
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2012 

Fast bounded online gradient descent algorithms for scalable Fast bounded online gradient descent algorithms for scalable 

kernel-based online learning kernel-based online learning 

Peilin ZHAO 
Nanyang Technological University 

Jialei WANG 
Nanyang Technological University 

Pengcheng WU 
Nanyang Technological University 

Rong JIN 
Michigan State University 

Steven C. H. HOI 
Singapore Management University, chhoi@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons 

Citation Citation 
ZHAO, Peilin; WANG, Jialei; WU, Pengcheng; JIN, Rong; and HOI, Steven C. H.. Fast bounded online 
gradient descent algorithms for scalable kernel-based online learning. (2012). Proceedings of the Twenty-
Ninth International Conference on Machine Learning: June 26 - July 1, Edinburgh, Scotland. 169-176. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2342 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Fast Bounded Online Gradient Descent Algorithms for

Scalable Kernel-Based Online Learning

Peilin Zhao† zhao0106@ntu.edu.sg

Jialei Wang† jl.wang@ntu.edu.sg

Pengcheng Wu† wupe0003@ntu.edu.sg

Rong Jin‡ rongjin@cse.msu.edu

Steven C.H. Hoi† chhoi@ntu.edu.sg

†School of Computer Engineering, Nanyang Technological University, Singapore 639798
‡Department of Computer Science and Engineering, Michigan State University, USA

Abstract

Kernel-based online learning has often shown
state-of-the-art performance for many online
learning tasks. It, however, suffers from a
major shortcoming, that is, the unbounded
number of support vectors, making it non-
scalable and unsuitable for applications with
large-scale datasets. In this work, we study
the problem of bounded kernel-based online
learning that aims to constrain the number
of support vectors by a predefined budget.
Although several algorithms have been pro-
posed in literature, they are neither computa-
tionally efficient due to their intensive budget
maintenance strategy nor effective due to the
use of simple Perceptron algorithm. To over-
come these limitations, we propose a frame-
work for bounded kernel-based online learn-
ing based on an online gradient descent ap-
proach. We propose two efficient algorithms
of bounded online gradient descent (BOGD)
for scalable kernel-based online learning: (i)
BOGD by maintaining support vectors us-
ing uniform sampling, and (ii) BOGD++
by maintaining support vectors using non-
uniform sampling. We present theoretical
analysis of regret bound for both algorithms,
and found promising empirical performance
in terms of both efficacy and efficiency by
comparing them to several well-known algo-
rithms for bounded kernel-based online learn-
ing on large-scale datasets.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

1. Introduction

The goal of kernel-based online learning is to sequen-
tially update a nonlinear kernel-based classifier given
a sequence of training examples (Kivinen et al., 2001;
Cheng et al., 2006; Crammer et al., 2006; Jin et al.,
2010; Zhao et al., 2011). Although it yields signifi-
cantly better performance than linear online learning,
the main shortcoming of kernel-based online learning is
its potentially unbounded number of support vectors,
which requires a large amount of memory for storing
support vectors and a high computational cost per it-
eration, both making it unsuitable for large-scale ap-
plications. In this work, we address this challenge by
developing a computationally efficient framework for
budget online learning in which the number of support
vectors is bounded by a predefined size (i.e., budget).

In literature, several algorithms have been pro-
posed for online budget learning. Crammer et
al. (Crammer et al., 2003) proposed a heuristic ap-
proach for online budget learning, which was further
improved in (Weston & Bordes, 2005). The basic idea
of these two algorithms is to remove the support vec-
tor that has the least impact on the classification per-
formance when the budget number of support vectors
is reached. The main shortcoming of these two algo-
rithms is that they are heuristic approaches and do
not have solid theoretic supports (i.e., neither a mis-
take bound nor a regret bound is proved).

Forgetron (Dekel et al., 2005) is the first online budget
learning algorithm that has guarantee on the number
of mistakes. At each iteration, if the classifier makes
a mistake, it conducts a three-step updating: it first
runs the standard Perceptron (Rosenblatt, 1958) up-
dating; it then shrinks the weights of support vectors
by a carefully chosen scaling factor; it finally removes



Fast Bounded Online Gradient Descent Algorithms

the support vector with the least weight. Randomized
Budget Perceptron (RBP) (Cavallanti et al., 2007) re-
moves a randomly selected support vector when the
number of support vectors exceeds the predefined bud-
get. It achieves similar mistake bound and empirical
performance as the Forgetron algorithm.

