functiong{ = {hy|k =1,...,b}

1: randomly selecp data pointsS = {xj\j =1,...,p}
20 K = (x5, %)]pxp

3:fork=1,...,bdo

4. form e’gz selectt indices at random frorf, . . ., p]
5:

6:

fineh; € R® as

-
h; —<E w] x“xJ g wj x”xJ)

andH = (hy,...,h,). LetK, = [n(xi,xj)]nxn be the Gram
matrix for all data points ifX, and K, = [k(xi,X;)]nxp be the
kernel matrix between data points¥hand the sampled data points
in S. Let A\q,..., A\, be the eigenvalues df, ranked in the de-

where| - | ¢ stands for the Frobenius norm. Using the triangle in-
equality of Frobenius norm, we have

‘EKQ Ipty
P b

F
t ‘Ka - K;,K’lKJ‘ + ’EK;,K’lKJ N
p F p b

F

Combining the result from Theorefin we have, with a probability
1—20,

‘EKQ Iyty
P b

nk

Z)\k+z

We complete the proof by using the faéf, K 1 K |r < |K.|r <
1 A < nand the definition of Frobenius. [J

As indicated by Theorer, on average, kernel similarigy(x;, x;)

is well approximated bg%h?hj, and the approximation error de-

creases as the number of bitsicreases. Furthermore the approx-

imation error is related to the eigenvalues of kernel mafifix In

particular, the skewed the eigenvaluesiaf, the smaller the ap-

proximation error.

F

20R/0) o o1 T
b

scending order. We first bound the error caused by the random Theorenm? shows that different types of kernels will lead to very

vectors{ef}b_,.

THEOREM 1. With a probability at least — §, we have

_ ln(2/5)

F

t 1
'EKbK’leT —-H'H |Ky K 'K, |F

b

PROOF. Letus definedasA =130 _ ef[ek]". Itis easy to
see thal[A] = L1. According to the concentration inequality of
linear operatorﬁ] we have, with a probability — ¢, that

’A—EI < 2t1n(2/9)
P g p

We complete the proof by the using the fact

— 'be(*l/? <%I - A) K2k,

EKbK’lK,,T Yyt
P b

F

< ‘31 Al KK TR |
p

P

O

THEOREM 2. Assumex(x,x) < 1 for anyx. Letk € Z and
e € (0,1) be any two numbers satisfyige* < p/[647n%], where
n =14 4/8log(1/6). Then, with a probability at least— 25, we

have
) 6p 6p~ In(2/6)
tb

= 2 (st 35 v 20
PrROOF According to Theorem17], with a probability1 — 4,
for anye € [0, 1] andk € Z that satisfy
k p
- <
et — 6412

wheren = 1+ /8log(1/0), we have

|Ko — KbK 'K, | <

different approximation errors, depending on their eigéun dis-
tributions. Hence, some kernels will have good retrievaliaacy
but rather poor approximation performance while the otimeay
have the opposites. Thus, combining multiple kernels coaid
tentially avoid relying too much on a single kernel that cbbke
of neither poor approximation nor low retrieval accuraoy.rake
a good tradeoff between retrieval accuracy and approxamai-
ror, we propose a boosting scheme to combine multiple kefioel
KLSH in order to obtain both high retrieval accuracy and Igw a
proximation error.

4. LEARNING TO COMBINE MULTIPLE
KERNELS FOR KLSH

4.1 Overview

In this section, we propose a framework of learning the coiabi
tion of multiple kernels for Kernelized Locality-Sensgi¥ashing,
which aims to boost KLSH by making use of a combination of mul-
tiple kernels. One key question is how to determine the visigh
for kernel combination. A straightforward approach is tsigs
equal weight to each kernel function, and apply KLSH with the
uniformly combined kernel function. Such an approach miggtt
fully explore the power of multiple kernels.

To address this limitation, we propose a scheme to assigm eac
kernel a different number of bits so as to reflect the impaeanf
the kernel. The key challenge of this scheme is thus how to op-
timize the bit size allocation with respect to differenthelrfunc-
tions. Figurel illustrates the proposed framework, which consists
of two key steps: (i) bit allocation optimization, and (it multi-
kernel hashing as shown in Algorithen

/ Hash
Keys /

Figure 1: The proposed framework of learning to combine mul-
tiple kernels for improving kernel LSH

Multi-Kernel
Hashing

Bit Allocation
Optimization

Multiple
Kernels

Algorithm 2 The Multi-Kernel Hashing scheme

INPUT:
e animage databas¢x;|i =1, ...