Unlike the strategy that discards one of sup-
port vectors to maintain the budget, Projec-
tron (Orabona et al., 2008) adopts a projection strat-
egy to bound the number of support vectors. Specif-
ically, in each iteration when the training example is
misclassified, it first constructs a new kernel classifier
by applying the updating rule of Perceptron to the cur-
rent classifier; it then projects the new classifier into
the space spanned by all the support vectors except
the new example received. The classifier will remain
unchanged if the difference between the new classifier
and its projection is smaller than a given threshold.
Empirical studies show that Projectron usually out-
performs Forgetron in classification but with signifi-
cantly longer running time. One main shortcoming
of Projectron is that although the number of support
vectors of Projectron is bounded, it is however unclear
the exact number of support vectors achieved by Pro-
jectron in theory. In addition, its high computational
cost makes it unsuitable for large-scale applications.

All the existing algorithms for online budget learn-
ing are based on the Perceptron algorithm, par-
tially because they are mostly concerned with the
mistake bound, not the regret bound. In this pa-
per, we develop a “Bounded Online Gradient De-
scent” (BOGD) framework for online budget learn-
ing algorithms, based on the online gradient descent
algorithms (Kivinen et al., 2001; Zinkevich, 2003;
Ying & Pontil, 2008). Similar to the Random Budget
Perceptron, the proposed algorithms randomly select
one of the existing support vectors to discard when the
buffer of support vectors overflows. However, unlike
the Random Budget Perceptron that discards every
support vector with equal probability, in one of our al-
gorithms, the probability of discarding a support vec-
tor depends on its weight, making it more effective for
online budget learning. Different from most existing
studies that can only obtain a guarantee on the mis-
take bound, we derive regret bounds for the proposed
algorithms, making it possible to convert the proposed
algorithms into batch learning algorithms when the
received examples are iid samples. Finally, it is im-
portant to distinguish the proposed work from sparse
online learning (Langford et al., 2009; Duchi & Singer,
2009) whose goal is to learn a sparse linear classifier
from a sequence of training examples. In contrast, we
focus on learning a nonlinear kernel classifier.

The rest of the paper is organized as follows. Section 2
introduces the basic setting of online budget learning,
and presents both theoretical and algorithmic details
of the proposed approaches for online budget learning.
Section 3 discusses our empirical studies on six real
world datasets. Section 4 concludes this work.

2. Algorithms and Analysis

We consider kernel-based online learning for classifica-
tion. Our goal is to learn a function f : Rd → R from a
sequence of training examples {(xt, yt), t ∈ [T ]}, where
xt ∈ R

d, yt ∈ Y = {−1,+1} and [T ] = {1, . . . , T }.
We predict the class assignment for x by sgn(f(x)),
and measure the classification confidence by |f(x)|.
Let ℓ(yf(x)) : R → R be a convex loss function
that is Lipschitz continuous with Lipschitz constant
L. Let H be an RKHS endowed with a kernel func-
tion κ(·, ·) : Rd × R

d → R. We assume κ(x,x) ≤ 1
for any x ∈ R

d. Similar to kernel-based online learn-
ing (Kivinen et al., 2001; Zinkevich, 2003) and the Pe-
gasos algorithm (Shalev-Shwartz et al., 2011), at each
trial of online learning, given a received training ex-
ample (xt, yt), we define the following loss function:

Lt(f) =
λ

2
‖f‖2H + ℓ(ytf(xt)) (1)

We first describe an online learning algorithm, sim-
ilar to kernel-based online learning (Kivinen et al.,
2001; Zinkevich, 2003), that minimizes the regret

of
∑T

t=1 ℓt(ft) using the online gradient descent ap-
proach. At each trial t, given the classifier ft and
training example (xt, yt), we update the classifier by

ft+1(·) = ft(·)− η∇Lt(ft)

= (1− ηλ)ft(·)− ηytℓ
′(ytft(xt))κ(xt, ·) (2)

where η is the stepsize and λ > 0 is the regularization
parameter.

Theorem 1. Let ft, t ∈ [T ] be a sequence of classifiers
generated by the updating rule in (2). We have the
following bound for any f ∈ H,

T∑

t=1

ℓ(ytft(xt)) ≤
λT + η−1

2
‖f‖2H +

T∑

t=1

ℓ(ytf(xt)) + ηL2T

By setting λT = η−1, we have

T∑

t=1

ℓ(ytft(xt)) ≤
1

η
‖f‖2H +

T∑

t=1

ℓ(ytf(xt)) + ηL2T

which leads to O(1/
√
T ) bound if η = O(1/

√
T ). Note

that we did not exploit the strong convexity of Lt(f),



Fast Bounded Online Gradient Descent Algorithms

which often leads to a better bound. This is because
our goal is to bound

∑
t ℓt(ytft(xt)), not

∑
t Lt(ft). In

addition, to exploit the strong convexity of Lt(f), we
have to vary the stepsize η over trials, making it diffi-
cult to extend the analysis to online budget learning.

We now modify the updating rule in (2) for online
budget learning. The first modification is to introduce
a domain to which the updated classifier will be pro-
jected. Specifically, we define the domain Ω as:

Ω(ηγ)=

{
f(·)=

T∑

t=1

αtytκ(xt, ·) : αt ∈ [0, γη], t ∈ [T ]

}
(3)

where γη > 0 specifies the maximum weight that can
be assigned to any support vector. Using the domain
Ω(ηγ), we modify the updating rule in (2) as follows

ft+1 = πΩ(ηγ) (ft − η∇Lt(ft)) (4)

where πΩ(ηγ)(f) projects f into the domain Ω(ηγ).
Note that when γ ≥ L, we have πΩ(ηγ)(f) = f be-
cause the weights for support vectors never increase
over trials and for any support vector, its initially as-
signed weight is ηL.

Let B > 0 be a predefine budget. Our goal is to
bound the number of support vector by B. When
the number of the support vectors in f(·) is less than
B, we simply run the updating rule in (4) without
any change. Without loss of generality, we consider
a trial t where the number of support vectors in ft(·)
is B and we need to update ft(·) with a new training
example (xt, yt). Note that the gradient of Lt(ft) is
written as λft(·) + ytℓ

′(ytft(xt))κ(xt, ·). Our strat-
egy is to approximate ft(·) in ∇L(f) with its un-

biased estimator f̂t(·) so that the updated classifier

ft+1(·) = ft − ηλf̂t − ηytℓ
′(ytft(xt))κ(xt, ·) contains

exactly B support vectors. More specifically, we ex-
press the classifier ft(·) as

ft(·) =
B∑

i=1

αt
iy

t
iκ(x

t
i, ·)

where {(xt
i, y

t
i), i ∈ [B]} are the support vectors and

αt
i > 0 is the weight for support vector (xt

i, y
t
i). In

order to generate an unbiased estimator f̂t(·) for ft(·),
we randomly select one support vector according to a
distribution pt = (pt1, . . . , p

t
B). We introduce a binary

variable Zt
i , with Zt

i = 1 indicating that support vec-
tor (xt

i, y
t
i) is selected and zero otherwise. Evidently,∑B

i=1 Z
t
i = 1. Based on Zt = (Zt

1, . . . , Z
t
B), we con-

sider the following general form for constructing the
unbiased estimator f̂t(·)

f̂t(·) =
B∑

i=1

(
atiZ

t
i + bti

)
ytiκ(x

t
i, ·) (5)

where ati ≥ 0 and bti are parameters that need to be

determined. To ensure E[f̂t(·)] = ft(·), we have the
following condition for ati and bti

atip
t
i + bti = αt

i, i ∈ [B] (6)

Using the unbiased estimator f̂t(·), we have the clas-
sifier ft(·) updated as

ft+1(·) = πΩ(ηγ)

(
− ηℓ′(ytft(xt))ytκ(xt, ·)

+
B∑

i=1

(
αt
i − λη[bti + atiZ

t
i ]
)
ytiκ(x

t
i, ·)
)
(7)

In order to ensure that the number of support vectors
in ft+1(·) is B, we need to have one of the coefficients
in (7) set to zero, leading to the following condition
for ati and bti.

αt
i = λη(bti + ati), i ∈ [B] (8)

Conditions (6) and (8) are the key for designing the
sampling probabilities pt and weights (ati, b

t
i) for each

support vector. Given pt, we have the following ex-
pression for (ati, b

t
i)

ati =
1− λη

λη(1 − pti)
αt
i, bti =

λη − pti
λη(1 − pti)

αt
i, i ∈ [B] (9)

As a result, the weight αt+1
i is updated as follows

αt+1
i = min

(
(1− Zt

i )
1− λη

1− pti
αt
i, γη

)
, i ∈ [B] (10)

According to (10), the weight for the selected support
vector (i.e., Zi

t = 1) is set to zero in the updated clas-
sifier ft+1(·), implying that the selected support vec-
tor is discarded from the updated classifier. Finally,
Algorithm 1 summarizes the proposed framework of
Bounded Online Gradient Descent (BOGD) learning.

Given the sampling probabilities pt, t ∈ [T ], we have
the following theorem for Algorithm 1.

Theorem 2. Assume κ(x,x) ≤ 1 and λη ≤ 1/2. Let
ft, t ∈ [T ] be the sequence of classifiers generated by
Algorithm 1. Then, for any f ∈ Ω(ηγ), we have in
expectation the overall loss bounded as follows

E

[
T∑

t=1

ℓ(ytft(xt))

]
≤ η−1 + λT

2
‖f‖2H +

T∑

t=1

ℓ(ytf(xt))

+ηL2T +
(1− λη)2

η
E

[
∑

t∈VT

B∑

i=1

pti[α
t
i]
2

(1− pti)
2

]

where VT = [T ]/UT and UT = {t ∈ [T ] | |SVt| <
B or ℓ′(ytft(xt)) = 0}.