,nt x; € R4

e aset ofm different kernels{rx;|l = 1,...,m}

e bits allocation vectofby, . . ., bm]
1: k=0
2: randomly selecp data pointsS = {xj\j =1,...,p}
3: for l =1,...,mdo
4: ['ﬂ(xz X3 lpxp
5: for r=1,...,b do
6: k=k + 1
7: form e’g: selectt indices at random frorfi, .. ., p]
8: formwh = Kfl/Qe’g
9: construct hash function:

hi($(x)) = sign(X0_ whey (x, x3))

10: end for
11: end for
OUTPUT: a set ob hash functiong{ = {hy|k =1,...,b}

Unlike the regular KLSH that adopts a single kernel, BMKLSH
employs a set ofn kernels for the hashing scheme. Besides, a
key difference between BMKLSH and some existing Multi-Kedrn
LSH (MKLSH) [37] is the bit allocation optimization step to find
the parameterdj, ..., b,,] that determines the allocations of bit
sizes for a set af: kernels. Unlike the existing MKLSH approacti]
that simply assigns the same number of bits to each kerreal; le
ing to a uniform combination of multiple kernels, we devetop
supervised learning algorithms (WMKLSH and BMKLSH), de-
scribed below, that effectively learn the importance ofivittial
kernels, and consequentially determine the appropriatebeu of
bits for each kernel.

4.2 WMKLSH by Weighted Bit Allocation

We first propose a Weighted Multi-Kernel Locality-Sensthtash-
ing (WMKLSH) scheme by a supervised learning approach to de-
termine the allocation of bit size, where a kernel is assignkarger
size of bits if it better captures the similarity betweenedabints.

In order to learn the importance weights of different kesrfer
the retrieval tasks, we assume a small training data setitable
for our learning task. The training set consists of a smdlloge
queries and their relevance judgements, which usually eagals-
ily collected in a real-life CBIR system via the relevancedback
mechanism 30, 19].

For the WMKLSH algorithm, we begin by testing the retrieval
performance of KLSH with a set of kernels on the given training
set. After that, we can obtain the retrieval performanceeims
of mean Average Precision (mAP), As a result, we can compute
the weights based on the retrieval performance of each keéme
a; =™ [=1,... m. Finally, the bit sizes of the kernels are
allocated proportionally according to their importanceghes.

4.3 BMKLSH for Optimizing Bit Allocation

To further improve the above learning scheme, we propose a
boosting scheme, referred to as BMKLSH, to learn the optimal
allocation of bit sizes, which adopts the similar idea of &tow
algorithms for classificationl[3]. Let us denote by:, the number
of queries, andi P, (i), ! € [m],i € [nq], be the Average Precision
performance of applying theth kernelx, (-, -) to retrieve vectors
for thei-th query. In order to find the optimal allocation of bit sizes
we cast it into the following optimization problem:

g
exp <)subject to Z bh=b (1)
[

m
max E AP(i
b1sebm €16]

Since eachy; is an integer variable, the above problem is essen-
tially an integer programming task, which is NP-hard. To fard
efficient solution, we approximate the above optimizatioobem

by introducing a set of combination weights, ! € [m], each of
which represents the importance of each kernel so as tondeer
each bit sizéh;. In order to learn the optimal weights, we turn the
above optimization into the following optimization probie

aERm T1 1Zexp <ZalAPl)

Given the learned weights, we assign to théth kernelbq; bits,
whereb is the total number of bits.

To efficiently solve the problem ir2}, we adopt a boosting based
strategy. Following the similar procedure of Adaboost &t [13],
we introduce a distribution of weight®; to indicate the retrieval
difficulty of the instances in the training data set. At eaobdiing
round, we measure the retrieval performance (e.g. avenage p
sion) of each kernel based on the existing KLSH algorithnoish
in Algorithm 1), and select the best kernel with the largest weighted
Average Precision (WAP) performance over the currentidistion
Dy, which is defined as:

@)

nq
wAP, =" Di(i)AP(i) (3)
i=1
At the end of each boosting round, an importance weight is-com
puted for the selected kernel based on its retrieval pedoos,
and the weights of each poorly retrieved query example wilirb
creased such that the next selected kernel will focus mothase
hardly retrieved examples. The boosting procedure wilBpeated
T times. Finally, we allocate a bit size to each kernel baseitson
cumulative weight in all thd” boosting rounds. The details of the
proposed algorithm are given in Algorithi3.

4.4 Time Complexity Analysis

First of all, assume the length of hash Rey fixed, both WMKLSH
and BMKLSH algorithms have the same querying time cost as tha
of KLSH and MKLSH. Next we focus on discussing training and
indexing time cost.

As supervised methods, WMKLSH and BMKLSH algorithms
need to test the performance for all training instances alitkinds
of kernels once. For BMKLSH, at each boosting round, it orgy u
dates the distribution of training instances and computtesveight
for each round based on the distribution. The updating stép i
general linear. Thus, the main time cost consumed mostlyifab
the process of validating the performance of training imsés.