Fast Bounded Online Gradient Descent Algorithms

Algorithm 1 A framework of Bounded Online Gra-
dient Descent (BOGD)

Input: the maximum budget size B, stepsize η, reg-
ularization parameter λ > 0, and maximum coeffi-
cient γ > 0.
Initialize S1 = ∅, f1 = 0.
for t = 1, 2, . . . , T do

Receive xt;
Predict ŷt = sgn(ft(xt));
Receive yt and suffer loss ℓ

(
ytft(xt)

)
;

if ℓ
′

(ytft(xt)) = 0 then

ft+1(·) = (1 − ηλ)ft(·) and St+1 = St.
else

if |St| < B then

ft+1(·) = (1−ηλ)ft(·)−ηℓ
′

(ytft(xt))ytκ(xt, ·)
and St+1 = St ∪ {t}.

else

Compute the sampling distribution pt =
(pt1, . . . , p

t
B);

Sample an index ik from {1, . . . , B} according
to distribution pt;
Set Zt

ik
= 1 and Zt

i = 0, i ∈ [B]/{ik};
ati = 1−λη

λη(1−pt

i
)α

t
i, bti =

λη−pt

i

λη(1−pt

i
)α

t
i, i =

1, . . . , B;
ft+1(·) = Eq. (7);
St+1 = St ∪ {t}/{ik}.

end if

end if

end for

Proof. Using the standard analysis of gradient de-
scent (Kivinen et al., 2001; Zinkevich, 2003), it is not
difficult to show for any f ∈ Ω(ηγ),

E

[
T∑

t=1

{
λ

2
‖ft‖2H + ℓ(ytft(xt))

}]

−
T∑

t=1

{
λ

2
‖f‖2H + ℓ(ytf(xt))

}

≤ ‖f‖2H
2η

+ ηL
2
T + ηE

[
T∑

t=1

λ
2‖f̂t‖2H

]

(11)

We consider two scenarios:

Case 1: Consider the trial t ∈ UT . Since no sampling
is done in these trials, we thus have Et[|f̂t|2H] = ‖ft‖2H.
Case 2: Consider the trial t ∈ VT , we have

Et[|f̂t|2H]

= ‖ft‖2H −
∥∥∥∥∥

B∑

i=1

atip
t
iy

t
iκ(x

t
i, ·)
∥∥∥∥∥

2

H

+

B∑

i=1

pti[a
t
i]
2κ(xt

i,x
t
i)

≤ ‖ft‖2H +
(
[λη]−1 − 1

)2 B∑

i=1

pti[α
t
i]
2

(1− pti)
2

We complete the proof by substituting into (11) the
above expression for ‖f‖2H.

Below, we discuss two different designs of sampling
probabilities pt, i.e., (i) uniform sampling, and (ii)
non-uniform sampling.

Uniform Sampling. In this approach, we set pti =
1/B for any i ∈ [B] and any t ∈ [T ]. According to The-
orem 2, it is not difficult to have the following result
for the loss bound.

Theorem 3. For any classifier f ∈ Ω(ηγ), we have
the following bound for Algorithm 1 using uniform
sampling

E

[
T∑

t=1

ℓ(ytft(xt))

]
≤
(
(

B

B − 1
)2γ2 + L2

)
ηT

+
η−1 + λT

2
‖f‖2H +

T∑

t=1

ℓ(ytf(xt)) = A(η) + C(η)(12)

where

A(η) = ((
B

B − 1
)2γ2 + L2)ηT +

η−1 + λT

2
‖f‖2H,

C(η) =

T∑

t=1

ℓ(ytf(xt)).

Let ληT = 1 and η = 1/
√
T . We then have, for any

f ∈ Ω(ηγ), that

E

[
T∑

t=1

ℓ(ytft(xt))

]
−

T∑

t=1

ℓ(ytf(xt))

≤
(
(

B

B − 1
)2γ2 + L2

)√
T + ‖f‖2H

√
T = O(

√
T ) (13)

Remark. We have two comments for the above re-
sults. First, by choosing different stepsize η, we make
a tradeoff between A(η) and C(η). In particular, a
small η will result in a small value for A(η) but a large
value for C(η). This is because a small η reduces the
size of hypothesis space Ω(ηγ) and consequentially in-

creases the overall loss
∑T

t=1 ℓ(ytf(xt)). Similarly, a
large η will lead to large A(η) but potentially small
C(η). Second, although (13) shows a regret bound of
O(

√
T ) independent from B, it does not contradict the

analysis presented in (Dekel et al., 2005). This is be-
cause we restrict the competitor f to the domain Ω(ηγ)
while the analysis in (Dekel et al., 2005) considers any
hypothesis in RHKS H as a competitor. Observe that
the projection πΩ(ηγ)(f) in (7) is no longer in effect
if we set γ ≥ L and λη ≥ 1/B in our algorithm. As