5. EXPERIMENTS

We conduct extensive experiments to examine the efficadyeof t
proposed algorithms for scalable content-based imagevatr

5.1 Experimental Testbed

We perform experiments on two well-known public image datas
which have been widely used for benchmark image retriegiista
Besides, we downloaded 1,000,000 social images from Ftakr
form a background class and combine it with the second dsg¢aba
to form a large scale data set. We briefly introduce someldethi
the two data sets below.

The first data set is the INRIA Holidays data ‘sethich has
been widely used for benchmark evaluation of image retrigea
formance P1]. It contains 500 image groups, each of which repre-

http://lear.inrialpes.fr/~jegou/data.php

http://lear.inrialpes.fr/~jegou/data.php

Algorithm 3 BMKLSH: Boosting Multi-Kernel LSH algorithm for
optimizing the bit size allocation

INPUT:
e animage databaséx;|i = 1,...,n}, x; € R?
e length of the hash key
e aset ofm different kernels{x;|l = 1,...,m}
e a set ofn, training instancegxt|i = 1,...,n4} with additional

feedback info (positive and negative lists)
e number of boosting round§”
e initial distribution: D1 (i) = 1/ng,t =1,...,n4

1l:fort=1,...,Tdo
2: forli=1,...,mdo
3: obtain AP,(i),l = 1,...,m,i = 1,...,nq by testing on the
training set based on Algorithih
n . .
4: wAPl = Zi:ql Dt(Z)APL (Z)
5: al = ewAh
6: endfor
. l (Xr _
7: atezrziag,l—l,...,m
8 I*= !
e my
9. oy aé* APy < APp«, wAP; < wAP«
10: update the distribution of the training instances:
. Dy (3) e~ if AP(i) > wAP;
D == =
w10 =77 X o if AP() < wAP,
Zy is a normalization factor to mak®; 1 a distribution

11: end for
12: oy :Zleoci,l: 1,...,m
13: allocate bits to m kernel@1, . . ., by,] based on the weights;

14: Multi-Kernel Hashing[b1, - . ., bm])

sents a distinct scene or object. The firstimage of each gsae
query image and the correct retrieval results are the othageés
of the group. There are 1491 images in total, including 5Cfries
and 991 corresponding relevant images.

The second data set is a large-scale data set, which coafists
both the ImageCLEF datab&sand the collection of 1,000,000 im-
ages crawled from Flickr (named as “FlickriM"). ImageCLERi
medical image database, which was also use&éh [For all the
categories, we randomly seleli% images as the query pool, the
other images as database pool. For the Flickr photos, weallea
of them as the background noisy photos, which are mainly tsed
test the scalability of our algorithms. We denote this dataes
the “ImageCLEF + FlickrAM" data set or “ImageCLEFFlickr'rfo
short.

5.2 Experimental Setup

We present our experimental results by showing the pergenta
of database items searched with the hashing function ithstéa
measuring the exact search time in order to avoid the umssn
from different implementations of the codes. To achieves phir-
pose, we have to set a parameter for the LSH searchpjehich
is used to control the fraction of nearest neighbors to beality
scanned.

For performance metric, we evaluate the retrieval perfocaa
based on mean Average Precision (MAP) andit¢p-= 1,2, ...,5)
retrieval accuracy. The Average Precision (AP) value istlea un-
der precision-recall curve for a query. The mAP value isuated
based on the average AP value of all the queries. The pracisio
value is the ratio of relevant examples over the total retdeex-
amples, while recall is the ratio of the relevant exampléseneed
over the total relevant examples in the database.

2http://ww. i magecl ef . org

Our objective is to achieve fast and accurate image retriéa
LSH can only return a portion of images, only the top returned
images (Hit Items) are needed to be evaluated. Based ondims ¢
cern, the mAP performance reported in our experiments echais
the mAP over all the returned items (except for the experimeh
parameter sensitivity evaluation, where we adopt the paAP
performance to enable a fair evaluation of different patemset-
tings). It is worth mentioning that in some previous worksyth
usually reported mAP values for the whole data set. As we know
the more the image examples retrieved the higher the mARevalu
obtained. Thus, it is not totally fair to directly comparee thx-
act value of our results with the results of the previous work
our experiments, we have implemented all the compared mstho
including our algorithms under the same evaluation coteto en-
able fair comparisons. Nonetheless, from the experimeesailts,
we found that the mAP results we achieved are higher than some
of the others’s reported results, although we are actuaget on
a criterion that generates relatively lower mAP values.

As the proposed algorithms need some training data, wetkglit
original query set into two parts, each time we select onefpar
query, and the other part for training. The final result isaoted by
computing the average of the results over the two splitsalinve
conduct the evaluations of all the algorithms 10 times aretagye
the results over these 10 runs to obtain a stable result.

5.3

5.3.1 Image Descriptors

We adopt both global and local feature descriptors for re
ing images in our experiments. We have some preprocessing by
resizing all images t600 x 500 pixels while keeping the aspect
ratio unchanged. For global features, we extract five kiffdea
tures, including (1) Color histogram and color moments,Haye
direction histogram, (3) Gabor wavelets transform, (4) dldsi-
nary Pattern, and (5) GIST. For local features, we extraetodg
of visual words features based on two types of descriptolST S
and SURF. In particular, for SIFT: we adopt the Hessian-Affim
terest region detector with threshold 500 and the SIFT descy
for SURF: we use SURF detector with threshold 500 and SURF
descriptor. For the clustering, we adopt a forest of 16 kedr
and search 2048 neighbor to speed up the clustering tasallyrin
we use TF-IDF to generate the bag of visual words to represent
the local features. In total, with different vocabularyesizwe ex-
tracted four kinds of local features, including SIFT200F 51000,
SURF200 and SURF1000.

Image Descriptors and Kernel Functions

5.3.2 Kernel Functions

From the above, we represent each image by 9 types of differ-
ent features. We then build kernel functions for these 9gygfe
features. Before we compute the kernels, we normalize titerfe
vectors to zero mean (each dimension) and unit length (eziob) p
We adopt the RBF kernel:

4)

whered(-,) is the distance ang is selected as the mean of the
pairwise distance where the distance is computed using &2 di
tance. In total, we have a set of 9 kernels for our retrievskga
Finally, we note that all kernel matrices are normalizedrtib tnace

to balance different kernels.

K(x,X) = eap(—y~d(x,x))

5.4 Comparison Algorithms

To extensively examine the efficacy of the proposed algmisth
we have implemented several different solutions for asopfiLSH

http://www.imageclef.org

ImageCLEFFlickr

Holiday

0.8

I KL SH-Uniform
I KL SH-Best

[IMKLSH

Il BMKLSH

top—n precision

2 3 4 5
n

(a) “Holiday" data set

[IKLSH-Weight ||

I WMKLSH H

top—n precision

Il KLSH-Uniform
I KLSH-Best
1r [IKLSH-Weight [|
[IMKLSH
I WMKLSH
0.8 Il BMKLSH H
0.6F 1
0.4F g
0.2F 1
0
1 2 3 4 5

n
(b) “ImageCLEFFlickr" data set

Figure 2: Evaluation of average topn precision of retrieval results by different algorithms.

with multiple kernels. In particular, we have implementkd fol-
lowing algorithms:

e KLSH-Uniform: a baseline method that uniformly combines
L, and adopts this com-

m

them kernels, i.e.x = > ", —

bined kernel for KLSH.

Table 2: Experimental results of mAP performance.

KLSH-Best: We test the retrieval performance of all kernels
evaluate their mAP values on the training set, and thentselec
the best kernel (with the highest mAP value). We adopt this
best kernel for KLSH.

KLSH-Weight: We evaluate the mAP performance of all ker-
nels on the training set, calculate the weight of each kernel
w.r.t. their mAP valuesay = ™47 (the same weight func-
tion as WMKLSH and BMKLSH), and finally normalize the
weights (sum to be 1). Finally, we adopt the weighted com-
bination of them kernels:x = >~ | cur; for KLSH.

MKLSH [37]: an existing KLSH approach that uses multiple

| Algorithm | Metric | Holiday | ImageCLEFFlickr]

KLSH-Uniform | mean | 0.58506 0.16902
std | £+ 0.00258 + 0.00100

KLSH-Best mean | 0.50361 0.09813
std | 4+ 0.00364 + 0.00018

KLSH-Weight | mean | 0.59986 0.17823
std | +0.00321 + 0.00156

MKLSH mean | 0.58994 0.16761
std | +0.00110 + 0.00086

WKLSH mean | 0.60562 0.17621
std | £+ 0.00037 + 0.00064

BKLSH mean | 0.66867 0.20460
std | £+ 0.00337 =+ 0.00400

5.5.1 Onthe “Holiday" Data Set

kernels by a uniform bit size allocation.

e WMKLSH: the proposed algorithm by using a weighted bit

size allocation for multiple kernels, as described in Secti2

e BMKLSH: the proposed BMKLSH algorithm by optimizing

bit size allocation via boosting as shown in Algorittam

5.5 Experimental Results

We now present the performance evaluation results on tlge dat

sets. We measure the performance in terms oft¢p= 1, 2, ..
precision and the mAP value of all returned Hit items. Fos #x-
periment, we fix the parameters as follows= 0.1,b = 300,p =

300,t = 30, andT’ = 20. We will evaluate the sensitivity of these

..5)

parameters in the subsequent section. We summarize the-expe

mental results of mAP performance of the compared algostom

the two data sets in Tabl®g and illustrate the details of the top-
n precision results in Figur@. Below we discuss the empirical

observations from these results.

To examine statistical significance of the comparisons ttier
experimental results reported below, we highlight the bestlt
in each group in bold font by conducting student t-tests \lith
significance levety = 0.05.