Fast Bounded Online Gradient Descent Algorithms

a result, under the conditions γ ≥ L and λη ≥ 1/B,
for any classifier f ∈ H, with appropriate choice of η
and λ, we have the following regret bound for the the
sequence of classifier generated by Algorithm 1 using
uniform sampling:

E

[
T∑

t=1

ℓ(ytft(xt))

]
−

T∑

t=1

ℓ(ytf(xt)) ≤ O

(
T√
B
‖f‖H

)
(14)

As indicated by the regret bound in (14), if we con-
sider any f ∈ H as a competitor, unless we set
B = T , we will not be able to obtain an O(

√
T ) regret

bound. Although this result may seem significantly
worse than the one presented (Dekel et al., 2005), we
emphasize that (14) is about regret bound while the re-
sult in (Dekel et al., 2005) is about mistake bound. In
general, deriving a good regret bound is usually more
challenging than getting a similar mistake bound.

Nonuniform Sampling. To fully exploit the in-
formation we have about the classifier f(·) =∑B

i=1 αiyiκ(xi, ·), we consider a nonuniform sampling
approach to BOGD by choosing the values of p as fol-
lows:

(1 − pi)
2 = s2α2

i κ(xi,xi), i ∈ [B] (15)

where s is the normalization factor. Given the expres-
sion in (15), it is straightforward to derive pi as follows

pi = 1− sαi

√
κ(xi,xi), (16)

where s = (B−1)
∑

B

i=1
αi

√
κ(xi,xi)

.

Before presenting the regret bound, we define function
H(f) that measures the skewness of the coefficients for
the support vectors used by f . More specifically, H(f)
is defined as

H(f) = B
B∑

i=1

α2
i κ(xi, xi)−

(
B∑

i=1

αi

√
κ(xi, xi)

)2

According to Cauchy-Schwarz inequality, we always
have H(f) ≥ 0 where the equality holds if and only
if α1 = . . . ,= αB .

Theorem 4. Assume κ(x,x) ≤ 1 and κ(x,x′) ≥ 0.
Let ft, t ∈ [T ] be the sequence of classifiers generated
by Algorithm 1 using the nonuniform sampling spec-
ified in (16). Then, for any f ∈ Ω(ηγ), we have in
expectation the loss experienced by {ft}Tt=1 bounded as:

E

[
T∑

t=1

ℓ(ytft(xt))

]

−
T∑

t=1

ℓ(ytf(xt)) ≤

((
B

B − 1
)2γ2 + L

2)ηT +
η−1 + λT

2
‖f‖2H − (1− λη)2

η(B − 1)2

∑

t∈Vt

Ht

where Ht = H(ft) and Vt is the set of trials where one
of the support vector is discarded.

Proof. The proof is almost identical to that of Theo-
rem 2. The only difference is in bounding Et[|f̂t|2H], t ∈
Vt, i.e.,

Et[|f̂t|2H]

≤ ‖ft‖2H +

(
1− λη

λη

)2

(∑B

i=1 α
t
i

√
κ(xt

i,x
t
i)
)2

(B − 1)2

≤ ‖ft‖2H +
(1− λη)2

(λη)2(B − 1)2

(
B

B∑

i=1

[αt
i]
2κ(xt

i,x
t
i)−Ht

)

The rest of the proof follows almost the exactly same
steps as that for Theorem 2.

The above theorem clearly indicates that nonuniform
sampling reduces the regret bound by taking advan-
tage of the skewed distribution of coefficients assigned
to support vectors. We note that although Theorem
4 does not give an explicit bound for the advantage
of exploiting the skewed distribution of coefficients, it
does show up significantly in our empirical study.

3. Experimental Results

In this section, we evaluate the empirical performance
of the proposed algorithms for Bounded Online Gradi-
ent Descent (BOGD) learning algorithms by compar-
ing them to the state-of-the-art algorithms for online
budget learning.

3.1. Experimental Testbed

Table 1 shows the details of six binary-class datasets
used in our experiments. All of these datasets can
be downloaded from LIBSVM website 1 and UCI ma-
chine learning repository 2. These datasets were cho-
sen fairly randomly to cover a variety of datasets of
different sizes.

Table 1. Details of the datasets in our experiments.

Dataset # instances # features

german 1000 24
spambase 4601 57
magic04 19020 10
w8a 24692 300
ijcnn1 141691 22
codrna 271617 8

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
2http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://www.ics.uci.edu/~mlearn/MLRepository.html


Fast Bounded Online Gradient Descent Algorithms

Algorithm Perceptron OGD

Datasets Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

german 34.805 ± 1.017 348.050 ± 10.175 0.069 30.115 ± 0.618 583.550 ± 6.613 0.128

spambase 24.957 ± 0.460 1148.250 ± 21.166 0.486 21.588 ± 0.303 2391.750 ± 13.973 1.071

w8a 3.501 ± 0.053 2264.950 ± 34.092 17.055 2.343 ± 0.020 3352.900 ± 11.149 27.795

magic04 27.093 ± 0.326 5153.100 ± 62.060 5.363 20.176 ± 0.144 14333.350 ± 18.368 25.652

ijcnn1 12.361 ± 0.120 17514.400 ± 169.788 438.169 9.181 ± 0.030 25267.750 ± 39.840 640.728

codrna 14.038 ± 0.033 38128.800 ± 88.755 1392.621 10.467 ± 0.024 51423.900 ± 74.865 1782.763

Table 2. Evaluation of non-budget algorithms on the the data sets.