From the experimental result shown in TaBland Figure2, we
can draw several observations. First of all, by comparirgtiinee
different KLSH algorithms with different kernels, it seembit sur-
prising to find that KLSH-Uniform, a simple uniform combiiat
of all kernels, outperformed KLSH-Best, which is based antibst
kernel chosen from the training set. But when thinking fertlit
is not difficult to explain the result as KLSH-best only exe a
single kernel, while KLSH-Uniform jointly exploits multip ker-
nels. This result is further verified when we examine the Itesu
of KLSH-Weight, which outperform both KLSH-Best and KLSH-
Uniform. These observations show that it is very importangx-
plore the power of multiple kernels for KLSH in some real-lgor
applications.

Second, by comparing the proposed WMKLSH and BMKLSH
algorithms against the KLSH and MKLSH algorithms, we found
that the proposed algorithms generally perform better thaiKLSH
and MKLSH algorithms, and the proposed BMKLSH algorithm at-
tained the best result among all the compared algorithmghwh
was significantly better than the other algorithms. Thesensing
results showed that the proposed BMKLSH technique is more ef
fective to explore the power of multiple kernels for enhagcihe
image retrieval performance.

- &8 - KLSH-Uniform -a- K‘LSH—Un‘iform ‘
0.75F - » - KLSH-Best 7 0.75F - » - KLSH-Best 1
- ¢ - KLSH-Weight - ¢ - KLSH-Weight
—=— MKLSH —=— MKLSH
0.7 —— WMKLSH 1 0.7[{ —— WMKLSH]
—e—BMKLSH —e— BMKLSH
o 065 o065, ——°]
£ £
3 S
L 06 & 08— = ==
= I e EE T T N oo 8
3 Fo- T s
0.55; 0.55f .
0.5f - e o= 3 0.5f o mmmee- OO mmmmm - "
0.45 i i i i i i i 0.45 i i i i i i i
0.02 003 004 005 006 007 008 009 01 100 150 200 250 300 350 400 450 500
P b
(a) parametep (b) parameteb
Figure 3: Evaluation of parameter p and b on the “Holiday" data set
5.5.2 On the “ImageCLEF+FlickrIM" Data Set This is easy to understand as the larger the hash key lerfgth, t
The experimental results of this data set are shown in thedés more information can be encoded, which thus could lead ta&mor

umn of Table2 and the right of Figur®. By examining the results ~ @ccurate results. Finally, similar to the previous obstéowa, for
of the three KLSH algorithms, i.e., KLSH-Uniform, KLSH-Bes @l different values of these two parameters, BMKLSH caesitly
KLSH-Weight, we found that the situation is the same as thahe outperformed the other algorithms.

“Holiday" data set. Further, by comparing the proposed WNBKL ; ;

and BMKLSH algorithms with the KLSH and MKLSH algorithms, 5.6.2 Evaluation of paramet@randt .m KLSH
we found the similar observation where the proposed BMKLSH _ 1he parametep and¢ are two parameters in the KLSH algo-
achieved the best result among all the compared schemesreFhi ~ fithm. Figure4 (a) and (b) show the evaluation of two parameters
sult indicates that by the proposed boosting scheme, the [E3#K p andt, respectively. From the results, we can see that increas-

algorithm is to effectively identify the best kernel and ievke a ing thep value_in_ general leads to better performance of all the
good tradeoff between the best kernel and the optimal caatibim algorithms. This is reasonable as more examples are samgled
of multiple kernels. are able to obtain a more accurate estimate of the distoibdar
KLSH. However, wherp is large enough (e.gp > 200), the im-
5.6 Parameter Sensitivity Evaluation provement of increasing becomes not significant. In practice, to

trade off the performance and efficacy, we can choose any valu
between 200 and 400 for this situation. On the other handhfor
parametet, we found that increasing the valuetafoes not always
lead to improvement of the performance. In some cases, adarg
value could slightly degrade the performance. Nonetheldsthe
algorithms are generally not very sensitive to this paramet

In this section, we aim to examine the parameter sensitofity
the proposed BMKLSH scheme for image retrieval tasks. $peci
ically, there are several important parameters, including, the
parameter that controls the fraction of nearest neightmbketlin-
early scanned, (2), the bit length of hash key, (3) the parameter
used in KLSH, which is to chooseindices for forming vectoes,

(4) the parametep used in KLSH, which is to choose a subset of 5.6.3 Evaluation of the number of boosting rounds
p examples for computing the kernel matrix in KLSH, and (5) the \yie now examine how the number of boosting rounds affects the
number of roundd" used in the boosting algorithm. performance of the proposed BMKLSH algorithm. FigGrshows

For the rest of the experiments, when varying one of the param e eyajuation results. From the results, we can see thaiethe
eters for evaluation, the others will remain fixed at thedelihg formance of BMKLSH algorithm in general increases with esstp

default settingsp = 0.1,b = 300,7 = 30, p = 300, andI" = 20. We to the increase df’. The performance of the BMKLSH algorithm
adopt the top-10 mAP performance for evaluation in thisisect becomes saturated whéhis sufficiently large, e.gT >= 20.