3.2. Baseline Algorithms and Setup

We refer to as “BOGD” the proposed BOGD algo-
rithm using uniform sampling, and as “BOGD++”
the proposed BOGD algorithm using nonuniform sam-
pling. We compare the two proposed BOGD algo-
rithms with the following state-of-the-art algorithms
for online budget learning: (i) “RBP” — the Ran-
dom Budget Perceptron algorithm (Cavallanti et al.,
2007), (ii) “Forgetron” — the Forgetron algo-
rithm (Dekel et al., 2005), (iii) “Projectron” — the
Projectron algorithm (Orabona et al., 2008), and (iv)
“Projectron++” — the aggressive version of Projec-
tron algorithm (Orabona et al., 2008). We also com-
pare the proposed algorithms to two non-budget on-
line learning algorithms: (i) “Perceptron” — the clas-
sical Perceptron algorithm (Rosenblatt, 1958), and
(ii) “OGD” — the Online Gradient Descent algo-
rithm (Kivinen et al., 2001; Ying & Pontil, 2008).

To make a fair comparison, all the algorithms in
our comparison adopt the same experimental setup.
The loss function ℓ is set as the hinge loss, i.e.,
ℓ(yf(x)) = max(0, 1 − yf(x)). A Gaussian kernel
is adopted in our study, for which the kernel width
is set to 8 for all the algorithms and datasets. The
regularization parameter λ, stepsize η and parame-
ter γ in the proposed algorithm are selected using
cross validation for all combinations of the datasets,
algorithms and budgets(More specifically, λ is chosen

from { 2−3

T 2 , 2−2

T 2 , ...,
23

T 2 } where T is the number of in-
stances; η is chosen from {2−3, 2−2, ..., 23}; γ is chosen
from {20, 21, ..., 24}). The budget sizes Bs for differ-
ent datasets are set as proper fractions of the sup-
port vectors numbers of Perceptron, which are shown
in Table 3. All the experiments were conducted 20
times, each with a different random permutation of
data points. All the results were reported by averaging
over the 20 runs. For performance metrics, we evaluate
the online classification performance by mistake rates
and running time. Finally, all of the algorithms were
implemented in C++, and all experiments were run in
a linux machine with 2.5GHz CPU.

3.3. Evaluation of Non-budget Algorithms

Table 2 summarizes the average performance of the
two non-budget algorithms for kernel-based online
learning. First, we find that OGD outperforms Per-
ceptron significantly for all datasets according to t-test
results, which implies that a budget OGD algorithm
might be more effective than that based on the Per-
ceptron algorithm. Second, the support vector size of
OGD is in general much larger than that of Perceptron.
Finally, the time cost of OGD is much higher than that
of Perceptron, mostly due to the larger number of sup-
port vectors. Both the large number of support vectors
and high computational time motivate the need of de-
veloping budget OGD algorithms.

3.4. Evaluation of Budget Algorithms

Table 3 summarizes the results of different budget on-
line learning algorithms. First, we observe that RBP
and Forgetron achieve similar performance for almost
all cases. In addition, we also find that Projectron++
achieves a lower mistake rate than Projectron for al-
most all the datasets and for all budge sizes, which is
similar to the results in (Orabona et al., 2008).

Second, compared to the baseline algorithms for on-
line budget learning, the proposed BOGD algorithm
achieves comparable, sometimes better mistake rates,
especially when the budget size is large, demonstrat-
ing the effectiveness of our framework. Among all the
compared algorithms for online budget learning, when
the budget is large, we find that BOGD++ always
achieves the lowest mistake rates for most the cases;
when the budget is small, BOGD++ often achieves the
best or close to the best results (except two datasets
“german” and “spambase”). These results indicate
the importance of exploiting the skewed distribution of
weights for support vectors. Moreover, it is interesting
to find that on most datasets (e.g., “german”, ”w8a”,
“ijcnn1”, ”magic04” and “codrna”), BOGD++ can
even achieve significantly lower mistake rates than Per-
ceptron that does not a budget constraint.