5.6.1 Evaluation op ands 5.7 Analysis of Bit Allocation Weights

The p andb are two key parameters for the LSH algorithm. Fig- Figure6 illustrates the bit allocation weights by three algorithms
ure 3 (a) and (b) show the evaluation of two paramete@ndb, on the two data sets. The x, y, z-axis denotes the index okkern
respectively. From the experimental results, it is not cliffi to used, the algorithm, and the weight assigned to each kemel,

see that increasing the value pfin general leads to increase of spectively. From this figure, we can see that MKLSH assignsieq
the top-10 mAP performance. This is not difficult to undenstas weights to all the kernels, WMKLSH assigns different weght-
the larger the value, the more examples in the database will be in- cording to their performance and the weights are non-zehilew
spected, thus more relevant image examples can be likelgwed. the weights assigned by BMKLSH are sparse, i.e., it focuses o
Similarly, we also observe that increasing the value of Hesh those kernels which are more beneficial to the retrievabtaSgecif-
lengthb also leads to the increase of the top-10 mAP performance. ically, for the “Holiday" dataset, the weights learned by RMSH

- 8 - KLSH-Uniform ‘ -8- KLSH—UHiform ‘
- % - KLSH-Best 1 0.75[1 - « - KLSH-Best 1
- ¢ - KLSH-Weight - ¢ - KLSH-Weight
MKLSH MKLSH
—— WMKLSH 1 0.7 —— WMKLSH 1
—o— BMKLSH —e—BMKLSH
goes,__— 1 o065 1
E £
g T
L I 0= $—=—
T S—PPrTELL § Selaenlalalel aleieieiaiaiaieh g N - ‘
- ” _B------°"-"7/ T T Or=======- 1]
0556~ .-~ — 0.55F —
w
0.5+ R e o Mmmmmmm 3 05+ -------- R e e 1
5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.45 ‘ ‘ ‘ ‘ ‘ ‘ ‘
100 150 200 250 300 350 400 450 500 10 15 20 25 30 35 40 45 50
p t
(a) parametep (b) parametet
Figure 4: Evaluation of two parametersp and ¢ used in the KLSH algorithm
T -
0.7 ‘ we analyzed before, all the compared algorithms share time sa
querying time given a fixed bit sizZe In our experiments, typically
0.6 for b = 300, the average retrieval time per query is about 0.65ms
for all the compared algorithms. In the following, we focusthe
05 evaluation of training and indexing time efficiency.
Figure7 shows the evaluation results of the total amount of train-
o ing and indexing time cost on the holiday data set, which were
<04 : o .
£ averaged over 10 runs. Among all the algorithms, it is nopissy
& ing that WMKLSH and BMKLSH took more time cost for training
g0s3 and indexing because of the nature of their supervisediteapmno-

o
N

o
[

10

15
T

20 25
Figure 5: Evaluation of the number of boosting rounds (') in
the proposed BMKLSH algorithm.

are mainly assigned to Color, GIST, SIFT1000 and SURF1000;
while for the “ImageCLEFFlickr" dataset, BMKLSH allocatal

the weights to only GIST and SURF1000. This is reasonable as
most of the medical images in the "ImageCLEF" dataset ang gra
level images and contain rich texture contents, which tlawsrf
GIST features instead of color features. Moreover, it ignest-

ing to observe that for the “Holiday" data set, the weight ofd®

is less than SIFT200 and SURF200 assigned with WMKLSH, but
BMKLSH filters SIFT200 and SURF200 while keeps Color. This
is also quite reasonable as SIFT1000 and SURF1000 are s@newh
redundant with SIFT200 and SURF200, but they are complemen-
tary to Color. These observations indicate that BMKLSH ezarth

an effective and sparse combination of multiple kernels.

5.8 Evaluation of Time Efficiency

Finally, we evaluate the efficiency of all the six algorithms
the “Holiday" data set. The experiments were running in Eatl
on a Linux machine with 3GHz Intel CPU and 16GB RAM. As

cesses. Such additional overhead is however acceptable thie
training process typically is done in an offline manner. Tadtfer
examine if the training and indexing process is scalablegxeen-
ine the relationship of their time cost with respect to theskieb,
and found that they generally follow a linear relationsiBpsides,
we also vary the number of boosting rouriifor the BMKLSH
algorithm. From the results, we can see that the time cogtionl
creases slightly w.r.t. the increaseTofwhich is almost neglected.

efficiency
10 : : .
- 8 - KLSH-Uniform "
9H - * ~KLSH-Best]
- ¢ - KLSH-Weight _4
8H MKLSH .z i
——WMKLSH P
7H ——BMKLSH@T=20 _&* |
—*— BMKLSH@T=100 z
g6]
3
85]
()
£ 4 il
3 [4
2 [4
1 [4
F - - - - == 8a--—-—-=---- o--=--—-=---"- oG--—--—-—----
?00 150 200 250 300 350 400 450 500
b

Figure 7: Evaluation of training and indexing time efficiency.