Fast Bounded Online Gradient Descent Algorithms

Budget Size B=100 B=150 B=200

Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

german RBP 38.060 %± 1.254 0.032 37.040 %± 0.658 0.044 35.740 %± 1.566 0.056

Forgetron 37.320 %± 1.040 0.037 36.780 %± 1.894 0.041 36.280 %± 0.726 0.038

Projectron 35.240 %± 0.635 0.041 35.100 %± 0.539 0.062 34.960 %± 0.853 0.097

Projectron++ 34.500 %± 1.355 0.059 35.240 %± 0.814 0.109 34.600 %± 0.671 0.153

BOGD 30.440 %± 0.991 0.025 30.760 %± 1.029 0.037 30.540 %± 0.559 0.040

BOGD++ 31.080 %± 0.963 0.028 30.580 %± 0.963 0.050 30.200 %± 1.054 0.062

Budget Size B=100 B=200 B=300

Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

spambase RBP 34.153 %± 0.657 0.065 32.236 %± 0.241 0.132 30.585 %± 0.943 0.193

Forgetron 34.658 %± 0.463 0.117 32.436 %± 0.715 0.231 30.785 %± 0.888 0.320

Projectron 31.841 %± 0.398 0.147 30.467 %± 4.524 0.426 29.302 %± 4.831 0.847

Projectron++ 31.302 %± 0.293 0.495 28.468 %± 0.702 1.752 29.359 %± 4.959 4.013

BOGD 31.158 %± 0.500 0.089 29.572 %± 0.437 0.180 28.472 %± 0.785 0.267

BOGD++ 31.128 %± 0.357 0.096 28.732 %± 0.929 0.193 28.329 %± 0.280 0.282

Budget Size B=200 B=400 B=600

Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

w8a RBP 4.793 %± 0.069 2.566 4.200 %± 0.072 4.868 3.906 %± 0.099 7.134

Forgetron 4.868 %± 0.073 2.656 4.203 %± 0.024 5.976 3.888 %± 0.037 8.206

Projectron 3.103 %± 0.019 3.044 3.214 %± 0.087 7.748 3.202 %± 0.061 14.546

Projectron++ 3.103 %± 0.014 3.670 2.934 %± 0.078 12.398 2.783 %± 0.046 23.728

BOGD 3.038 %± 0.016 2.710 3.627 %± 0.108 6.108 3.339 %± 0.141 8.974

BOGD++ 3.037 %± 0.007 2.938 2.724 %± 0.144 6.850 2.701 %± 0.047 9.478

Budget Size B=500 B=1000 B=1500

Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

magic04 RBP 31.682 %± 0.363 0.740 30.268 %± 0.341 1.557 29.402 %± 0.325 2.421

Forgetron 31.891 %± 0.243 0.980 30.521 %± 0.288 1.968 29.831 %± 0.400 2.905

Projectron 28.076 %± 0.590 8.280 27.361 %± 0.424 28.419 27.089 %± 0.339 61.797

Projectron++ 28.073 %± 0.552 50.108 27.357 %± 0.421 173.576 27.089 %± 0.310 366.590

BOGD 28.019 %± 0.450 0.803 25.724 %± 0.477 1.697 24.957 %± 0.348 2.723

BOGD++ 27.255 %± 0.714 1.009 25.211 %± 0.422 2.079 24.368 %± 0.423 3.312

Budget Size B=500 B=1000 B=2000

Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

ijcnn1 RBP 15.621 %± 0.162 7.654 15.401 %± 0.173 18.463 15.270 %± 0.139 34.046

Forgetron 16.723 %± 0.541 9.657 16.006 %± 0.308 22.411 15.273 %± 0.134 41.723

Projectron 16.103 %± 0.686 32.490 15.103 %± 0.666 75.250 13.203 %± 0.581 219.310

Projectron++ 15.373 %± 0.037 35.070 14.074 %± 0.042 109.270 12.223 %± 0.258 363.520

BOGD 16.505 %± 0.652 8.441 16.176 %± 0.554 19.875 13.614 %± 0.320 38.787

BOGD++ 15.225 %± 0.488 8.833 13.238 %± 0.550 20.321 12.117 %± 0.238 39.086

Budget Size B=500 B=1000 B=2000

Dataset Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)

codrna RBP 17.130 %± 0.078 11.519 16.139 %± 0.046 26.736 15.532 %± 0.051 58.715

Forgetron 16.773 %± 0.069 13.275 15.962 %± 0.120 30.298 15.316 %± 0.052 65.292

Projectron 16.883 %± 0.606 58.718 16.375 %± 0.666 312.179 15.333 %± 0.540 1287.570

Projectron++ 15.967 %± 0.721 208.015 15.025 %± 0.743 851.189 14.636 %± 0.815 1926.070

BOGD 18.504 %± 0.236 11.601 18.465 %± 0.225 27.471 15.274 %± 0.660 56.439

BOGD++ 15.634 %± 0.603 12.313 14.418 %± 0.206 28.552 13.439 %± 0.220 61.181

Table 3. Evaluation of several budgeted algorithms with different budgets on six data sets.



Fast Bounded Online Gradient Descent Algorithms

Finally, for the comparison of running time cost,
the Projectron algorithms are the least efficient al-
gorithms among all the budget online learning algo-
rithms, mostly due to their costly projection step. For
example, on the largest dataset “codrna” with the
budget B=2000, Projectron++ on average took more
than half an hour to run one experiment. For the pro-
posed algorithms, the time costs of both BOGD and
BOGD++ are in general comparable to those of RBP
and Forgetron, and are significantly more efficient
than those of Projectron algorithms. For example, on
dataset “codrna” with the budget B=1000, BOGD++
is about 30 times faster than Projectron++, and is
about 60 times faster than the original non-budget
OGD algorithm. For the two proposed algorithms
themselves, BOGD++ is slightly more time consuming
than BOGD, due to the additional cost of computing
the distribution pt towards non-uniform sampling.

4. Conclusions

This paper presented a novel framework of bounded
online gradient descent (BOGD) for scalable kernel-
based online learning which requires the number of
support vectors to be smaller than a predefined bud-
get. The basic idea of maintaining the budget size
is to remove one randomly selected support vector
whenever the support vector size overflows. In par-
ticular, we proposed two efficient BOGD algorithms:
(i) BOGD by randomly discarding one support vec-
tor using uniform sampling, and (ii) BOGD++ using
non-uniform sampling. We conducted extensive empir-
ical studies by comparing with several state-of-the-art
algorithms, in which our results showed that the pro-
posed algorithms achieve the promising performance in
terms of both classification efficacy and computational
efficiency. Future work will exploit different sampling
strategies and extend our work to multi-class budget
kernel-based online learning.

Acknowledgments
This work was in part supported by MOE tier 1 grant
(RG33/11), Microsoft Research grant (M4060936),
National Science Foundation (IIS-0643494), and Of-
fice of Navy Research (ONR Award N00014-09-1-0663
and N00014-12-1-0431).

References

Cavallanti, Giovanni, Cesa-Bianchi, Nicolò, and Gen-
tile, Claudio. Tracking the best hyperplane with a
simple budget perceptron. Machine Learning, 69(2-
3):143–167, 2007.

Cheng, Li, Vishwanathan, S. V. N., Schuurmans, Dale,

Wang, Shaojun, and Caelli, Terry. Implicit online
learning with kernels. In NIPS, pp. 249–256, 2006.

Crammer, Koby, Kandola, Jaz S., and Singer, Yoram.
Online classification on a budget. In NIPS, 2003.

Crammer, Koby, Dekel, Ofer, Keshet, Joseph, Shalev-
Shwartz, Shai, and Singer, Yoram. Online passive-
aggressive algorithms. Journal of Machine Learning
Research, 7:551–585, 2006.

Dekel, Ofer, Shalev-Shwartz, Shai, and Singer, Yoram.
The forgetron: A kernel-based perceptron on a fixed
budget. In NIPS, 2005.

Duchi, John and Singer, Yoram. Efficient online and
batch learning using forward backward splitting.
JMLR, 10:2899–2934, December 2009.

Jin, Rong, Hoi, Steven C. H., and Yang, Tianbao. On-
line multiple kernel learning: Algorithms and mis-
take bounds. In ALT, pp. 390–404, 2010.

Kivinen, Jyrki, Smola, Alex J., and Williamson,
Robert C. Online learning with kernels. In NIPS,
pp. 785–792, 2001.

Langford, John, Li, Lihong, and Zhang, Tong. Sparse
online learning via truncated gradient. Journal of
Machine Learning Research, 10:777–801, 2009.

Orabona, Francesco, Keshet, Joseph, and Caputo,
Barbara. The projectron: a bounded kernel-based
perceptron. In ICML, pp. 720–727, 2008.

Rosenblatt, Frank. The perceptron: A probabilistic
model for information storage and organization in
the brain. Psychological Review, 65:386–407, 1958.

Shalev-Shwartz, Shai, Singer, Yoram, Srebro, Nathan,
and Cotter, Andrew. Pegasos: primal estimated
sub-gradient solver for svm. Math. Program., 127
(1):3–30, 2011.

Weston, Jason and Bordes, Antoine. Online (and of-
fline) on an even tighter budget. In AISTATS, pp.
413–420, 2005.

Ying, Yiming and Pontil, Massimiliano. Online gra-
dient descent learning algorithms. Found. Comput.
Math., 8:561–596, September 2008.

Zhao, Peilin, Hoi, Steven C. H., and Jin, Rong. Dou-
ble updating online learning. Journal of Machine
Learning Research, 12:1587–1615, 2011.

Zinkevich, Martin. Online convex programming and
generalized infinitesimal gradient ascent. In ICML,
pp. 928–936, 2003.


	Fast bounded online gradient descent algorithms for scalable kernel-based online learning
	Citation

	Fast Bounded Online Gradient Descent Algorithms forScalable Kernel-Based Online Learning