Holiday ImageCLEFFlickr
I Color
: I Edge
5 1 N : I Gabor - ®
= T 1 -
= ® =t S 9%
S .. v [JoisT 5 ® ® ®
=7 [1sIFT200 2 05 e
[} - < 9
2 o | [SIFT1000 o) <
E 0 E 0
N I SURF200 g e
MKLSH I SURF1000 MKLSH
WMKLSH 3 4 WMKLSH ;
BMKLSH ™ 2 BMKLSH 2
1 Kernel ID 1 Kernel ID

Figure 6: Visualization of bit allocation weights obtainedby three different algorithms.

5.9 Evaluation of Qualitative Performance

Finally, we illustrate the qualitative retrieval perfornta by ran-
domly choosing some query images from the database. Fiyure
shows the retrieval results by different algorithms. Thigife in-
cludes four retrieval cases of different queries, each a€¢kvbhows
the top-3 retrieved results by three representative atgos: KLSH-
Best, MKLSH, and BMKLSH. From the qualitative results, waca
see that the proposed BMKLSH algorithm in general is ableto r
turn more relevant results than the other algorithms.

6. CONCLUSIONS

This paper investigated a framework of Multi-Kernel Lotgali
Sensitive Hashing by exploring multiple kernels for effitci@nd
scalable content-based image retrieval. We first analyzedhe-
oretical property of kernel LSH (KLSH). We further emphasiz
that it is of crucial importance to develop a proper comborabf
multiple kernels for determining the bit allocation taskhSH,
although KLSH and MKLSH with naive use of multiple kernels
have been proposed in literature. We thus proposed two rgaw al
rithms: (i) WMKLSH that combines multiple kernels via a sil@ap
weighted combination, and (ii) BMKLSH that employs a boogti
like scheme to optimize the bit allocation of multiple kdméor
KLSH. We have conducted an extensive set of experimentsaie ev
uate the performance of the proposed algorithms, in whiefeti
couraging results showed that the proposed BMKLSH algarith
using the boosting approach is able to considerably sugaam-
ber of baseline methods. Future work will apply our techaitm
tackle other problems, such as search-based image aonotati

Acknowledgments

This work was in part supported by Singapore MOE tier 1 pitojec
(RG33/11), Microsoft Research grant (M4060936), and USYArm
Research Office (W911NF-11-1-0383).

7. REFERENCES
[1] S. Arya, T. Malamatos, and D. M. Mount. Space-time trdftefor
approximate nearest neighbor searchihgACM 57(1):1-54, 2009.
[2] J. L. Bentley. Multidimensional binary search treesdif@
associative searchinGommun. ACM18(9):509-517, 1975.

[3] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The x-treen Adex
structure for high-dimensional data. W.DB, pages 28—39, San
Francisco, CA, USA, 1996.

[4] C.Bohm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for improvireg t
performance of multimedia databas&&€M Comput. Sury.
33(3):322-373, 2001.

[5] G.-H. Cha, X. Zhu, P. Petkovic, and C.-W. Chung. An effitie
indexing method for nearest neighbor searches in higredsional
image databaseH=EE Transactions on Multimedia(1):76-87,
2002.

[6] M. Charikar. Similarity estimation techniques from raling
algorithms. INSTOG pages 380-388, 2002.

[7] K. L. Clarkson. A randomized algorithm for closest-pogueries.
SIAM J. Comput.17(4):830-847, 1988.

[8] B. Cui, B. C. Oo0i, J. Su, and K.-L. Tan. Indexing high-dins&onal
data for efficient in-memory similarity seardiEE Trans. on
Knowl. and Data Eng.17(3):339-353, 2005.

[9] I. Daoudi, K. Idrissi, S. E. Ouatik, A. Baskurt, and D. Altajdine.

An efficient high-dimensional indexing method for contéased

retrieval in large image databasénage Commun24(10):775-790,

2009.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.

Locality-sensitive hashing scheme based on p-stabletdisons. In

Proc. 20th annual symposium on Computational geometry (4G

pages 253-262. New York, NY, 2004.

W. Dong, M. Charikar, and K. Li. Asymmetric distanceigsition

with sketches for similarity search in high-dimensionaiegs. In

SIGIR pages 123-130, 2008.

P. Drineas and M. W. Mahoney. On the nystrom method for

approximating a gram matrix for improved kernel-basedrizey.

Journal of Machine Learning Researdt2005, 2005.

[13] Y. Freund and R. E. Schapire. A decision-theoretic galimation of
on-line learning and an application to boostidgComput. Syst. Sci.
55(1):119-139, 1997.

[14] A. Gionis, P. Indyk, and R. Motwani. Similarity searahhigh
dimensions via hashing. MLDB, 1999.

[15] K. Grauman and T. Darrell. Pyramid match hashing: Soar time
indexing over partial correspondencesWPR 2007.

[16] J. He, S.-F. Chang, R. Radhakrishnan, and C. Bauer. @oimp
hashing with joint optimization of search accuracy and time
CVPR pages 753-760, 2011.

[17] J. He, W. Liu, and S.-F. Chang. Scalable similarity shawith
optimized kernel hashing. IKDD, pages 1129-1138, 2010.

[18] S. C. H. Hoiand M. R. Lyu. A multimodal and multilevel reng

[10]

(11]

[12]

Figure 8: Comparison of qualitative retrieval performance on the “Holiday" dataset. This figure shows four examples. Foeach
query, we show the top-3 retrieved images by three represeative methods, i.e., KLSH-Best, MKLSH, and BMKLSH, respectvely.

scheme for large-scale video retrieEE Transactions on
Multimedia 10(4):607-619, 2008.

[19] S.C. H.Hoi, M. R. Lyu, and R. Jin. A unified log-based xelece
feedback scheme for image retried®EE Trans. KDE
18(4):509-204, 2006.

[20] P. Indyk and R. Motwani. Approximate nearest neighbawards
removing the curse of dimensionality. 8BTOGC pages 604-613,
1998.

[21] H. Jegou, M. Douze, and C. Schmid. Hamming embeddingnagak
geometric consistency for large scale image searcBAGV (1)
pages 304-317, 2008.

[22] A. Joly and O. Buisson. Random maximum margin hashing. |
CVPR pages 873-880, 2011.

[23] B. Kulis and K. Grauman. Kernelized locality-senstitiashing for
scalable image search. IGCV, 2009.

[24] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Contentdase
multimedia information retrieval: State of the art and thages.
ACM Trans. Multimedia Comput. Commun. Apg(1):1-19, 2006.

[25] Q. Lv, W. Josephson, Z. Wang, M. S. Charikar, and K. Li.
Multi-probe Ish: efficient indexing for high-dimensionairslarity
search. InVLDB. Vienna, Austria, 2007.

[26] Y. Mu, J. Shen, and S. Yan. Weakly-supervised hashiriginel
space. IICVPR pages 3344-3351, 2010.

[27] B. K. P. Jain and K. Grauman. Fast image search for |elnmetrics.
In CVPR 2008.

[28] M. Raginsky and S. Lazebnik. Locality-sensitive binandes from
shift-invariant kernels. IINIPS pages 1509-1517, 2009.

[29] J. T. Robinson. The k-d-b-tree: A search structure dogé
multi-dimensional dynamic indexeSIGMOD, pages 10-18, 1981.

[30] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. Releganc

feedback: A power tool in interactive content-based imageaval.
IEEE Trans. CSV,I8(5):644—655, Sept. 1998.

[31] M. Shamos and D. Hoey. Closest-point problemsPtac. 16th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS) pages 151-162, 1975.

[32] S. Smale and D.-X. Zhou. Geometry on probability spaCesistr
Approx 30:311-323, 2009.

[33] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, ardJain.
Content-based image retrieval at the end of the early yHaEE
Trans. PAM| 22(12):1349-1380, 2000.

[34] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and effiaig in high
dimensional nearest neighbor searchSIGMOD Conferencgpages
563-576, 2009.

[35] J. K. Uhlmann. Satisfying general proximity/simifgriqueries with
metric treesInformation Processing Letterd0:175-179, 1991.

[36] J. Wang, O. Kumar, and S.-F. Chang. Semi-supervisedimg$or
scalable image retrieval. I@VPR pages 3424-3431, 2010.

[37] S.Wang, S. Jiang, Q. Huang, and Q. Tian. S3mkl: scalable
semi-supervised multiple kernel learning for image dataimgj. In
ACM Multimedia pages 163-172, 2010.

[38] L. Yang, R. Jin, L. B. Mummert, R. Sukthankar, A. Goode ZBeng,
S. C. H. Hoi, and M. Satyanarayanan. A boosting framework for
visuality-preserving distance metric learning and itsliapfion to
medical image retrieval EEE Trans. Pattern Anal. Mach. Intgll.
32(1):30-44, 2010.

[39] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hasfondast
similarity search. IrSIGIR pages 18-25, 2010.

[40] J. Zhuang, T. Mei, S. C. H. Hoi, X.-S. Hua, and S. Li. Mddgl
social strength in social media community via kernel-bdsadhing.
In ACM Multimedia pages 113-122, 2011.

	Boosting multi-kernel Locality-Sensitive Hashing for scalable image retrieval
	Citation

	tmp.1414726759.pdf.mVcxu

